Molecular Neurobiology

, Volume 49, Issue 1, pp 601–614

Introduction to Deep Sequencing and Its Application to Drug Addiction Research with a Focus on Rare Variants

  • Shaolin Wang
  • Zhongli Yang
  • Jennie Z. Ma
  • Thomas J. Payne
  • Ming D. Li
Article
  • 473 Downloads

Abstract

Through linkage analysis, candidate gene approach, and genome-wide association studies (GWAS), many genetic susceptibility factors for substance dependence have been discovered such as the alcohol dehydrogenase gene (ALDH2) for alcohol dependence (AD) and nicotinic acetylcholine receptor (nAChR) subunit variants on chromosomes 8 and 15 for nicotine dependence (ND). However, these confirmed genetic factors contribute only a small portion of the heritability responsible for each addiction. Among many potential factors, rare variants in those identified and unidentified susceptibility genes are supposed to contribute greatly to the missing heritability. Several studies focusing on rare variants have been conducted by taking advantage of next-generation sequencing technologies, which revealed that some rare variants of nAChR subunits are associated with ND in both genetic and functional studies. However, these studies investigated variants for only a small number of genes and need to be expanded to broad regions/genes in a larger population. This review presents an update on recently developed methods for rare-variant identification and association analysis and on studies focused on rare-variant discovery and function related to addictions.

Keywords

Rare variants Next-generation sequencing Drug addiction 

Supplementary material

12035_2013_8541_MOESM1_ESM.docx (39 kb)
ESM 1(DOCX 39 kb)

References

  1. 1.
    WHO (2008) Report on the global tobacco epidemic, 2008: the MPOWER package. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Mokdad AH, Marks JS, Stroup DF, Gerberding JL (2004) Actual causes of death in the United States, 2000. JAMA 291:1238–1245PubMedCrossRefGoogle Scholar
  3. 3.
    Centers for Disease, Control and Prevention (2008) Smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 2000–2004. MMWR 57:1226–1228Google Scholar
  4. 4.
    Rhee SH, Hewitt JK, Young SE, Corley RP, Crowley TJ, Stallings MC (2003) Genetic and environmental influences on substance initiation, use, and problem use in adolescents. Arch Gen Psychiatry 60:1256–1264PubMedCrossRefGoogle Scholar
  5. 5.
    Palmer RHC, Young SE, Hopfer CJ, Corley RP, Stallings MC, Crowley TJ, Hewitt JK (2009) Developmental epidemiology of drug use and abuse in adolescence and young adulthood: evidence of generalized risk. Drug Alcohol Depend 102:78–87PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Li MD, Burmeister M (2009) New insights into the genetics of addiction. Nat Rev Genet 10:225–231PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Bierut LJ, Dinwiddie SH, Begleiter H, Crowe RR, Hesselbrock V, Nurnberger JI Jr, Porjesz B, Schuckit MA, Reich T (1998) Familial transmission of substance dependence: alcohol, marijuana, cocaine, and habitual smoking: a report from the Collaborative Study on the Genetics of Alcoholism. Arch Gen Psychiatry 55:982–988PubMedCrossRefGoogle Scholar
  8. 8.
    Agrawal A, Lynskey MT (2008) Are there genetic influences on addiction: evidence from family, adoption and twin studies. Addiction 103:1069–1081PubMedCrossRefGoogle Scholar
  9. 9.
    Li MD, Cheng R, Ma JZ, Swan GE (2003) A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction 98:23–31PubMedCrossRefGoogle Scholar
  10. 10.
    Tsuang MT, Bar JL, Harley RM, Lyons MJ (2001) The Harvard twin study of substance abuse: what we have learned. Harv Rev Psychiatry 9:267–279PubMedCrossRefGoogle Scholar
  11. 11.
    Agrawal A, Lynskey MT, Hinrichs A, Grucza R, Saccone SF, Krueger R, Neuman R, Howells W, Fisher S, Fox L et al (2011) A genome-wide association study of DSM-IV cannabis dependence. Addict Biol 16:514–518PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Long JC, Knowler WC, Hanson RL, Robin RW, Urbanek M, Moore E, Bennett PH, Goldman D (1998) Evidence for genetic linkage to alcohol dependence on chromosomes 4 and 11 from an autosome-wide scan in an American Indian population. Am J Med Genet 81:216–221PubMedCrossRefGoogle Scholar
  13. 13.
    Reich T, Edenberg HJ, Goate A, Williams JT, Rice JP, Van Eerdewegh P, Foroud T, Hesselbrock V, Schuckit MA, Bucholz K et al (1998) Genome-wide search for genes affecting the risk for alcohol dependence. Am J Med Genet 81:207–215PubMedCrossRefGoogle Scholar
  14. 14.
    Foroud T, Edenberg HJ, Goate A, Rice J, Flury L, Koller DL, Bierut LJ, Conneally PM, Nurnberger JI, Bucholz KK et al (2000) Alcoholism susceptibility loci: confirmation studies in a replicate sample and further mapping. Alcohol Clin Exp Res 24:933–945PubMedCrossRefGoogle Scholar
  15. 15.
    Cui WY, Seneviratne C, Gu J, Li MD (2012) Genetics of GABAergic signaling in nicotine and alcohol dependence. Hum Genet 131:843–855PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Gelernter J, Kranzler HR (2009) Genetics of alcohol dependence. Hum Genet 126:91–99PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Goldman D, Oroszi G, Ducci F (2005) The genetics of addictions: uncovering the genes. Nat Rev Genet 6:521–532PubMedCrossRefGoogle Scholar
  18. 18.
    Treutlein J, Cichon S, Ridinger M, Wodarz N, Soyka M, Zill P, Maier W, Moessner R, Gaebel W, Dahmen N et al (2009) Genome-wide association study of alcohol dependence. Arch Gen Psychiatry 66:773–784PubMedCrossRefGoogle Scholar
  19. 19.
    Li D, Zhao H, Gelernter J (2011) Strong association of the alcohol dehydrogenase 1B gene (ADH1B) with alcohol dependence and alcohol-induced medical diseases. Biol Psychiatry 70:504–512PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Guo H, Zhang G, Mai R (2012) Alcohol dehydrogenase-1B Arg47His polymorphism and upper aerodigestive tract cancer risk: a meta-analysis including 24,252 subjects. Alcohol Clin Exp Res 36:272–278PubMedCrossRefGoogle Scholar
  21. 21.
    Li D, Zhao H, Gelernter J (2012) Further clarification of the contribution of the ADH1C gene to vulnerability of alcoholism and selected liver diseases. Hum Genet 131:1361–1374PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Li D, Zhao H, Gelernter J (2012) Strong protective effect of the aldehyde dehydrogenase gene (ALDH2) 504lys (*2) allele against alcoholism and alcohol-induced medical diseases in Asians. Hum Genet 131:725–737PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Li MD (2008) Identifying susceptibility loci for nicotine dependence: 2008 update based on recent genome-wide linkage analyses. Hum Genet 123:119–131PubMedCrossRefGoogle Scholar
  24. 24.
    Li MD, Ma JZ, Payne TJ, Lou XY, Zhang D, Dupont RT, Elston RC (2008) Genome-wide linkage scan for nicotine dependence in European Americans and its converging results with African Americans in the mid-South tobacco family sample. Mol Psychiatry 13:407–416PubMedCrossRefGoogle Scholar
  25. 25.
    Gelernter J, Liu X, Hesselbrock V, Page GP, Goddard A, Zhang H (2004) Results of a genomewide linkage scan: support for chromosomes 9 and 11 loci increasing risk for cigarette smoking. Am J Med Genet B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Gen 128B:94–101CrossRefGoogle Scholar
  26. 26.
    Morley KI, Medland SE, Ferreira MA, Lynskey MT, Montgomery GW, Heath AC, Madden PA, Martin NG (2006) A possible smoking susceptibility locus on chromosome 11p12: evidence from sex-limitation linkage analyses in a sample of Australian twin families. Behav Genet 36:87–99PubMedCrossRefGoogle Scholar
  27. 27.
    Vink JM, Posthuma D, Neale MC, Eline Slagboom P, Boomsma DI (2006) Genome-wide linkage scan to identify loci for age at first cigarette in Dutch sibling pairs. Behav Benet 36:100–111CrossRefGoogle Scholar
  28. 28.
    Saccone SF, Pergadia ML, Loukola A, Broms U, Montgomery GW, Wang JC, Agrawal A, Dick DM, Heath AC, Todorov AA et al (2007) Genetic linkage to chromosome 22q12 for a heavy-smoking quantitative trait in two independent samples. Am J Hum Genet 80:856–866PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Loukola A, Broms U, Maunu H, Widen E, Heikkila K, Siivola M, Salo A, Pergadia ML, Nyman E, Sammalisto S et al (2008) Linkage of nicotine dependence and smoking behavior on 10q, 7q and 11p in twins with homogeneous genetic background. Pharmacogenomics J 8:209–219PubMedCrossRefGoogle Scholar
  30. 30.
    Morabia A, Cayanis E, Costanza MC, Ross BM, Bernstein MS, Flaherty MS, Alvin GB, Das K, Morris MA, Penchaszadeh GK et al (2003) Association between lipoprotein lipase (LPL) gene and blood lipids: a common variant for a common trait? Genet Epidemiol 24:309–321PubMedCrossRefGoogle Scholar
  31. 31.
    Wang D, Ma JZ, Li MD (2005) Mapping and verification of susceptibility loci for smoking quantity using permutation linkage analysis. Pharmacogenomics J 5:166–172PubMedCrossRefGoogle Scholar
  32. 32.
    Li MD, Payne TJ, Ma JZ, Lou XY, Zhang D, Dupont RT, Crews KM, Somes G, Williams NJ, Elston RC (2006) A genomewide search finds major susceptibility Loci for nicotine dependence on chromosome 10 in African Americans. Am J Hum Genet 79:745–751PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Swan GE, Hops H, Wilhelmsen KC, Lessov-Schlaggar CN, Cheng LS, Hudmon KS, Amos CI, Feiler HS, Ring HZ, Andrews JA et al (2006) A genome-wide screen for nicotine dependence susceptibility loci. Am J Med Genet B Neuropsychiatr Genet 141:354–360CrossRefGoogle Scholar
  34. 34.
    Gelernter J, Panhuysen C, Weiss R, Brady K, Poling J, Krauthammer M, Farrer L, Kranzler HR (2007) Genomewide linkage scan for nicotine dependence: identification of a chromosome 5 risk locus. Biol Psychiatry 61:119–126PubMedCrossRefGoogle Scholar
  35. 35.
    Li MD, Sun D, Lou XY, Beuten J, Payne TJ, Ma JZ (2007) Linkage and association studies in African- and Caucasian-American populations demonstrate that SHC3 is a novel susceptibility locus for nicotine dependence. Mol Psychiatry 12:462–473PubMedCrossRefGoogle Scholar
  36. 36.
    Bierut LJ, Stitzel JA, Wang JC, Hinrichs AL, Grucza RA, Xuei X, Saccone NL, Saccone SF, Bertelsen S, Fox L et al (2008) Variants in nicotinic receptors and risk for nicotine dependence. Am J Psychiatry 165:1163–1171PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Li MD, Xu Q, Lou XY, Payne TJ, Niu T, Ma JZ (2010) Association and interaction analysis of variants in CHRNA5/CHRNA3/CHRNB4 gene cluster with nicotine dependence in African and European Americans. Am J Med Genet B Neuropsychiatr Genet 153B:745–756PubMedCentralPubMedGoogle Scholar
  38. 38.
    Li MD, Yoon D, Lee JY, Han BG, Niu T, Payne TJ, Ma JZ, Park T (2010) Associations of variants in CHRNA5/A3/B4 gene cluster with smoking behaviors in a Korean population. PLoS One 5:e12183PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Liu JZ, Tozzi F, Waterworth DM, Pillai SG, Muglia P, Middleton L, Berrettini W, Knouff CW, Yuan X, Waeber G et al (2010) Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat Genet 42:436–440PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Saccone NL, Culverhouse RC, Schwantes-An TH, Cannon DS, Chen X, Cichon S, Giegling I, Han S, Han Y, Keskitalo-Vuokko K et al (2010) Multiple independent loci at chromosome 15q25.1 affect smoking quantity: a meta-analysis and comparison with lung cancer and COPD. PLoS Genet 6Google Scholar
  41. 41.
    Thorgeirsson TE, Gudbjartsson DF, Surakka I, Vink JM, Amin N, Geller F, Sulem P, Rafnar T, Esko T, Walter S et al (2010) Sequence variants at CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat Genet 42:448–453PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Tobacco & Genetics Consortium (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447CrossRefGoogle Scholar
  43. 43.
    Truong T, Hung RJ, Amos CI, Wu X, Bickeboller H, Rosenberger A, Sauter W, Illig T, Wichmann HE, Risch A et al (2010) Replication of lung cancer susceptibility loci at chromosomes 15q25, 5p15, and 6p21: a pooled analysis from the International Lung Cancer Consortium. J Natl Cancer Inst 102:959–971PubMedCrossRefGoogle Scholar
  44. 44.
    Saccone NL, Schwantes-An TH, Wang JC, Grucza RA, Breslau N, Hatsukami D, Johnson EO, Rice JP, Goate AM, Bierut LJ (2010) Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans. Genes Brain Behav 9:741–750PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Cui WY, Wang S, Yang J, Yi SG, Yoon D, Kim YJ, Payne TJ, Ma JZ, Park T, Li MD (2013) Significant association of CHRNB3 variants with nicotine dependence in multiple ethnic populations. Mol Psychiatry. doi:10.1038/mp.2012.190
  46. 46.
    Gelernter J, Yu Y, Weiss R, Brady K, Panhuysen C, Yang BZ, Kranzler HR, Farrer L (2006) Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Hum Mol Genet 15:3498–3507PubMedCrossRefGoogle Scholar
  47. 47.
    Huang W, Payne TJ, Ma JZ, Beuten J, Dupont RT, Inohara N, Li MD (2009) Significant association of ANKK1 and detection of a functional polymorphism with nicotine dependence in an African-American sample. Neuropsychopharmacology 34:319–330PubMedCrossRefGoogle Scholar
  48. 48.
    Saccone NL, Saccone SF, Hinrichs AL, Stitzel JA, Duan W, Pergadia ML, Agrawal A, Breslau N, Grucza RA, Hatsukami D et al (2009) Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (CHRN) genes. Am J Med Genet B Neuropsychiatr Genet 150B:453–466PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF, Swan GE, Rutter J, Bertelsen S, Fox L et al (2007) Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet 16:24–35PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Nussbaum J, Xu Q, Payne TJ, Ma JZ, Huang W, Gelernter J, Li MD (2008) Significant association of the neurexin-1 gene (NRXN1) with nicotine dependence in European- and African-American smokers. Hum Mol Genet 17:1569–1577PubMedCrossRefGoogle Scholar
  51. 51.
    TAG (2010) Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat Genet 42:441–447CrossRefGoogle Scholar
  52. 52.
    Beuten J, Ma JZ, Payne TJ, Dupont RT, Quezada P, Huang W, Crews KM, Li MD (2005) Significant association of BDNF haplotypes in European-American male smokers but not in European-American female or African-American smokers. Am J Med Genet B Neuropsychiatr Genet 139:73–80CrossRefGoogle Scholar
  53. 53.
    Hopfer CJ, Lessem JM, Hartman CA, Stallings MC, Cherny SS, Corley RP, Hewitt JK, Krauter KS, Mikulich-Gilbertson SK, Rhee SH et al (2007) A genome-wide scan for loci influencing adolescent cannabis dependence symptoms: evidence for linkage on chromosomes 3 and 9. Drug Alcohol Depend 89:34–41PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Ehlers CL, Gilder DA, Gizer IR, Wilhelmsen KC (2009) Heritability and a genome-wide linkage analysis of a Type II/B cluster construct for cannabis dependence in an American Indian community. Addict Biol 14:338–348PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Gelernter J, Panhuysen C, Weiss R, Brady K, Hesselbrock V, Rounsaville B, Poling J, Wilcox M, Farrer L, Kranzler HR (2005) Genomewide linkage scan for cocaine dependence and related traits: significant linkages for a cocaine-related trait and cocaine-induced paranoia. Am J Med Genet B Neuropsychiatr Genet 136B:45–52PubMedCrossRefGoogle Scholar
  56. 56.
    Gelernter J, Panhuysen C, Wilcox M, Hesselbrock V, Rounsaville B, Poling J, Weiss R, Sonne S, Zhao H, Farrer L et al (2006) Genomewide linkage scan for opioid dependence and related traits. Am J Hum Genet 78:759–769PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Lachman HM, Fann CS, Bartzis M, Evgrafov OV, Rosenthal RN, Nunes EV, Miner C, Santana M, Gaffney J, Riddick A et al (2007) Genomewide suggestive linkage of opioid dependence to chromosome 14q. Hum Mol Genet 16:1327–1334PubMedCrossRefGoogle Scholar
  58. 58.
    Levran O, Awolesi O, Linzy S, Adelson M, Kreek MJ (2011) Haplotype block structure of the genomic region of the mu opioid receptor gene. J Hum Genet 56:147–155PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Levran O, Yuferov V, Kreek MJ (2012) The genetics of the opioid system and specific drug addictions. Hum Genet 131:823–842PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Zhang H, Kranzler HR, Yang BZ, Luo X, Gelernter J (2008) The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol Psychiatry 13:531–543PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Bart G, Heilig M, LaForge KS, Pollak L, Leal SM, Ott J, Kreek MJ (2004) Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol Psychiatry 9:547–549PubMedCrossRefGoogle Scholar
  62. 62.
    Tan EC, Tan CH, Karupathivan U, Yap EP (2003) Mu opioid receptor gene polymorphisms and heroin dependence in Asian populations. Neuroreport 14:569–572PubMedCrossRefGoogle Scholar
  63. 63.
    Levran O, Londono D, O’Hara K, Nielsen DA, Peles E, Rotrosen J, Casadonte P, Linzy S, Randesi M, Ott J et al (2008) Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav 7:720–729PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Nielsen DA, Ji F, Yuferov V, Ho A, He C, Ott J, Kreek MJ (2010) Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr Genet 20:207–214PubMedCrossRefGoogle Scholar
  65. 65.
    Nishizawa D, Fukuda K, Kasai S, Hasegawa J, Aoki Y, Nishi A, Saita N, Koukita Y, Nagashima M, Katoh R et al (2012) Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Mol Psychiatry. doi:10.1038/mp.2012.164
  66. 66.
    Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440PubMedCrossRefGoogle Scholar
  67. 67.
    Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577PubMedCrossRefGoogle Scholar
  68. 68.
    Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ et al (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460:753–757PubMedCentralPubMedGoogle Scholar
  69. 69.
    Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266PubMedCrossRefGoogle Scholar
  70. 70.
    Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11:415–425PubMedCrossRefGoogle Scholar
  71. 71.
    Feldman MW, Lewontin RC (1975) The heritability hang-up. Science 190:1163–1168PubMedCrossRefGoogle Scholar
  72. 72.
    Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339PubMedCrossRefGoogle Scholar
  74. 74.
    Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145CrossRefGoogle Scholar
  75. 75.
    Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA (2011) Clan genomics and the complex architecture of human disease. Cell 147:32–43PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T, Wong M, Bhattacharjee A, Eichler EE et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461:272–276PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073PubMedCrossRefGoogle Scholar
  78. 78.
    Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65PubMedCrossRefGoogle Scholar
  79. 79.
    Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Peltonen L et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58PubMedCrossRefGoogle Scholar
  80. 80.
    Li Y, Sidore C, Kang HM, Boehnke M, Abecasis GR (2011) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res 21:940–951PubMedCrossRefGoogle Scholar
  81. 81.
    Flanigan KM, Gastier-Foster J, Pyatt R, Rosales XQ, Thrush DL, Kneile K, Mendell JR, Kelly B, Newsom D, Hu P et al (2012) Comparison of commercially-available exome capture kits in the diagnosis of neuromuscular disorders. Neuromuscul Disord 22:808CrossRefGoogle Scholar
  82. 82.
    Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, Wiley KE, Isaacs SD, Johng D, Wang Y et al (2012) Germline mutations in HOXB13 and prostate-cancer risk. New Engl J Med 366:141–149PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Mondal K, Ramachandran D, Patel VC, Hagen KR, Bose P, Cutler DJ, Zwick ME (2012) Excess variants in AFF2 detected by massively parallel sequencing of males with autism spectrum disorder. Hum Mol Genet 21:4356–4364PubMedCrossRefGoogle Scholar
  84. 84.
    Myllykangas S, Buenrostro JD, Natsoulis G, Bell JM, Ji HP (2011) Efficient targeted resequencing of human germline and cancer genomes by oligonucleotide-selective sequencing. Nat Biotechnol 29:1024–1027PubMedCrossRefGoogle Scholar
  85. 85.
    Sham P, Bader JS, Craig I, O’Donovan M, Owen M (2002) DNA Pooling: a tool for large-scale association studies. Nat Rev Genet 3:862–871PubMedCrossRefGoogle Scholar
  86. 86.
    Norton N, Williams NM, O’Donovan MC, Owen MJ (2004) DNA pooling as a tool for large-scale association studies in complex traits. Ann Med 36:146–152PubMedCrossRefGoogle Scholar
  87. 87.
    Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA et al (2010) High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 42:851–858PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511PubMedCrossRefGoogle Scholar
  90. 90.
    Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861PubMedCrossRefGoogle Scholar
  91. 91.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760PubMedCrossRefGoogle Scholar
  92. 92.
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303PubMedCrossRefGoogle Scholar
  93. 93.
    Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993PubMedCrossRefGoogle Scholar
  94. 94.
    Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Liu EY, Li M, Wang W, Li Y (2013) MaCH-admix: genotype imputation for admixed populations. Genet Epidemiol 37:25–37PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913PubMedCrossRefGoogle Scholar
  97. 97.
    Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529PubMedCentralPubMedCrossRefGoogle Scholar
  98. 98.
    Browning SR, Browning BL (2011) Haplotype phasing: existing methods and new developments. Nat Rev Genet 12:703–714PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR (2012) Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 44:955–959PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83:311–321PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Morgenthaler S, Thilly WG (2007) A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 615:28–56PubMedCrossRefGoogle Scholar
  104. 104.
    Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5:e1000384PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Morris AP, Zeggini E (2010) An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34:188–193PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH (2004) Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science 305:869–872PubMedCrossRefGoogle Scholar
  107. 107.
    Fearnhead NS, Wilding JL, Winney B, Tonks S, Bartlett S, Bicknell DC, Tomlinson IP, Mortensen NJ, Bodmer WF (2004) Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proc Natl Acad Sci U S A 101:15992–15997PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR (2010) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832–838PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orho-Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ (2011) Testing for an unusual distribution of rare variants. PLoS Genet 7:e1001322PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Wu Michael C, Lee S, Cai T, Li Y, Boehnke M, Lin X (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89:82–93PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Basu S, Pan W (2011) Comparison of statistical tests for disease association with rare variants. Genet Epidemiol 35:606–619PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Lin DY, Tang ZZ (2011) A general framework for detecting disease associations with rare variants in sequencing studies. Am J Hum Genet 89:354–367PubMedCentralPubMedCrossRefGoogle Scholar
  113. 113.
    Lee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, NHLBI GO Exome Sequencing Project – ESP Lung Project Team, Christiani DC, Wurfel MM, Lin X (2012) Optimal unified approach for rare-variant association testing with application to small-sample case–control whole-exome sequencing studies. Am J Hum Genet 91:224–237Google Scholar
  114. 114.
    Chen H, Meigs JB, Dupuis J (2013) Sequence kernel association test for quantitative traits in family samples. Genet Epidemiol 37:196–204PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Conneely KN, Boehnke M (2007) So many correlated tests, so little time! Rapid adjustment of P values for multiple correlated tests. Am J Hum Genet 81:1158–1168PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Chapman J, Whittaker J (2008) Analysis of multiple SNPs in a candidate gene or region. Genet Epidemiol 32:560–566PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Pan W (2009) Asymptotic tests of association with multiple SNPs in linkage disequilibrium. Genet Epidemiol 33:497–507PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Wessel J, McDonald SM, Hinds DA, Stokowski RP, Javitz HS, Kennemer M, Krasnow R, Dirks W, Hardin J, Pitts SJ et al (2010) Resequencing of nicotinic acetylcholine receptor genes and association of common and rare variants with the Fagerstrom test for nicotine dependence. Neuropsychopharmacology 35:2392–2402PubMedCrossRefGoogle Scholar
  119. 119.
    Xie P, Kranzler HR, Krauthammer M, Cosgrove KP, Oslin D, Anton RF, Farrer LA, Picciotto MR, Krystal JH, Zhao H et al (2011) Rare nonsynonymous variants in alpha-4 nicotinic acetylcholine receptor gene protect against nicotine dependence. Biol Psychiat 70:528–536PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Haller G, Druley T, Vallania FL, Mitra RD, Li P, Akk G, Steinbach JH, Breslau N, Johnson E, Hatsukami D et al (2012) Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence. Hum Mol Genet 21:647–655PubMedCrossRefGoogle Scholar
  121. 121.
    Ho MK, Goldman D, Heinz A, Kaprio J, Kreek MJ, Li MD, Munafo MR, Tyndale RF (2010) Breaking barriers in the genomics and pharmacogenetics of drug addiction. Clin Pharmacol Ther 88:779–791PubMedCentralPubMedCrossRefGoogle Scholar
  122. 122.
    Salas R, Orr-Urtreger A, Broide RS, Beaudet A, Paylor R, De Biasi M (2003) The nicotinic acetylcholine receptor subunit alpha 5 mediates short-term effects of nicotine in vivo. Mol Pharmacol 63:1059–1066PubMedCrossRefGoogle Scholar
  123. 123.
    Salas R, Pieri F, De Biasi M (2004) Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci 24:10035–10039PubMedCrossRefGoogle Scholar
  124. 124.
    Salas R, Cook KD, Bassetto L, De Biasi M (2004) The alpha3 and beta4 nicotinic acetylcholine receptor subunits are necessary for nicotine-induced seizures and hypolocomotion in mice. Neuropharmacology 47:401–407PubMedCrossRefGoogle Scholar
  125. 125.
    Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601PubMedCentralPubMedCrossRefGoogle Scholar
  126. 126.
    Hong LE, Hodgkinson CA, Yang Y, Sampath H, Ross TJ, Buchholz B, Salmeron BJ, Srivastava V, Thaker GK, Goldman D et al (2010) A genetically modulated, intrinsic cingulate circuit supports human nicotine addiction. Proc Natl Acad Sci U S A 107:13509–13514PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Bierut LJ (2010) Convergence of genetic findings for nicotine dependence and smoking related diseases with chromosome 15q24–25. Trends Pharmacol Sci 31:46–51PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Wang JC, Kapoor M, Goate AM (2012) The genetics of substance dependence. Annu Rev Genom Hum Genet 13:241–261CrossRefGoogle Scholar
  129. 129.
    Munafo MR, Matheson IJ, Flint J (2007) Association of the DRD2 gene Taq1A polymorphism and alcoholism: a meta-analysis of case–control studies and evidence of publication bias. Mol Psychiatry 12:454–461PubMedGoogle Scholar
  130. 130.
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shaolin Wang
    • 1
  • Zhongli Yang
    • 1
    • 2
  • Jennie Z. Ma
    • 3
  • Thomas J. Payne
    • 4
  • Ming D. Li
    • 1
  1. 1.Department of Psychiatry & Neurobiology ScienceUniversity of VirginiaCharlottesvilleUSA
  2. 2.Shanxi Key Laboratory of Environmental Veterinary ScienceShanxi Agricultural UniversityShanxiChina
  3. 3.Department of Public Health SciencesUniversity of VirginiaCharlottesvilleUSA
  4. 4.ACT Center for Tobacco Treatment, Education and Research, Department of Otolaryngology and Communicative SciencesUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations