Molecular Neurobiology

, Volume 49, Issue 1, pp 440–471 | Cite as

Receptor Tyrosine Kinase (RTK) Signalling in the Control of Neural Stem and Progenitor Cell (NSPC) Development

  • Alexander Annenkov


Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.


Receptor tyrosine kinase Neural stem cell Intracellular signalling Neurogenesis Oligodendrocyte progenitor cell Neurogenic niche 



The author was supported by funding from the National Multiple Sclerosis Society of the USA.

Conflict of interest

The author declares that he has no conflict of interest.


  1. 1.
    von Bohlen-und-Halbach O, Minichiello L, Unsicker K (2003) Haploinsufficiency in trkB and/or trkC neurotrophin receptors causes structural alterations in the aged hippocampus and amygdala. Eur J Neurosci 18(8):2319–2325PubMedGoogle Scholar
  2. 2.
    Silos-Santiago I, Fagan AM, Garber M, Fritzsch B, Barbacid M (1997) Severe sensory deficits but normal CNS development in newborn mice lacking TrkB and TrkC tyrosine protein kinase receptors. Eur J Neurosci 9(10):2045–2056PubMedGoogle Scholar
  3. 3.
    Wada T, Haigh JJ, Ema M, Hitoshi S, Chaddah R, Rossant J, Nagy A, van der Kooy D (2006) Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J Neurosci 26(25):6803–6812PubMedGoogle Scholar
  4. 4.
    Calvo CF, Fontaine RH, Soueid J, Tammela T, Makinen T, Alfaro-Cervello C, Bonnaud F, Miguez A, Benhaim L, Xu Y, Barallobre MJ, Moutkine I, Lyytikka J, Tatlisumak T, Pytowski B, Zalc B, Richardson W, Kessaris N, Garcia-Verdugo JM, Alitalo K, Eichmann A, Thomas JL (2011) Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev 25(8):831–844. doi: 10.1101/gad.615311 PubMedGoogle Scholar
  5. 5.
    Wittko IM, Schanzer A, Kuzmichev A, Schneider FT, Shibuya M, Raab S, Plate KH (2009) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 29(27):8704–8714. doi: 10.1523/jneurosci.5527-08.2009 PubMedGoogle Scholar
  6. 6.
    Le Bras B, Barallobre MJ, Homman-Ludiye J, Ny A, Wyns S, Tammela T, Haiko P, Karkkainen MJ, Yuan L, Muriel MP, Chatzopoulou E, Breant C, Zalc B, Carmeliet P, Alitalo K, Eichmann A, Thomas JL (2006) VEGF-C is a trophic factor for neural progenitors in the vertebrate embryonic brain. Nat Neurosci 9(3):340–348. doi: 10.1038/nn1646 PubMedGoogle Scholar
  7. 7.
    Coutu DL, Galipeau J (2011) Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging (Albany NY) 3(10):920–933Google Scholar
  8. 8.
    Ishibashi M, McMahon AP (2002) A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development 129(20):4807–4819PubMedGoogle Scholar
  9. 9.
    Liu A, Li JY, Bromleigh C, Lao Z, Niswander LA, Joyner AL (2003) FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors. Development 130(25):6175–6185. doi: 10.1242/dev.00845 PubMedGoogle Scholar
  10. 10.
    Trokovic R, Trokovic N, Hernesniemi S, Pirvola U, Vogt Weisenhorn DM, Rossant J, McMahon AP, Wurst W, Partanen J (2003) FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO J 22(8):1811–1823. doi: 10.1093/emboj/cdg169 PubMedGoogle Scholar
  11. 11.
    Blak AA, Naserke T, Weisenhorn DM, Prakash N, Partanen J, Wurst W (2005) Expression of Fgf receptors 1, 2, and 3 in the developing mid- and hindbrain of the mouse. Dev Dyn 233(3):1023–1030PubMedGoogle Scholar
  12. 12.
    Givol D, Yayon A (1992) Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J 6(15):3362–3369PubMedGoogle Scholar
  13. 13.
    Yayon A, Zimmer Y, Shen GH, Avivi A, Yarden Y, Givol D (1992) A confined variable region confers ligand specificity on fibroblast growth factor receptors: implications for the origin of the immunoglobulin fold. EMBO J 11(5):1885–1890PubMedGoogle Scholar
  14. 14.
    Hecht D, Zimmerman N, Bedford M, Avivi A, Yayon A (1995) Identification of fibroblast growth factor 9 (FGF9) as a high affinity, heparin dependent ligand for FGF receptors 3 and 2 but not for FGF receptors 1 and 4. Growth Factors 12(3):223–233PubMedGoogle Scholar
  15. 15.
    Gómez-Pinilla F, Lee JW-K, Cotman CW (1994) Distribution of basic fibroblast growth factor in the developing rat brain. Neuroscience 61(4):911–923PubMedGoogle Scholar
  16. 16.
    Agasse F, Benzakour O, Berjeaud JM, Roger M, Coronas V (2006) Endogenous factors derived from embryonic cortex regulate proliferation and neuronal differentiation of postnatal subventricular zone cell cultures. Eur J Neurosci 23(8):1970–1976PubMedGoogle Scholar
  17. 17.
    Thisse B, Thisse C (2005) Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 287(2):390–402PubMedGoogle Scholar
  18. 18.
    Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20(11):563–569PubMedGoogle Scholar
  19. 19.
    Ford-Perriss M, Abud H, Murphy M (2001) Fibroblast growth factors in the developing central nervous system. Clin Exp Pharmacol Physiol 28(7):493–503PubMedGoogle Scholar
  20. 20.
    Mason I (2007) Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat Rev Neurosci 8(8):583–596. doi: 10.1038/nrn2189 PubMedGoogle Scholar
  21. 21.
    Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134. doi: 10.1016/j.cell.2010.06.011 PubMedCentralPubMedGoogle Scholar
  22. 22.
    Ronnstrand L, Heldin CH (2001) Mechanisms of platelet-derived growth factor-induced chemotaxis. Int J Cancer 91(6):757–762PubMedGoogle Scholar
  23. 23.
    Tallquist M, Kazlauskas A (2004) PDGF signaling in cells and mice. Cytokine Growth Factor Rev 15(4):205–213. doi: 10.1016/j.cytogfr.2004.03.003 PubMedGoogle Scholar
  24. 24.
    Ferguson KM, Berger MB, Mendrola JM, Cho H-S, Leahy DJ, Lemmon MA (2003) EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell 11(2):507–517PubMedGoogle Scholar
  25. 25.
    Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16(2):107–137. doi: 10.1016/j.cytogfr.2005.01.008 PubMedGoogle Scholar
  26. 26.
    Ward CW, Garrett TP (2004) Structural relationships between the insulin receptor and epidermal growth factor receptor families and other proteins. Curr Opin Drug Discov Devel 7(5):630–638PubMedGoogle Scholar
  27. 27.
    Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1:2005–2010. doi: 10.1038/msb4100014 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Gordus A, Krall JA, Beyer EM, Kaushansky A, Wolf-Yadlin A, Sevecka M, Chang BH, Rush J, MacBeath G (2009) Linear combinations of docking affinities explain quantitative differences in RTK signaling. Mol Syst Biol 5:235. doi: 10.1038/msb.2008.72 PubMedCentralPubMedGoogle Scholar
  29. 29.
    Martin B, Brenneman R, Golden E, Walent T, Becker KG, Prabhu VV, Wood W 3rd, Ladenheim B, Cadet JL, Maudsley S (2009) Growth factor signals in neural cells: coherent patterns of interaction control multiple levels of molecular and phenotypic responses. J Biol Chem 284(4):2493–2511. doi: 10.1074/jbc.M804545200 PubMedGoogle Scholar
  30. 30.
    Choi DY, Toledo-Aral JJ, Lin HY, Ischenko I, Medina L, Safo P, Mandel G, Levinson SR, Halegoua S, Hayman MJ (2001) Fibroblast growth factor receptor 3 induces gene expression primarily through Ras-independent signal transduction pathways. J Biol Chem 276(7):5116–5122PubMedGoogle Scholar
  31. 31.
    Luo Y, Yang C, Jin C, Xie R, Wang F, McKeehan WL (2009) Novel phosphotyrosine targets of FGFR2IIIb signaling. Cell Signal 21(9):1370–1378. doi: 10.1016/j.cellsig.2009.04.004 PubMedCentralPubMedGoogle Scholar
  32. 32.
    Siddle K (2012) Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 3:34. doi: 10.3389/fendo.2012.00034
  33. 33.
    Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, Christensen ST (2005) PDGFRaa signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15(20):1861–1866. doi: 10.1016/j.cub.2005.09.012 PubMedGoogle Scholar
  34. 34.
    Klinghoffer RA, Hamilton TG, Hoch R, Soriano P (2002) An allelic series at the PDGFaR locus indicates unequal contributions of distinct signaling pathways during development. Dev Cell 2(1):103–113PubMedGoogle Scholar
  35. 35.
    Tallquist MD, Klinghoffer RA, Heuchel R, Mueting-Nelsen PF, Corrin PD, Heldin CH, Johnson RJ, Soriano P (2000) Retention of PDGFR-b function in mice in the absence of phosphatidylinositol 3′-kinase and phospholipase Cg signaling pathways. Genes Dev 14(24):3179–3190PubMedGoogle Scholar
  36. 36.
    Liu BA, Engelmann BW, Jablonowski K, Higginbotham K, Stergachis AB, Nash PD (2012) SRC homology 2 domain binding sites in insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Cell Commun Signal 10(1):27. doi: 10.1186/1478-811x-10-27 PubMedCentralPubMedGoogle Scholar
  37. 37.
    Witzel F, Maddison L, Bluthgen N (2012) How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches. Front Physiol 3:475. doi: 10.3389/fphys.2012.00475 PubMedCentralPubMedGoogle Scholar
  38. 38.
    Kutateladze TG (2010) Translation of the phosphoinositide code by PI effectors. Nat Chem Biol 6(7):507–513. doi: 10.1038/nchembio.390 PubMedCentralPubMedGoogle Scholar
  39. 39.
    Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784(1):159–185. doi: 10.1016/j.bbapap.2007.10.003 PubMedGoogle Scholar
  40. 40.
    DiNitto JP, Lambright DG (2006) Membrane and juxtamembrane targeting by PH and PTB domains. Biochim Biophys Acta 1761(8):850–867. doi: 10.1016/j.bbalip.2006.04.008 PubMedGoogle Scholar
  41. 41.
    Rodrigues GA, Falasca M, Zhang Z, Ong SH, Schlessinger J (2000) A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol 20(4):1448–1459PubMedCentralPubMedGoogle Scholar
  42. 42.
    Novosyadlyy R, Dudas J, Pannem R, Ramadori G, Scharf JG (2006) Crosstalk between PDGF and IGF-I receptors in rat liver myofibroblasts: implication for liver fibrogenesis. Lab Invest 86(7):710–723. doi: 10.1038/labinvest.3700426 PubMedGoogle Scholar
  43. 43.
    Brummer T, Schmitz-Peiffer C, Daly RJ (2010) Docking proteins. FEBS J 277(21):4356–4369. doi: 10.1111/j.1742-4658.2010.07865.x PubMedGoogle Scholar
  44. 44.
    Harlan JE, Hajduk PJ, Yoon HS, Fesik SW (1994) Pleckstrin homology domains bind to phosphatidylinositol-4,5-bisphosphate. Nature 371(6493):168–170. doi: 10.1038/371168a0 PubMedGoogle Scholar
  45. 45.
    Uhlik MT, Temple B, Bencharit S, Kimple AJ, Siderovski DP, Johnson GL (2005) Structural and evolutionary division of phosphotyrosine binding (PTB) domains. J Mol Biol 345(1):1–20. doi: 10.1016/j.jmb.2004.10.038 PubMedGoogle Scholar
  46. 46.
    Forman-Kay JD, Pawson T (1999) Diversity in protein recognition by PTB domains. Curr Opin Struct Biol 9(6):690–695PubMedGoogle Scholar
  47. 47.
    George R, Schuller AC, Harris R, Ladbury JE (2008) A phosphorylation-dependent gating mechanism controls the SH2 domain interactions of the Shc adaptor protein. J Mol Biol 377(3):740–747. doi: 10.1016/j.jmb.2007.12.040 PubMedGoogle Scholar
  48. 48.
    Gotoh N (2008) Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. Cancer Sci 99(7):1319–1325. doi: 10.1111/j.1349-7006.2008.00840.x PubMedGoogle Scholar
  49. 49.
    Huang L, Watanabe M, Chikamori M, Kido Y, Yamamoto T, Shibuya M, Gotoh N, Tsuchida N (2006) Unique role of SNT-2/FRS2b/FRS3 docking/adaptor protein for negative regulation in EGF receptor tyrosine kinase signaling pathways. Oncogene 25(49):6457–6466. doi: 10.1038/sj.onc.1209656 PubMedGoogle Scholar
  50. 50.
    Xu X, Weinstein M, Li C, Naski M, Cohen RI, Ornitz DM, Leder P, Deng C (1998) Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125(4):753–765PubMedGoogle Scholar
  51. 51.
    Zhang Y, McKeehan K, Lin Y, Zhang J, Wang F (2008) Fibroblast growth factor receptor 1 (FGFR1) tyrosine phosphorylation regulates binding of FGFR substrate 2a (FRS2a) but not FRS2 to the receptor. Mol Endocrinol 22(1):167–175PubMedGoogle Scholar
  52. 52.
    Hadari YR, Gotoh N, Kouhara H, Lax I, Schlessinger J (2001) Critical role for the docking-protein FRS2 a in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci U S A 98(15):8578–8583. doi: 10.1073/pnas.161259898 PubMedCentralPubMedGoogle Scholar
  53. 53.
    Ong SH, Hadari YR, Gotoh N, Guy GR, Schlessinger J, Lax I (2001) Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc Natl Acad Sci U S A 98(11):6074–6079. doi: 10.1073/pnas.111114298 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Tomasovic A, Traub S, Tikkanen R (2012) Molecular networks in FGF signaling: flotillin-1 and cbl-associated protein compete for the binding to fibroblast growth factor receptor substrate 2. PLoS One 7(1):e29739. doi: 10.1371/journal.pone.0029739 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Hoch RV, Soriano P (2006) Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. Development 133(4):663–673PubMedGoogle Scholar
  56. 56.
    Gotoh N, Manova K, Tanaka S, Murohashi M, Hadari Y, Lee A, Hamada Y, Hiroe T, Ito M, Kurihara T, Nakazato H, Shibuya M, Lax I, Lacy E, Schlessinger J (2005) The docking protein FRS2a is an essential component of multiple fibroblast growth factor responses during early mouse development. Mol Cell Biol 25(10):4105–4116. doi: 10.1128/mcb.25.10.4105-4116.2005 PubMedCentralPubMedGoogle Scholar
  57. 57.
    Hryciw T, MacDonald JI, Phillips R, Seah C, Pasternak S, Meakin SO (2010) The fibroblast growth factor receptor substrate 3 adapter is a developmentally regulated microtubule-associated protein expressed in migrating and differentiated neurons. J Neurochem 112(4):924–939. doi: 10.1111/j.1471-4159.2009.06503.x PubMedGoogle Scholar
  58. 58.
    Ye P, D’Ercole AJ (2006) Insulin-like growth factor actions during development of neural stem cells and progenitors in the central nervous system. J Neurosci Res 83(1):1–6PubMedGoogle Scholar
  59. 59.
    Freude S, Leeser U, Muller M, Hettich MM, Udelhoven M, Schilbach K, Tobe K, Kadowaki T, Kohler C, Schroder H, Krone W, Bruning JC, Schubert M (2008) IRS-2 branch of IGF-1 receptor signaling is essential for appropriate timing of myelination. J Neurochem 107(4):907–917PubMedGoogle Scholar
  60. 60.
    Ye P, Li L, Lund PK, D’Ercole AJ (2002) Deficient expression of insulin receptor substrate-1 (IRS-1) fails to block insulin-like growth factor-I (IGF-I) stimulation of brain growth and myelination. Brain Res Dev Brain Res 136(2):111–121PubMedGoogle Scholar
  61. 61.
    Hanke S, Mann M (2009) The phosphotyrosine interactome of the insulin receptor family and its substrates IRS-1 and IRS-2. Mol Cell Proteomics 8(3):519–534. doi: 10.1074/mcp.M800407-MCP200 PubMedGoogle Scholar
  62. 62.
    Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF (2003) Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 23(18):7084–7092PubMedGoogle Scholar
  63. 63.
    Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S et al (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372(6502):182–186. doi: 10.1038/372182a0 PubMedGoogle Scholar
  64. 64.
    Wohrle FU, Daly RJ, Brummer T (2009) Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 7:22. doi: 10.1186/1478-811x-7-22 PubMedCentralPubMedGoogle Scholar
  65. 65.
    Rozakis-Adcock M, McGlade J, Mbamalu G, Pelicci G, Daly R, Li W, Batzer A, Thomas S, Brugge J, Pelicci PG et al (1992) Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 360(6405):689–692. doi: 10.1038/360689a0 PubMedGoogle Scholar
  66. 66.
    Harkiolaki M, Tsirka T, Lewitzky M, Simister PC, Joshi D, Bird LE, Jones EY, O’Reilly N, Feller SM (2009) Distinct binding modes of two epitopes in Gab2 that interact with the SH3C domain of Grb2. Structure 17(6):809–822. doi: 10.1016/j.str.2009.03.017 PubMedGoogle Scholar
  67. 67.
    Terasawa H, Kohda D, Hatanaka H, Tsuchiya S, Ogura K, Nagata K, Ishii S, Mandiyan V, Ullrich A, Schlessinger J et al (1994) Structure of the N-terminal SH3 domain of GRB2 complexed with a peptide from the guanine nucleotide releasing factor Sos. Nat Struct Biol 1(12):891–897PubMedGoogle Scholar
  68. 68.
    McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A (2010) Assembly of the Sos1-Grb2-Gab1 ternary signaling complex is under allosteric control. Arch Biochem Biophys 494(2):216–225. doi: 10.1016/ PubMedCentralPubMedGoogle Scholar
  69. 69.
    McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A (2011) Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms. J Mol Recognit 24(4):585–596. doi: 10.1002/jmr.1080 PubMedCentralPubMedGoogle Scholar
  70. 70.
    Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284(1):31–53PubMedGoogle Scholar
  71. 71.
    Li W, Nishimura R, Kashishian A, Batzer AG, Kim WJ, Cooper JA, Schlessinger J (1994) A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol 14(1):509–517PubMedCentralPubMedGoogle Scholar
  72. 72.
    Mattoon DR, Lamothe B, Lax I, Schlessinger J (2004) The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol 2:24. doi: 10.1186/1741-7007-2-24 PubMedCentralPubMedGoogle Scholar
  73. 73.
    Lamothe B, Yamada M, Schaeper U, Birchmeier W, Lax I, Schlessinger J (2004) The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway. Mol Cell Biol 24(13):5657–5666. doi: 10.1128/mcb.24.13.5657-5666.2004 PubMedCentralPubMedGoogle Scholar
  74. 74.
    Mao Y, Lee AW (2005) A novel role for Gab2 in bFGF-mediated cell survival during retinoic acid-induced neuronal differentiation. J Cell Biol 170(2):305–316PubMedGoogle Scholar
  75. 75.
    Hayakawa-Yano Y, Nishida K, Fukami S, Gotoh Y, Hirano T, Nakagawa T, Shimazaki T, Okano H (2007) Epidermal growth factor signaling mediated by grb2 associated binder1 is required for the spatiotemporally regulated proliferation of olig2-expressing progenitors in the embryonic spinal cord. Stem Cells 25(6):1410–1422PubMedGoogle Scholar
  76. 76.
    Schaeper U, Vogel R, Chmielowiec J, Huelsken J, Rosario M, Birchmeier W (2007) Distinct requirements for Gab1 in Met and EGF receptor signaling in vivo. Proc Natl Acad Sci U S A 104(39):15376–15381. doi: 10.1073/pnas.0702555104 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Roshan B, Kjelsberg C, Spokes K, Eldred A, Crovello CS, Cantley LG (1999) Activated ERK2 interacts with and phosphorylates the docking protein GAB1. J Biol Chem 274(51):36362–36368PubMedGoogle Scholar
  78. 78.
    Lynch DK, Daly RJ (2002) PKB-mediated negative feedback tightly regulates mitogenic signalling via Gab2. EMBO J 21(1–2):72–82PubMedGoogle Scholar
  79. 79.
    Brummer T, Larance M, Herrera Abreu MT, Lyons RJ, Timpson P, Emmerich CH, Fleuren ED, Lehrbach GM, Schramek D, Guilhaus M, James DE, Daly RJ (2008) Phosphorylation-dependent binding of 14-3-3 terminates signalling by the Gab2 docking protein. EMBO J 27(17):2305–2316PubMedGoogle Scholar
  80. 80.
    Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T (2000) Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol 20(10):3695–3704PubMedCentralPubMedGoogle Scholar
  81. 81.
    Nishida K, Hirano T (2003) The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer Sci 94(12):1029–1033PubMedGoogle Scholar
  82. 82.
    Ravichandran KS (2001) Signaling via Shc family adapter proteins. Oncogene 20(44):6322–6330. doi: 10.1038/sj.onc.1204776 PubMedGoogle Scholar
  83. 83.
    Sweet DT, Tzima E (2009) Spatial signaling networks converge at the adaptor protein Shc. Cell Cycle 8(2):231–235PubMedCentralPubMedGoogle Scholar
  84. 84.
    Migliaccio E, Mele S, Salcini AE, Pelicci G, Lai KM, Superti-Furga G, Pawson T, Di Fiore PP, Lanfrancone L, Pelicci PG (1997) Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO J 16(4):706–716. doi: 10.1093/emboj/16.4.706 PubMedGoogle Scholar
  85. 85.
    Bonfini L, Migliaccio E, Pelicci G, Lanfrancone L, Pelicci PG (1996) Not all Shc’s roads lead to Ras. Trends Biochem Sci 21(7):257–261PubMedGoogle Scholar
  86. 86.
    Radhakrishnan Y, Maile LA, Ling Y, Graves LM, Clemmons DR (2008) Insulin-like growth factor-I stimulates Shc-dependent phosphatidylinositol 3-kinase activation via Grb2-associated p85 in vascular smooth muscle cells. J Biol Chem 283(24):16320–16331. doi: 10.1074/jbc.M801687200 PubMedGoogle Scholar
  87. 87.
    Smith MJ, Hardy WR, Li GY, Goudreault M, Hersch S, Metalnikov P, Starostine A, Pawson T, Ikura M (2010) The PTB domain of ShcA couples receptor activation to the cytoskeletal regulator IQGAP1. EMBO J 29(5):884–896. doi: 10.1038/emboj.2009.399 PubMedGoogle Scholar
  88. 88.
    Leahy M, Lyons A, Krause D, O’Connor R (2004) Impaired Shc, Ras, and MAPK activation but normal Akt activation in FL5.12 cells expressing an insulin-like growth factor I receptor mutated at tyrosines 1250 and 1251. J Biol Chem 279(18):18306–18313. doi: 10.1074/jbc.M309234200 PubMedGoogle Scholar
  89. 89.
    Woldt E, Matz RL, Terrand J, Mlih M, Gracia C, Foppolo S, Martin S, Bruban V, Ji J, Velot E, Herz J, Boucher P (2011) Differential signaling by adaptor molecules LRP1 and ShcA regulates adipogenesis by the insulin-like growth factor-1 receptor. J Biol Chem 286(19):16775–16782. doi: 10.1074/jbc.M110.212878 PubMedGoogle Scholar
  90. 90.
    Xi G, Shen X, Radhakrishnan Y, Maile L, Clemmons D (2010) Hyperglycemia-induced p66shc inhibits insulin-like growth factor I-dependent cell survival via impairment of Src kinase-mediated phosphoinositide-3 kinase/AKT activation in vascular smooth muscle cells. Endocrinology 151(8):3611–3623. doi: 10.1210/en.2010-0242 PubMedGoogle Scholar
  91. 91.
    Xi G, Shen X, Clemmons DR (2008) p66shc negatively regulates insulin-like growth factor I signal transduction via inhibition of p52shc binding to Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 leading to impaired growth factor receptor-bound protein-2 membrane recruitment. Mol Endocrinol 22(9):2162–2175. doi: 10.1210/me.2008-0079 PubMedGoogle Scholar
  92. 92.
    Arany I, Faisal A, Nagamine Y, Safirstein RL (2008) p66shc inhibits pro-survival epidermal growth factor receptor/ERK signaling during severe oxidative stress in mouse renal proximal tubule cells. J Biol Chem 283(10):6110–6117. doi: 10.1074/jbc.M708799200 PubMedGoogle Scholar
  93. 93.
    Papadimou E, Moiana A, Goffredo D, Koch P, Bertuzzi S, Brustle O, Cattaneo E, Conti L (2009) p66(ShcA) adaptor molecule accelerates ES cell neural induction. Mol Cell Neurosci 41(1):74–84. doi: 10.1016/j.mcn.2009.01.010 PubMedGoogle Scholar
  94. 94.
    Barua D, Faeder JR, Haugh JM (2007) Structure-based kinetic models of modular signaling protein function: focus on Shp2. Biophys J 92(7):2290–2300. doi: 10.1529/biophysj.106.093484 PubMedCentralPubMedGoogle Scholar
  95. 95.
    Dance M, Montagner A, Salles JP, Yart A, Raynal P (2008) The molecular functions of Shp2 in the Ras/mitogen-activated protein kinase (ERK1/2) pathway. Cell Signal 20(3):453–459. doi: 10.1016/j.cellsig.2007.10.002 PubMedGoogle Scholar
  96. 96.
    Bennett AM, Tang TL, Sugimoto S, Walsh CT, Neel BG (1994) Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor b to Ras. Proc Natl Acad Sci U S A 91(15):7335–7339PubMedCentralPubMedGoogle Scholar
  97. 97.
    Vogel W, Ullrich A (1996) Multiple in vivo phosphorylated tyrosine phosphatase SHP-2 engages binding to Grb2 via tyrosine 584. Cell Growth Differ 7(12):1589–1597PubMedGoogle Scholar
  98. 98.
    Shi ZQ, Yu DH, Park M, Marshall M, Feng GS (2000) Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Mol Cell Biol 20(5):1526–1536PubMedCentralPubMedGoogle Scholar
  99. 99.
    Koyama T, Nakaoka Y, Fujio Y, Hirota H, Nishida K, Sugiyama S, Okamoto K, Yamauchi-Takihara K, Yoshimura M, Mochizuki S, Hori M, Hirano T, Mochizuki N (2008) Interaction of scaffolding adaptor protein Gab1 with tyrosine phosphatase SHP2 negatively regulates IGF-I-dependent myogenic differentiation via the ERK1/2 signaling pathway. J Biol Chem 283(35):24234–24244PubMedGoogle Scholar
  100. 100.
    Zagozdzon R, Kaminski R, Fu Y, Fu W, Bougeret C, Avraham HK (2006) Csk homologous kinase (CHK), unlike Csk, enhances MAPK activation via Ras-mediated signaling in a Src-independent manner. Cell Signal 18(6):871–881. doi: 10.1016/j.cellsig.2005.07.016 PubMedGoogle Scholar
  101. 101.
    Agazie YM, Hayman MJ (2003) Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol Cell Biol 23(21):7875–7886PubMedCentralPubMedGoogle Scholar
  102. 102.
    Klinghoffer RA, Duckworth B, Valius M, Cantley L, Kazlauskas A (1996) Platelet-derived growth factor-dependent activation of phosphatidylinositol 3-kinase is regulated by receptor binding of SH2-domain-containing proteins which influence Ras activity. Mol Cell Biol 16(10):5905–5914PubMedCentralPubMedGoogle Scholar
  103. 103.
    Montagner A, Yart A, Dance M, Perret B, Salles JP, Raynal P (2005) A novel role for Gab1 and SHP2 in epidermal growth factor-induced Ras activation. J Biol Chem 280(7):5350–5360. doi: 10.1074/jbc.M410012200 PubMedGoogle Scholar
  104. 104.
    Quintanar-Audelo M, Yusoff P, Sinniah S, Chandramouli S, Guy GR (2011) Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology 1-domain-containing protein (SPRED1), a tyrosine-protein phosphatase non-receptor type 11 (SHP2) substrate in the Ras/extracellular signal-regulated kinase (ERK) pathway. J Biol Chem 286(26):23102–23112. doi: 10.1074/jbc.M110.212662 PubMedGoogle Scholar
  105. 105.
    Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, Shalaby F, Feng GS, Pawson T (1997) Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J 16(9):2352–2364. doi: 10.1093/emboj/16.9.2352 PubMedGoogle Scholar
  106. 106.
    Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112. doi: 10.1038/sj.onc.1210392 PubMedGoogle Scholar
  107. 107.
    Cargnello M, Roux PP (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75(1):50–83. doi: 10.1128/mmbr.00031-10 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Lefloch R, Pouyssegur J, Lenormand P (2008) Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol 28(1):511–527. doi: 10.1128/mcb.00800-07 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Imamura O, Satoh Y, Endo S, Takishima K (2008) Analysis of ERK2 function in neural stem/progenitor cells via nervous system-specific gene disruption. Stem Cells 26(12):3247-56Google Scholar
  110. 110.
    Wortzel I, Seger R (2011) The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2(3):195–209. doi: 10.1177/1947601911407328 PubMedCentralPubMedGoogle Scholar
  111. 111.
    Yip-Schneider MT, Miao W, Lin A, Barnard DS, Tzivion G, Marshall MS (2000) Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem J 351(Pt 1):151–159PubMedGoogle Scholar
  112. 112.
    Molzan M, Schumacher B, Ottmann C, Baljuls A, Polzien L, Weyand M, Thiel P, Rose R, Rose M, Kuhenne P, Kaiser M, Rapp UR, Kuhlmann J (2010) Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol Cell Biol 30(19):4698–4711. doi: 10.1128/mcb.01636-09 PubMedCentralPubMedGoogle Scholar
  113. 113.
    Fehrenbacher N, Bar-Sagi D, Philips M (2009) Ras/MAPK signaling from endomembranes. Mol Oncol 3(4):297–307. doi: 10.1016/j.molonc.2009.06.004 PubMedCentralPubMedGoogle Scholar
  114. 114.
    Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ (2009) A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 15(1):75–83. doi: 10.1038/nm.1893 PubMedGoogle Scholar
  115. 115.
    Chuderland D, Konson A, Seger R (2008) Identification and characterization of a general nuclear translocation signal in signaling proteins. Mol Cell 31(6):850–861. doi: 10.1016/j.molcel.2008.08.007 PubMedGoogle Scholar
  116. 116.
    Lidke DS, Huang F, Post JN, Rieger B, Wilsbacher J, Thomas JL, Pouyssegur J, Jovin TM, Lenormand P (2010) ERK nuclear translocation is dimerization-independent but controlled by the rate of phosphorylation. J Biol Chem 285(5):3092–3102. doi: 10.1074/jbc.M109.064972 PubMedGoogle Scholar
  117. 117.
    von Kriegsheim A, Baiocchi D, Birtwistle M, Sumpton D, Bienvenut W, Morrice N, Yamada K, Lamond A, Kalna G, Orton R, Gilbert D, Kolch W (2009) Cell fate decisions are specified by the dynamic ERK interactome. Nat Cell Biol 11(12):1458–1464. doi: 10.1038/ncb1994 Google Scholar
  118. 118.
    Hughes R, Gilley J, Kristiansen M, Ham J (2011) The MEK-ERK pathway negatively regulates bim expression through the 3′ UTR in sympathetic neurons. BMC Neurosci 12:69. doi: 10.1186/1471-2202-12-69 PubMedCentralPubMedGoogle Scholar
  119. 119.
    Wang CC, Cirit M, Haugh JM (2009) PI3K-dependent cross-talk interactions converge with Ras as quantifiable inputs integrated by Erk. Mol Syst Biol 5:246. doi: 10.1038/msb.2009.4 PubMedCentralPubMedGoogle Scholar
  120. 120.
    Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2(3):261–274. doi: 10.1177/1947601911408079 PubMedCentralPubMedGoogle Scholar
  121. 121.
    Yart A, Laffargue M, Mayeux P, Chretien S, Peres C, Tonks N, Roche S, Payrastre B, Chap H, Raynal P (2001) A critical role for phosphoinositide 3-kinase upstream of Gab1 and SHP2 in the activation of ras and mitogen-activated protein kinases by epidermal growth factor. J Biol Chem 276(12):8856–8864. doi: 10.1074/jbc.M006966200 PubMedGoogle Scholar
  122. 122.
    Sampaio C, Dance M, Montagner A, Edouard T, Malet N, Perret B, Yart A, Salles JP, Raynal P (2008) Signal strength dictates phosphoinositide 3-kinase contribution to Ras/extracellular signal-regulated kinase 1 and 2 activation via differential Gab1/Shp2 recruitment: consequences for resistance to epidermal growth factor receptor inhibition. Mol Cell Biol 28(2):587–600. doi: 10.1128/mcb.01318-07 PubMedCentralPubMedGoogle Scholar
  123. 123.
    Wennstrom S, Downward J (1999) Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol 19(6):4279–4288PubMedCentralPubMedGoogle Scholar
  124. 124.
    Currie RA, Walker KS, Gray A, Deak M, Casamayor A, Downes CP, Cohen P, Alessi DR, Lucocq J (1999) Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 337(Pt 3):575–583PubMedGoogle Scholar
  125. 125.
    Nakamura A, Naito M, Tsuruo T, Fujita N (2008) Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol Cell Biol 28(19):5996–6009. doi: 10.1128/mcb.00114-08 PubMedCentralPubMedGoogle Scholar
  126. 126.
    Shen X, Xi G, Radhakrishnan Y, Clemmons DR (2010) PDK1 recruitment to the SHPS-1 signaling complex enhances insulin-like growth factor-i-stimulated AKT activation and vascular smooth muscle cell survival. J Biol Chem 285(38):29416–29424. doi: 10.1074/jbc.M110.155325 PubMedGoogle Scholar
  127. 127.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. doi: 10.1126/science.1106148 PubMedGoogle Scholar
  128. 128.
    Weber JD, Gutmann DH (2012) Deconvoluting mTOR biology. Cell Cycle 11(2):236–248. doi: 10.4161/cc.11.2.19022 PubMedGoogle Scholar
  129. 129.
    Chen CH, dos Sarbassov D (2011) The mTOR (mammalian target of rapamycin) kinase maintains integrity of mTOR complex 2. J Biol Chem 286(46):40386–40394. doi: 10.1074/jbc.M111.282590 PubMedGoogle Scholar
  130. 130.
    Glidden EJ, Gray LG, Vemuru S, Li D, Harris TE, Mayo MW (2012) Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J Biol Chem 287(1):581–588. doi: 10.1074/jbc.M111.304337 PubMedGoogle Scholar
  131. 131.
    Su B, Jacinto E (2011) Mammalian TOR signaling to the AGC kinases. Crit Rev Biochem Mol Biol 46(6):527–547. doi: 10.3109/10409238.2011.618113 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Schmidt-Strassburger U, Schips TG, Maier HJ, Kloiber K, Mannella F, Braunstein KE, Holzmann K, Ushmorov A, Liebau S, Boeckers TM, Wirth T (2012) Expression of constitutively active FoxO3 in murine forebrain leads to a loss of neural progenitors. FASEB J 26(12):4990–5001. doi: 10.1096/fj.12-208587 PubMedGoogle Scholar
  133. 133.
    Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11(1):9–22. doi: 10.1038/nrm2822 PubMedGoogle Scholar
  134. 134.
    Han JM, Sahin M (2011) TSC1/TSC2 signaling in the CNS. FEBS Lett 585(7):973–980. doi: 10.1016/j.febslet.2011.02.001 PubMedCentralPubMedGoogle Scholar
  135. 135.
    Maffucci T, Raimondi C, Abu-Hayyeh S, Dominguez V, Sala G, Zachary I, Falasca M (2009) A phosphoinositide 3-kinase/phospholipase Cg1 pathway regulates fibroblast growth factor-induced capillary tube formation. PLoS One 4(12):e8285. doi: 10.1371/journal.pone.0008285 PubMedCentralPubMedGoogle Scholar
  136. 136.
    Edwin F, Anderson K, Ying C, Patel TB (2009) Intermolecular interactions of Sprouty proteins and their implications in development and disease. Mol Pharmacol 76(4):679–691. doi: 10.1124/mol.109.055848 PubMedGoogle Scholar
  137. 137.
    Cabrita MA, Christofori G (2008) Sprouty proteins, masterminds of receptor tyrosine kinase signaling. Angiogenesis 11(1):53–62. doi: 10.1007/s10456-008-9089-1 PubMedGoogle Scholar
  138. 138.
    Mason JM, Morrison DJ, Basson MA, Licht JD (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16(1):45–54PubMedGoogle Scholar
  139. 139.
    Chow SY, Yu CY, Guy GR (2009) Sprouty2 interacts with protein kinase C d and disrupts phosphorylation of protein kinase D1. J Biol Chem 284(29):19623–19636. doi: 10.1074/jbc.M109.021600 PubMedGoogle Scholar
  140. 140.
    Akbulut S, Reddi AL, Aggarwal P, Ambardekar C, Canciani B, Kim MK, Hix L, Vilimas T, Mason J, Basson MA, Lovatt M, Powell J, Collins S, Quatela S, Phillips M, Licht JD (2010) Sprouty proteins inhibit receptor-mediated activation of phosphatidylinositol-specific phospholipase C. Mol Biol Cell 21(19):3487–3496. doi: 10.1091/mbc.E10-02-0123 PubMedCentralPubMedGoogle Scholar
  141. 141.
    Lim J, Wong ES, Ong SH, Yusoff P, Low BC, Guy GR (2000) Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J Biol Chem 275(42):32837–32845. doi: 10.1074/jbc.M002156200 PubMedGoogle Scholar
  142. 142.
    Yigzaw Y, Cartin L, Pierre S, Scholich K, Patel TB (2001) The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem 276(25):22742–22747. doi: 10.1074/jbc.M100123200 PubMedGoogle Scholar
  143. 143.
    Mason JM, Morrison DJ, Bassit B, Dimri M, Band H, Licht JD, Gross I (2004) Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol Biol Cell 15(5):2176–2188. doi: 10.1091/mbc.E03-07-0503 PubMedCentralPubMedGoogle Scholar
  144. 144.
    Alsina FC, Irala D, Fontanet PA, Hita FJ, Ledda F, Paratcha G (2012) Sprouty4 is an endogenous negative modulator of TrkA signaling and neuronal differentiation induced by NGF. PLoS One 7(2):e32087. doi: 10.1371/journal.pone.0032087 PubMedCentralPubMedGoogle Scholar
  145. 145.
    Hanafusa H, Torii S, Yasunaga T, Nishida E (2002) Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4(11):850–858. doi: 10.1038/ncb867 PubMedGoogle Scholar
  146. 146.
    Abe M, Naski MC (2004) Regulation of sprouty expression by PLCg and calcium-dependent signals. Biochem Biophys Res Commun 323(3):1040–1047. doi: 10.1016/j.bbrc.2004.08.198 PubMedGoogle Scholar
  147. 147.
    Sasaki A, Taketomi T, Wakioka T, Kato R, Yoshimura A (2001) Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J Biol Chem 276(39):36804–36808. doi: 10.1074/jbc.C100386200 PubMedGoogle Scholar
  148. 148.
    Wong ES, Fong CW, Lim J, Yusoff P, Low BC, Langdon WY, Guy GR (2002) Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 21(18):4796–4808PubMedGoogle Scholar
  149. 149.
    Edwin F, Patel TB (2008) A novel role of Sprouty 2 in regulating cellular apoptosis. J Biol Chem 283(6):3181–3190. doi: 10.1074/jbc.M706567200 PubMedCentralPubMedGoogle Scholar
  150. 150.
    Edwin F, Singh R, Endersby R, Baker SJ, Patel TB (2006) The tumor suppressor PTEN is necessary for human Sprouty 2-mediated inhibition of cell proliferation. J Biol Chem 281(8):4816–4822. doi: 10.1074/jbc.M508300200 PubMedGoogle Scholar
  151. 151.
    Edwin F, Anderson K, Patel TB (2010) HECT domain-containing E3 ubiquitin ligase Nedd4 interacts with and ubiquitinates Sprouty2. J Biol Chem 285(1):255–264. doi: 10.1074/jbc.M109.030882 PubMedGoogle Scholar
  152. 152.
    DaSilva J, Xu L, Kim HJ, Miller WT, Bar-Sagi D (2006) Regulation of sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol 26(5):1898–1907. doi: 10.1128/mcb.26.5.1898-1907.2006 PubMedCentralPubMedGoogle Scholar
  153. 153.
    Aranda S, Alvarez M, Turro S, Laguna A, de la Luna S (2008) Sprouty2-mediated inhibition of fibroblast growth factor signaling is modulated by the protein kinase DYRK1A. Mol Cell Biol 28(19):5899–5911. doi: 10.1128/mcb.00394-08 PubMedCentralPubMedGoogle Scholar
  154. 154.
    Katoh Y, Katoh M (2006) FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells. Int J Mol Med 17(3):529–532PubMedGoogle Scholar
  155. 155.
    Hayashi S, Shimoda T, Nakajima M, Tsukada Y, Sakumura Y, Dale JK, Maroto M, Kohno K, Matsui T, Bessho Y (2009) Sprouty4, an FGF inhibitor, displays cyclic gene expression under the control of the notch segmentation clock in the mouse PSM. PLoS One 4(5):e5603. doi: 10.1371/journal.pone.0005603 PubMedCentralPubMedGoogle Scholar
  156. 156.
    Shim K, Minowada G, Coling DE, Martin GR (2005) Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell 8(4):553–564. doi: 10.1016/j.devcel.2005.02.009 PubMedGoogle Scholar
  157. 157.
    Simrick S, Lickert H, Basson MA (2011) Sprouty genes are essential for the normal development of epibranchial ganglia in the mouse embryo. Dev Biol 358(1):147–155. doi: 10.1016/j.ydbio.2011.07.024 PubMedCentralPubMedGoogle Scholar
  158. 158.
    Taketomi T, Yoshiga D, Taniguchi K, Kobayashi T, Nonami A, Kato R, Sasaki M, Sasaki A, Ishibashi H, Moriyama M, Nakamura K, Nishimura J, Yoshimura A (2005) Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nat Neurosci 8(7):855–857. doi: 10.1038/nn1485 PubMedGoogle Scholar
  159. 159.
    Yang X, Harkins LK, Zubanova O, Harrington A, Kovalenko D, Nadeau RJ, Chen PY, Toher JL, Lindner V, Liaw L, Friesel R (2008) Overexpression of Spry1 in chondrocytes causes attenuated FGFR ubiquitination and sustained ERK activation resulting in chondrodysplasia. Dev Biol 321(1):64–76. doi: 10.1016/j.ydbio.2008.05.555 PubMedCentralPubMedGoogle Scholar
  160. 160.
    de Alvaro C, Martinez N, Rojas JM, Lorenzo M (2005) Sprouty-2 overexpression in C2C12 cells confers myogenic differentiation properties in the presence of FGF2. Mol Biol Cell 16(9):4454–4461. doi: 10.1091/mbc.E05-05-0419 PubMedCentralPubMedGoogle Scholar
  161. 161.
    Bundschu K, Walter U, Schuh K (2007) Getting a first clue about SPRED functions. Bioessays 29(9):897–907. doi: 10.1002/bies.20632 PubMedGoogle Scholar
  162. 162.
    Kato R, Nonami A, Taketomi T, Wakioka T, Kuroiwa A, Matsuda Y, Yoshimura A (2003) Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochem Biophys Res Commun 302(4):767–772PubMedGoogle Scholar
  163. 163.
    Bundschu K, Walter U, Schuh K (2006) The VASP-Spred-Sprouty domain puzzle. J Biol Chem 281(48):36477–36481. doi: 10.1074/jbc.R600023200 PubMedGoogle Scholar
  164. 164.
    Tuduce IL, Schuh K, Bundschu K (2010) Spred2 expression during mouse development. Dev Dyn 239(11):3072–3085. doi: 10.1002/dvdy.22432 PubMedGoogle Scholar
  165. 165.
    Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412(6847):647–651. doi: 10.1038/35088082 PubMedGoogle Scholar
  166. 166.
    King JA, Straffon AF, D’Abaco GM, Poon CL, ST I, Smith CM, Buchert M, Corcoran NM, Hall NE, Callus BA, Sarcevic B, Martin D, Lock P, Hovens CM (2005) Distinct requirements for the Sprouty domain for functional activity of Spred proteins. Biochem J 388(Pt 2):445–454. doi: 10.1042/bj20041284 PubMedGoogle Scholar
  167. 167.
    Mardakheh FK, Yekezare M, Machesky LM, Heath JK (2009) Spred2 interaction with the late endosomal protein NBR1 down-regulates fibroblast growth factor receptor signaling. J Cell Biol 187(2):265–277. doi: 10.1083/jcb.200905118 PubMedGoogle Scholar
  168. 168.
    Li D, Jackson RA, Yusoff P, Guy GR (2010) Direct association of Sprouty-related protein with an EVH1 domain (SPRED) 1 or SPRED2 with DYRK1A modifies substrate/kinase interactions. J Biol Chem 285(46):35374–35385. doi: 10.1074/jbc.M110.148445 PubMedGoogle Scholar
  169. 169.
    Ullrich M, Bundschu K, Benz PM, Abesser M, Freudinger R, Fischer T, Ullrich J, Renne T, Walter U, Schuh K (2011) Identification of SPRED2 (sprouty-related protein with EVH1 domain 2) as a negative regulator of the hypothalamic-pituitary-adrenal axis. J Biol Chem 286(11):9477–9488. doi: 10.1074/jbc.M110.171306 PubMedGoogle Scholar
  170. 170.
    Sun H, Charles CH, Lau LF, Tonks NK (1993) MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75(3):487–493PubMedGoogle Scholar
  171. 171.
    Jeffrey KL, Camps M, Rommel C, Mackay CR (2007) Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nat Rev Drug Discov 6(5):391–403. doi: 10.1038/nrd2289 PubMedGoogle Scholar
  172. 172.
    Owens DM, Keyse SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26(22):3203–3213. doi: 10.1038/sj.onc.1210412 PubMedGoogle Scholar
  173. 173.
    Caunt CJ, Rivers CA, Conway-Campbell BL, Norman MR, McArdle CA (2008) Epidermal growth factor receptor and protein kinase C signaling to ERK2: spatiotemporal regulation of ERK2 by dual specificity phosphatases. J Biol Chem 283(10):6241–6252. doi: 10.1074/jbc.M706624200 PubMedCentralPubMedGoogle Scholar
  174. 174.
    Dickinson RJ, Eblaghie MC, Keyse SM, Morriss-Kay GM (2002) Expression of the ERK-specific MAP kinase phosphatase PYST1/MKP3 in mouse embryos during morphogenesis and early organogenesis. Mech Dev 113(2):193–196PubMedGoogle Scholar
  175. 175.
    Li C, Scott DA, Hatch E, Tian X, Mansour SL (2007) Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134(1):167–176. doi: 10.1242/dev.02701 PubMedCentralPubMedGoogle Scholar
  176. 176.
    Karlsson M, Mathers J, Dickinson RJ, Mandl M, Keyse SM (2004) Both nuclear-cytoplasmic shuttling of the dual specificity phosphatase MKP-3 and its ability to anchor MAP kinase in the cytoplasm are mediated by a conserved nuclear export signal. J Biol Chem 279(40):41882–41891. doi: 10.1074/jbc.M406720200 PubMedGoogle Scholar
  177. 177.
    Nichols A, Camps M, Gillieron C, Chabert C, Brunet A, Wilsbacher J, Cobb M, Pouyssegur J, Shaw JP, Arkinstall S (2000) Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3. J Biol Chem 275(32):24613–24621. doi: 10.1074/jbc.M001515200 PubMedGoogle Scholar
  178. 178.
    Mark JK, Aubin RA, Smith S, Hefford MA (2008) Inhibition of mitogen-activated protein kinase phosphatase 3 activity by interdomain binding. J Biol Chem 283(42):28574–28583. doi: 10.1074/jbc.M801747200 PubMedGoogle Scholar
  179. 179.
    Ekerot M, Stavridis MP, Delavaine L, Mitchell MP, Staples C, Owens DM, Keenan ID, Dickinson RJ, Storey KG, Keyse SM (2008) Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by ets factor binding to a conserved site within the DUSP6/MKP-3 gene promoter. Biochem J 412(2):287–298. doi: 10.1042/bj20071512 PubMedCentralPubMedGoogle Scholar
  180. 180.
    Echevarria D, Martinez S, Marques S, Lucas-Teixeira V, Belo JA (2005) Mkp3 is a negative feedback modulator of Fgf8 signaling in the mammalian isthmic organizer. Dev Biol 277(1):114–128. doi: 10.1016/j.ydbio.2004.09.011 PubMedGoogle Scholar
  181. 181.
    Nichols J, Silva J, Roode M, Smith A (2009) Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136(19):3215–3222. doi: 10.1242/dev.038893 PubMedGoogle Scholar
  182. 182.
    Lavaute TM, Yoo YD, Pankratz MT, Weick JP, Gerstner JR, Zhang SC (2009) Regulation of neural specification from human embryonic stem cells by BMP and FGF. Stem Cells 27(8):1741–1749PubMedCentralPubMedGoogle Scholar
  183. 183.
    Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A (2007) FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134(16):2895–2902PubMedGoogle Scholar
  184. 184.
    Jung JE, Moon SH, Kim DK, Choi C, Song J, Park KS (2012) Sprouty1 regulates neural and endothelial differentiation of mouse embryonic stem cells. Stem Cells Dev 21(4):554–561. doi: 10.1089/scd.2011.0110 PubMedGoogle Scholar
  185. 185.
    Greber B, Coulon P, Zhang M, Moritz S, Frank S, Muller-Molina AJ, Arauzo-Bravo MJ, Han DW, Pape HC, Scholer HR (2011) FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J 30(24):4874–4884. doi: 10.1038/emboj.2011.407 PubMedGoogle Scholar
  186. 186.
    Stavridis MP, Collins BJ, Storey KG (2010) Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development 137(6):881–890. doi: 10.1242/dev.043117 PubMedGoogle Scholar
  187. 187.
    Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S, van der Kooy D (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18(15):1806–1811. doi: 10.1101/gad.1208404 PubMedGoogle Scholar
  188. 188.
    Smukler SR, Runciman SB, Xu S, van der Kooy D (2006) Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J Cell Biol 172(1):79–90PubMedGoogle Scholar
  189. 189.
    Tropepe V, Sibilia M, Ciruna BG, Rossant J, Wagner EF, van der Kooy D (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208(1):166–188PubMedGoogle Scholar
  190. 190.
    Dang LT, Tropepe V (2010) FGF dependent regulation of Zfhx1b gene expression promotes the formation of definitive neural stem cells in the mouse anterior neurectoderm. Neural Dev 5:13. doi: 10.1186/1749-8104-5-13 PubMedCentralPubMedGoogle Scholar
  191. 191.
    Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C (1998) Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci U S A 95(10):5672–5677PubMedCentralPubMedGoogle Scholar
  192. 192.
    Dono R, Texido G, Dussel R, Ehmke H, Zeller R (1998) Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J 17(15):4213–4225. doi: 10.1093/emboj/17.15.4213 PubMedGoogle Scholar
  193. 193.
    Raballo R, Rhee J, Lyn-Cook R, Leckman JF, Schwartz ML, Vaccarino FM (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 20(13):5012–5023PubMedGoogle Scholar
  194. 194.
    Vaccarino FM, Schwartz ML, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin JD, Wyland JJ, Hung YT (1999) Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci 2(3):246–253. doi: 10.1038/6350 PubMedGoogle Scholar
  195. 195.
    Kalyani AJ, Mujtaba T, Rao MS (1999) Expression of EGF receptor and FGF receptor isoforms during neuroepithelial stem cell differentiation. J Neurobiol 38(2):207–224PubMedGoogle Scholar
  196. 196.
    Cai J, Wu Y, Mirua T, Pierce JL, Lucero MT, Albertine KH, Spangrude GJ, Rao MS (2002) Properties of a fetal multipotent neural stem cell (NEP cell). Dev Biol 251(2):221–240PubMedGoogle Scholar
  197. 197.
    Andrae J, Hansson I, Afink GB, Nister M (2001) Platelet-derived growth factor receptor-a in ventricular zone cells and in developing neurons. Mol Cell Neurosci 17(6):1001–1013. doi: 10.1006/mcne.2001.0989 PubMedGoogle Scholar
  198. 198.
    Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22 (8):3161–3173Google Scholar
  199. 199.
    Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7(2):136–144. doi: 10.1038/nn1172 PubMedGoogle Scholar
  200. 200.
    Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788. doi: 10.1038/nrm1739 PubMedGoogle Scholar
  201. 201.
    Maric D, Fiorio Pla A, Chang YH, Barker JL (2007) Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors. J Neurosci 27(8):1836–1852PubMedGoogle Scholar
  202. 202.
    Yoon K, Nery S, Rutlin ML, Radtke F, Fishell G, Gaiano N (2004) Fibroblast growth factor receptor signaling promotes radial glial identity and interacts with Notch1 signaling in telencephalic progenitors. J Neurosci 24(43):9497–9506. doi: 10.1523/JNEUROSCI.0993-04.2004 PubMedGoogle Scholar
  203. 203.
    Sahara S, O’Leary DD (2009) Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63(1):48–62. doi: 10.1016/j.neuron.2009.06.006 PubMedCentralPubMedGoogle Scholar
  204. 204.
    Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131(13):3133–3145. doi: 10.1242/dev.01173 PubMedGoogle Scholar
  205. 205.
    Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A 101(9):3196–3201. doi: 10.1073/pnas.0308600100 PubMedCentralPubMedGoogle Scholar
  206. 206.
    Yu X, Zecevic N (2011) Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain. J Neurosci 31(7):2413–2420. doi: 10.1523/jneurosci.5249-10.2011 PubMedCentralPubMedGoogle Scholar
  207. 207.
    Mo Z, Moore AR, Filipovic R, Ogawa Y, Kazuhiro I, Antic SD, Zecevic N (2007) Human cortical neurons originate from radial glia and neuron-restricted progenitors. J Neurosci 27(15):4132–4145. doi: 10.1523/jneurosci.0111-07.2007 PubMedGoogle Scholar
  208. 208.
    Howard BM, Zhicheng M, Filipovic R, Moore AR, Antic SD, Zecevic N (2008) Radial glia cells in the developing human brain. Neuroscientist 14(5):459–473. doi: 10.1177/1073858407313512 PubMedCentralPubMedGoogle Scholar
  209. 209.
    Ke Y, Zhang EE, Hagihara K, Wu D, Pang Y, Klein R, Curran T, Ranscht B, Feng GS (2007) Deletion of Shp2 in the brain leads to defective proliferation and differentiation in neural stem cells and early postnatal lethality. Mol Cell Biol 27(19):6706–6717PubMedCentralPubMedGoogle Scholar
  210. 210.
    McFarland KN, Wilkes SR, Koss SE, Ravichandran KS, Mandell JW (2006) Neural-specific inactivation of ShcA results in increased embryonic neural progenitor apoptosis and microencephaly. J Neurosci 26(30):7885–7897PubMedGoogle Scholar
  211. 211.
    Phoenix TN, Temple S (2010) Spred1, a negative regulator of Ras-MAPK-ERK, is enriched in CNS germinal zones, dampens NSC proliferation, and maintains ventricular zone structure. Genes Dev 24(1):45–56. doi: 10.1101/gad.1839510 PubMedGoogle Scholar
  212. 212.
    Samuels IS, Karlo JC, Faruzzi AN, Pickering K, Herrup K, Sweatt JD, Saitta SC, Landreth GE (2008) Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J Neurosci 28(27):6983–6995. doi: 10.1523/jneurosci.0679-08.2008 PubMedGoogle Scholar
  213. 213.
    Kang W, Wong LC, Shi SH, Hebert JM (2009) The transition from radial glial to intermediate progenitor cell is inhibited by FGF signaling during corticogenesis. J Neurosci 29(46):14571–14580. doi: 10.1523/jneurosci.3844-09.2009 PubMedCentralPubMedGoogle Scholar
  214. 214.
    McMillan EL, Kamps AL, Lake SS, Svendsen CN, Bhattacharyya A (2012) Gene expression changes in the MAPK pathway in both Fragile X and Down syndrome human neural progenitor cells. Am J Stem Cells 1(2):154–162PubMedCentralPubMedGoogle Scholar
  215. 215.
    Chen J, Lai F, Niswander L (2012) The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev 26(8):803–815. doi: 10.1101/gad.187641.112 PubMedGoogle Scholar
  216. 216.
    Ohkubo Y, Uchida AO, Shin D, Partanen J, Vaccarino FM (2004) Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. J Neurosci 24(27):6057–6069PubMedGoogle Scholar
  217. 217.
    Stevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, Horvath TL, Vaccarino FM (2010) Fgfr2 is required for the development of the medial prefrontal cortex and its connections with limbic circuits. J Neurosci 30(16):5590–5602. doi: 10.1523/jneurosci.5837-09.2010 PubMedCentralPubMedGoogle Scholar
  218. 218.
    Caric D, Raphael H, Viti J, Feathers A, Wancio D, Lillien L (2001) EGFRs mediate chemotactic migration in the developing telencephalon. Development 128(21):4203–4216PubMedGoogle Scholar
  219. 219.
    Eagleson KL, Ferri RT, Levitt P (1996) Complementary distribution of collagen type IV and the epidermal growth factor receptor in the rat embryonic telencephalon. Cereb Cortex 6(3):540–549PubMedGoogle Scholar
  220. 220.
    Burrows RC, Wancio D, Levitt P, Lillien L (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19(2):251–267PubMedGoogle Scholar
  221. 221.
    Lillien L, Gulacsi A (2006) Environmental signals elicit multiple responses in dorsal telencephalic progenitors by threshold-dependent mechanisms. Cereb Cortex 16(Suppl 1):i74–i81. doi: 10.1093/cercor/bhj169 PubMedGoogle Scholar
  222. 222.
    Ciccolini F, Mandl C, Holzl-Wenig G, Kehlenbach A, Hellwig A (2005) Prospective isolation of late development multipotent precursors whose migration is promoted by EGFR. Dev Biol 284(1):112–125. doi: 10.1016/j.ydbio.2005.05.007 PubMedGoogle Scholar
  223. 223.
    Sinor-Anderson A, Lillien L (2011) Akt1 interacts with epidermal growth factor receptors and hedgehog signaling to increase stem/transit amplifying cells in the embryonic mouse cortex. Dev Neurobiol 71(9):759–771. doi: 10.1002/dneu.20878 PubMedCentralPubMedGoogle Scholar
  224. 224.
    Jia H, Tao H, Feng R, Li M, Bai J, Sun T, Wen J, Hu Q (2011) Pax6 regulates the epidermal growth factor-responsive neural stem cells of the subventricular zone. Neuroreport 22(9):448–452. doi: 10.1097/WNR.0b013e3283476b46 PubMedGoogle Scholar
  225. 225.
    Hu Q, Zhang L, Wen J, Wang S, Li M, Feng R, Yang X, Li L (2010) The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells. Stem Cells 28(2):279–286. doi: 10.1002/stem.246 PubMedGoogle Scholar
  226. 226.
    Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11(5):951–966PubMedGoogle Scholar
  227. 227.
    Doe CQ, Goodman CS (1985) Early events in insect neurogenesis. II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Dev Biol 111(1):206–219PubMedGoogle Scholar
  228. 228.
    Louvi A, Artavanis-Tsakonas S (2006) Notch signalling in vertebrate neural development. Nat Rev Neurosci 7(2):93–102PubMedGoogle Scholar
  229. 229.
    Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N (2007) Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449(7160):351–355PubMedGoogle Scholar
  230. 230.
    Ishibashi M, Moriyoshi K, Sasai Y, Shiota K, Nakanishi S, Kageyama R (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J 13(8):1799–1805PubMedGoogle Scholar
  231. 231.
    Gaiano N, Nye JS, Fishell G (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26(2):395–404PubMedGoogle Scholar
  232. 232.
    Li H, Chang YW, Mohan K, Su HW, Ricupero CL, Baridi A, Hart RP, Grumet M (2008) Activated Notch1 maintains the phenotype of radial glial cells and promotes their adhesion to laminin by upregulating nidogen. Glia 56(6):646–658PubMedCentralPubMedGoogle Scholar
  233. 233.
    Mason HA, Rakowiecki SM, Gridley T, Fishell G (2006) Loss of notch activity in the developing central nervous system leads to increased cell death. Dev Neurosci 28(1–2):49–57PubMedGoogle Scholar
  234. 234.
    Baek JH, Hatakeyama J, Sakamoto S, Ohtsuka T, Kageyama R (2006) Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133(13):2467–2476. doi: 10.1242/dev.02403 PubMedGoogle Scholar
  235. 235.
    Nagao M, Sugimori M, Nakafuku M (2007) Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. Mol Cell Biol 27(11):3982–3994. doi: 10.1128/mcb.00170-07 PubMedCentralPubMedGoogle Scholar
  236. 236.
    Sato T, Shimazaki T, Naka H, Fukami S, Satoh Y, Okano H, Lax I, Schlessinger J, Gotoh N (2010) FRS2a regulates Erk levels to control a self-renewal target Hes1 and proliferation of FGF-responsive neural stem/progenitor cells. Stem Cells 28(9):1661–1673. doi: 10.1002/stem.488 PubMedCentralPubMedGoogle Scholar
  237. 237.
    Dang L, Yoon K, Wang M, Gaiano N (2006) Notch3 signaling promotes radial glial/progenitor character in the mammalian telencephalon. Dev Neurosci 28(1–2):58–69PubMedGoogle Scholar
  238. 238.
    Rotwein P, Burgess SK, Milbrandt JD, Krause JE (1988) Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci U S A 85(1):265–269PubMedCentralPubMedGoogle Scholar
  239. 239.
    Banks WA (2004) The source of cerebral insulin. Eur J Pharmacol 490(1–3):5–12. doi: 10.1016/j.ejphar.2004.02.040 PubMedGoogle Scholar
  240. 240.
    Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Kustermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Bruning JC (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A 101(9):3100–3105. doi: 10.1073/pnas.0308724101 PubMedCentralPubMedGoogle Scholar
  241. 241.
    Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289(5487):2122–2125PubMedGoogle Scholar
  242. 242.
    Erickson RI, Paucar AA, Jackson RL, Visnyei K, Kornblum H (2008) Roles of insulin and transferrin in neural progenitor survival and proliferation. J Neurosci Res 86:1884–1894PubMedGoogle Scholar
  243. 243.
    Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60(1):56–69. doi: 10.1016/j.neuron.2008.09.028 PubMedCentralPubMedGoogle Scholar
  244. 244.
    Kowalczyk T, Pontious A, Englund C, Daza RA, Bedogni F, Hodge R, Attardo A, Bell C, Huttner WB, Hevner RF (2009) Intermediate neuronal progenitors (basal progenitors) produce pyramidal-projection neurons for all layers of cerebral cortex. Cereb Cortex 19(10):2439–2450. doi: 10.1093/cercor/bhn260 PubMedGoogle Scholar
  245. 245.
    Kawaguchi D, Yoshimatsu T, Hozumi K, Gotoh Y (2008) Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development 135(23):3849–3858PubMedGoogle Scholar
  246. 246.
    Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci 26(3):1045–1056PubMedCentralPubMedGoogle Scholar
  247. 247.
    Sasaki S, Tabata H, Tachikawa K, Nakajima K (2008) The cortical subventricular zone-specific molecule Svet1 is part of the nuclear RNA coded by the putative netrin receptor gene Unc5d and is expressed in multipolar migrating cells. Mol Cell Neurosci 38(4):474–483. doi: 10.1016/j.mcn.2008.04.002 PubMedGoogle Scholar
  248. 248.
    Wang X, Tsai JW, LaMonica B, Kriegstein AR (2011) A new subtype of progenitor cell in the mouse embryonic neocortex. Nat Neurosci 14(5):555–561. doi: 10.1038/nn.2807 PubMedCentralPubMedGoogle Scholar
  249. 249.
    Brems H, Chmara M, Sahbatou M, Denayer E, Taniguchi K, Kato R, Somers R, Messiaen L, De Schepper S, Fryns JP, Cools J, Marynen P, Thomas G, Yoshimura A, Legius E (2007) Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet 39(9):1120–1126. doi: 10.1038/ng2113 PubMedGoogle Scholar
  250. 250.
    Spurlock G, Bennett E, Chuzhanova N, Thomas N, Jim HP, Side L, Davies S, Haan E, Kerr B, Huson SM, Upadhyaya M (2009) SPRED1 mutations (Legius syndrome): another clinically useful genotype for dissecting the neurofibromatosis type 1 phenotype. J Med Genet 46(7):431–437. doi: 10.1136/jmg.2008.065474 PubMedGoogle Scholar
  251. 251.
    Yamamoto S, Yoshino I, Shimazaki T, Murohashi M, Hevner RF, Lax I, Okano H, Shibuya M, Schlessinger J, Gotoh N (2005) Essential role of Shp2-binding sites on FRS2a for corticogenesis and for FGF2-dependent proliferation of neural progenitor cells. Proc Natl Acad Sci U S A 102(44):15983–15988PubMedCentralPubMedGoogle Scholar
  252. 252.
    Fyffe-Maricich SL, Karlo JC, Landreth GE, Miller RH (2011) The ERK2 mitogen-activated protein kinase regulates the timing of oligodendrocyte differentiation. J Neurosci 31(3):843–850. doi: 10.1523/jneurosci.3239-10.2011 PubMedCentralPubMedGoogle Scholar
  253. 253.
    Gauthier AS, Furstoss O, Araki T, Chan R, Neel BG, Kaplan DR, Miller FD (2007) Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron 54(2):245–262. doi: 10.1016/j.neuron.2007.03.027 PubMedCentralPubMedGoogle Scholar
  254. 254.
    Galabova-Kovacs G, Catalanotti F, Matzen D, Reyes GX, Zezula J, Herbst R, Silva A, Walter I, Baccarini M (2008) Essential role of B-Raf in oligodendrocyte maturation and myelination during postnatal central nervous system development. J Cell Biol 180(5):947–955PubMedGoogle Scholar
  255. 255.
    Menard C, Hein P, Paquin A, Savelson A, Yang XM, Lederfein D, Barnabe-Heider F, Mir AA, Sterneck E, Peterson AC, Johnson PF, Vinson C, Miller FD (2002) An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36(4):597–610PubMedGoogle Scholar
  256. 256.
    Wang X, Tournier C (2006) Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal 18(6):753–760. doi: 10.1016/j.cellsig.2005.11.003 PubMedGoogle Scholar
  257. 257.
    Hayashi M, Lee JD (2004) Role of the BMK1/ERK5 signaling pathway: lessons from knockout mice. J Mol Med (Berl) 82(12):800–808. doi: 10.1007/s00109-004-0602-8 Google Scholar
  258. 258.
    Liu L, Cundiff P, Abel G, Wang Y, Faigle R, Sakagami H, Xu M, Xia Z (2006) Extracellular signal-regulated kinase (ERK) 5 is necessary and sufficient to specify cortical neuronal fate. Proc Natl Acad Sci U S A 103(25):9697–9702. doi: 10.1073/pnas.0603373103 PubMedCentralPubMedGoogle Scholar
  259. 259.
    Cundiff P, Liu L, Wang Y, Zou J, Pan YW, Abel G, Duan X, Ming GL, Englund C, Hevner R, Xia Z (2009) ERK5 MAP kinase regulates neurogenin1 during cortical neurogenesis. PLoS One 4(4):e5204. doi: 10.1371/journal.pone.0005204 PubMedCentralPubMedGoogle Scholar
  260. 260.
    Kornblum HI, Hussain R, Wiesen J, Miettinen P, Zurcher SD, Chow K, Derynck R, Werb Z (1998) Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. J Neurosci Res 53(6):697–717PubMedGoogle Scholar
  261. 261.
    Sibilia M, Steinbach JP, Stingl L, Aguzzi A, Wagner EF (1998) A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J 17(3):719–731. doi: 10.1093/emboj/17.3.719 PubMedGoogle Scholar
  262. 262.
    Wagner B, Natarajan A, Grunaug S, Kroismayr R, Wagner EF, Sibilia M (2006) Neuronal survival depends on EGFR signaling in cortical but not midbrain astrocytes. EMBO J 25(4):752–762. doi: 10.1038/sj.emboj.7600988 PubMedGoogle Scholar
  263. 263.
    He F, Ge W, Martinowich K, Becker-Catania S, Coskun V, Zhu W, Wu H, Castro D, Guillemot F, Fan G, de Vellis J, Sun YE (2005) A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 8(5):616–625. doi: 10.1038/nn1440 PubMedGoogle Scholar
  264. 264.
    Fishwick KJ, Li RA, Halley P, Deng P, Storey KG (2010) Initiation of neuronal differentiation requires PI3-kinase/TOR signalling in the vertebrate neural tube. Dev Biol 338(2):215–225. doi: 10.1016/j.ydbio.2009.12.001 PubMedGoogle Scholar
  265. 265.
    Oishi K, Watatani K, Itoh Y, Okano H, Guillemot F, Nakajima K, Gotoh Y (2009) Selective induction of neocortical GABAergic neurons by the PDK1-Akt pathway through activation of Mash1. Proc Natl Acad Sci U S A 106(31):13064–13069. doi: 10.1073/pnas.0808400106 PubMedCentralPubMedGoogle Scholar
  266. 266.
    Ziegler AN, Schneider JS, Qin M, Tyler WA, Pintar JE, Fraidenraich D, Wood TL, Levison SW (2012) IGF-II promotes stemness of neural restricted precursors. Stem Cells 30(6):1265–1276. doi: 10.1002/stem.1095 PubMedGoogle Scholar
  267. 267.
    O’Leary DD, Sahara S (2008) Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 18(1):90–100. doi: 10.1016/j.conb.2008.05.011 PubMedCentralPubMedGoogle Scholar
  268. 268.
    Tossell K, Kiecker C, Wizenmann A, Lang E, Irving C (2011) Notch signalling stabilises boundary formation at the midbrain-hindbrain organiser. Development 138(17):3745–3757. doi: 10.1242/dev.070318 PubMedGoogle Scholar
  269. 269.
    Hebert JM, Fishell G (2008) The genetics of early telencephalon patterning: some assembly required. Nat Rev Neurosci 9(9):678–685. doi: 10.1038/nrn2463 PubMedCentralPubMedGoogle Scholar
  270. 270.
    Takahashi H, Liu FC (2006) Genetic patterning of the mammalian telencephalon by morphogenetic molecules and transcription factors. Birth Defects Res C Embryo Today 78(3):256–266PubMedGoogle Scholar
  271. 271.
    Sansom SN, Hebert JM, Thammongkol U, Smith J, Nisbet G, Surani MA, McConnell SK, Livesey FJ (2005) Genomic characterisation of a Fgf-regulated gradient-based neocortical protomap. Development 132(17):3947–3961. doi: 10.1242/dev.01968 PubMedGoogle Scholar
  272. 272.
    Gutin G, Fernandes M, Palazzolo L, Paek H, Yu K, Ornitz DM, McConnell SK, Hebert JM (2006) FGF signalling generates ventral telencephalic cells independently of SHH. Development 133(15):2937–2946PubMedGoogle Scholar
  273. 273.
    Shimamura K, Hartigan DJ, Martinez S, Puelles L, Rubenstein JL (1995) Longitudinal organization of the anterior neural plate and neural tube. Development 121(12):3923–3933PubMedGoogle Scholar
  274. 274.
    Danesin C, Houart C (2012) A Fox stops the Wnt: implications for forebrain development and diseases. Curr Opin Genet Dev 22(4):323–330. doi: 10.1016/j.gde.2012.05.001 PubMedGoogle Scholar
  275. 275.
    Houart C, Westerfield M, Wilson SW (1998) A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature 391(6669):788–792. doi: 10.1038/35853 PubMedGoogle Scholar
  276. 276.
    Paek H, Gutin G, Hebert JM (2009) FGF signaling is strictly required to maintain early telencephalic precursor cell survival. Development 136(14):2457–2465. doi: 10.1242/dev.032656 PubMedGoogle Scholar
  277. 277.
    Regad T, Roth M, Bredenkamp N, Illing N, Papalopulu N (2007) The neural progenitor-specifying activity of FoxG1 is antagonistically regulated by CKI and FGF. Nat Cell Biol 9(5):531–540. doi: 10.1038/ncb1573 PubMedGoogle Scholar
  278. 278.
    Storm EE, Rubenstein JL, Martin GR (2003) Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain. Proc Natl Acad Sci U S A 100(4):1757–1762PubMedCentralPubMedGoogle Scholar
  279. 279.
    Faedo A, Borello U, Rubenstein JL (2010) Repression of Fgf signaling by sprouty1-2 regulates cortical patterning in two distinct regions and times. J Neurosci 30(11):4015–4023. doi: 10.1523/jneurosci.0307-10.2010 PubMedCentralPubMedGoogle Scholar
  280. 280.
    Persaud A, Alberts P, Hayes M, Guettler S, Clarke I, Sicheri F, Dirks P, Ciruna B, Rotin D (2011) Nedd4-1 binds and ubiquitylates activated FGFR1 to control its endocytosis and function. EMBO J 30(16):3259–3273. doi: 10.1038/emboj.2011.234 PubMedGoogle Scholar
  281. 281.
    Hasegawa H, Ashigaki S, Takamatsu M, Suzuki-Migishima R, Ohbayashi N, Itoh N, Takada S, Tanabe Y (2004) Laminar patterning in the developing neocortex by temporally coordinated fibroblast growth factor signaling. J Neurosci 24(40):8711–8719PubMedGoogle Scholar
  282. 282.
    Hebert JM, Lin M, Partanen J, Rossant J, McConnell SK (2003) FGF signaling through FGFR1 is required for olfactory bulb morphogenesis. Development 130(6):1101–1111PubMedGoogle Scholar
  283. 283.
    Shin DM, Korada S, Raballo R, Shashikant CS, Simeone A, Taylor JR, Vaccarino F (2004) Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. J Neurosci 24(9):2247–2258PubMedGoogle Scholar
  284. 284.
    Thomson RE, Kind PC, Graham NA, Etherson ML, Kennedy J, Fernandes AC, Marques CS, Hevner RF, Iwata T (2009) Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex. Neural Dev 4:4. doi: 10.1186/1749-8104-4-4 PubMedCentralPubMedGoogle Scholar
  285. 285.
    Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074PubMedGoogle Scholar
  286. 286.
    Garel S, Huffman KJ, Rubenstein JLR (2003) Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants. Development 130(9):1903–1914PubMedGoogle Scholar
  287. 287.
    Borello U, Cobos I, Long JE, McWhirter JR, Murre C, Rubenstein JL (2008) FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development. Neural Dev 3:17. doi: 10.1186/1749-8104-3-17 PubMedCentralPubMedGoogle Scholar
  288. 288.
    Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129(1):83–93PubMedGoogle Scholar
  289. 289.
    Vickaryous MK, Hall BK (2006) Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc: 1–31Google Scholar
  290. 290.
    Wells RB (2005) Cortical nneurons and circuits: a tutorial.Google Scholar
  291. 291.
    Subramanian L, Remedios R, Shetty A, Tole S (2009) Signals from the edges: the cortical hem and antihem in telencephalic development. Semin Cell Dev Biol 20(6):712–718. doi: 10.1016/j.semcdb.2009.04.001 PubMedCentralPubMedGoogle Scholar
  292. 292.
    Machon O, Backman M, Machonova O, Kozmik Z, Vacik T, Andersen L, Krauss S (2007) A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Dev Biol 311(1):223–237. doi: 10.1016/j.ydbio.2007.08.038 PubMedGoogle Scholar
  293. 293.
    Assimacopoulos S, Grove EA, Ragsdale CW (2003) Identification of a Pax6-dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex. J Neurosci 23(16):6399–6403PubMedGoogle Scholar
  294. 294.
    Dou CL, Li S, Lai E (1999) Dual role of brain factor-1 in regulating growth and patterning of the cerebral hemispheres. Cereb Cortex 9(6):543–550PubMedGoogle Scholar
  295. 295.
    Muzio L, Mallamaci A (2005) Foxg1 confines Cajal-Retzius neuronogenesis and hippocampal morphogenesis to the dorsomedial pallium. J Neurosci 25(17):4435–4441. doi: 10.1523/jneurosci.4804-04.2005 PubMedGoogle Scholar
  296. 296.
    Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128(3):353–363PubMedGoogle Scholar
  297. 297.
    Carney RS, Alfonso TB, Cohen D, Dai H, Nery S, Stoica B, Slotkin J, Bregman BS, Fishell G, Corbin JG (2006) Cell migration along the lateral cortical stream to the developing basal telencephalic limbic system. J Neurosci 26(45):11562–11574. doi: 10.1523/jneurosci.3092-06.2006 PubMedGoogle Scholar
  298. 298.
    Carney RS, Cocas LA, Hirata T, Mansfield K, Corbin JG (2009) Differential regulation of telencephalic pallial-subpallial boundary patterning by Pax6 and Gsh2. Cereb Cortex 19(4):745–759. doi: 10.1093/cercor/bhn123 PubMedGoogle Scholar
  299. 299.
    Maruoka Y, Ohbayashi N, Hoshikawa M, Itoh N, Hogan BL, Furuta Y (1998) Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo. Mech Dev 74(1–2):175–177PubMedGoogle Scholar
  300. 300.
    Xu J, Liu Z, Ornitz D (2000) Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 127(9):1833–1843PubMedGoogle Scholar
  301. 301.
    Nakamura H, Katahira T, Matsunaga E, Sato T (2005) Isthmus organizer for midbrain and hindbrain development. Brain Res Brain Res Rev 49(2):120–126PubMedGoogle Scholar
  302. 302.
    Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat Genet 18(2):136–141PubMedGoogle Scholar
  303. 303.
    Liu A, Losos K, Joyner AL (1999) FGF8 can activate Gbx2 and transform regions of the rostral mouse brain into a hindbrain fate. Development 126(21):4827–4838PubMedGoogle Scholar
  304. 304.
    Chi CL, Martinez S, Wurst W, Martin GR (2003) The isthmic organizer signal FGF8 is required for cell survival in the prospective midbrain and cerebellum. Development 130(12):2633–2644PubMedGoogle Scholar
  305. 305.
    Saarimaki-Vire J, Peltopuro P, Lahti L, Naserke T, Blak AA, Vogt Weisenhorn DM, Yu K, Ornitz DM, Wurst W, Partanen J (2007) Fibroblast growth factor receptors cooperate to regulate neural progenitor properties in the developing midbrain and hindbrain. J Neurosci 27(32):8581–8592PubMedGoogle Scholar
  306. 306.
    Blaess S, Stephen D, Joyner AL (2008) Gli3 coordinates three-dimensional patterning and growth of the tectum and cerebellum by integrating Shh and Fgf8 signaling. Development 135(12):2093–2103. doi: 10.1242/dev.015990 PubMedCentralPubMedGoogle Scholar
  307. 307.
    Yu T, Yaguchi Y, Echevarria D, Martinez S, Basson MA (2011) Sprouty genes prevent excessive FGF signalling in multiple cell types throughout development of the cerebellum. Development 138(14):2957–2968. doi: 10.1242/dev.063784 PubMedGoogle Scholar
  308. 308.
    Basson MA, Echevarria D, Ahn CP, Sudarov A, Joyner AL, Mason IJ, Martinez S, Martin GR (2008) Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development. Development 135(5):889–898. doi: 10.1242/dev.011569 PubMedCentralPubMedGoogle Scholar
  309. 309.
    Lin W, Jing N, Basson MA, Dierich A, Licht J, Ang SL (2005) Synergistic activity of Sef and Sprouty proteins in regulating the expression of Gbx2 in the mid-hindbrain region. Genesis 41(3):110–115. doi: 10.1002/gene.20103 PubMedGoogle Scholar
  310. 310.
    Crespo-Enriquez I, Partanen J, Martinez S, Echevarria D (2012) Fgf8-related secondary organizers exert different polarizing planar instructions along the mouse anterior neural tube. PLoS One 7(7):e39977. doi: 10.1371/journal.pone.0039977 PubMedCentralPubMedGoogle Scholar
  311. 311.
    Eblaghie MC, Lunn JS, Dickinson RJ, Munsterberg AE, Sanz-Ezquerro JJ, Farrell ER, Mathers J, Keyse SM, Storey K, Tickle C (2003) Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Curr Biol 13(12):1009–1018PubMedGoogle Scholar
  312. 312.
    Moses D, Teper Y, Gantois I, Finkelstein DI, Horne MK, Drago J (2006) Murine embryonic EGF-responsive ventral mesencephalic neurospheres display distinct regional specification and promote survival of dopaminergic neurons. Exp Neurol 199(1):209–221. doi: 10.1016/j.expneurol.2006.02.120 PubMedGoogle Scholar
  313. 313.
    Andrae J, Afink G, Zhang XQ, Wurst W, Nister M (2004) Forced expression of platelet-derived growth factor B in the mouse cerebellar primordium changes cell migration during midline fusion and causes cerebellar ectopia. Mol Cell Neurosci 26(2):308–321. doi: 10.1016/j.mcn.2004.02.004 PubMedGoogle Scholar
  314. 314.
    Bu J, Banki A, Wu Q, Nishiyama A (2004) Increased NG2+ glial cell proliferation and oligodendrocyte generation in the hypomyelinating mutant shiverer. Glia 48(1):51–63. doi: 10.1002/glia.20055 PubMedGoogle Scholar
  315. 315.
    Ligon KL, Fancy SP, Franklin RJ, Rowitch DH (2006) Olig gene function in CNS development and disease. Glia 54(1):1–10PubMedGoogle Scholar
  316. 316.
    Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, Li Q, Sander M, Qiu M (2005) Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron 45(1):41–53. doi: 10.1016/j.neuron.2004.12.028 PubMedGoogle Scholar
  317. 317.
    Kessaris N, Jamen F, Rubin LL, Richardson WD (2004) Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development 131(6):1289–1298. doi: 10.1242/dev.01027 PubMedGoogle Scholar
  318. 318.
    Fogarty M, Richardson WD, Kessaris N (2005) A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development 132(8):1951–1959. doi: 10.1242/dev.01777 PubMedGoogle Scholar
  319. 319.
    Chandran S, Kato H, Gerreli D, Compston A, Svendsen CN, Allen ND (2003) FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130(26):6599–6609PubMedGoogle Scholar
  320. 320.
    Chandran S, Compston A, Jauniaux E, Gilson J, Blakemore W, Svendsen C (2004) Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursors. Glia 47(4):314–324PubMedGoogle Scholar
  321. 321.
    Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9(2):173–179. doi: 10.1038/nn1620 PubMedGoogle Scholar
  322. 322.
    Rao RC, Boyd J, Padmanabhan R, Chenoweth JG, McKay RD (2009) Efficient serum-free derivation of oligodendrocyte precursors from neural stem cell-enriched cultures. Stem Cells 27(1):116–125. doi: 10.1634/stemcells.2007-0205 PubMedGoogle Scholar
  323. 323.
    Chojnacki A, Kelly JJ, Hader W, Weiss S (2008) Distinctions between fetal and adult human platelet-derived growth factor-responsive neural precursors. Ann Neurol 64(2):127–142PubMedGoogle Scholar
  324. 324.
    Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, Stiles CD, Rowitch DH, Richardson WD (2001) Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128(13):2545–2554PubMedGoogle Scholar
  325. 325.
    Mo Z, Zecevic N (2009) Human fetal radial glia cells generate oligodendrocytes in vitro. Glia 57(5):490–498. doi: 10.1002/glia.20775 PubMedCentralPubMedGoogle Scholar
  326. 326.
    Naruse M, Nakahira E, Miyata T, Hitoshi S, Ikenaka K, Bansal R (2006) Induction of oligodendrocyte progenitors in dorsal forebrain by intraventricular microinjection of FGF-2. Dev Biol 297(1):262–273PubMedGoogle Scholar
  327. 327.
    Furusho M, Kaga Y, Ishii A, Hebert JM, Bansal R (2011) Fibroblast growth factor signaling is required for the generation of oligodendrocyte progenitors from the embryonic forebrain. J Neurosci 31(13):5055–5066. doi: 10.1523/jneurosci.4800-10.2011 PubMedCentralPubMedGoogle Scholar
  328. 328.
    Hu BY, Du ZW, Li XJ, Ayala M, Zhang SC (2009) Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 136(9):1443–1452PubMedGoogle Scholar
  329. 329.
    Chojnacki A, Weiss S (2004) Isolation of a novel platelet-derived growth factor-responsive precursor from the embryonic ventral forebrain. J Neurosci 24(48):10888–10899. doi: 10.1523/jneurosci.3302-04.2004 PubMedGoogle Scholar
  330. 330.
    Erlandsson A, Brannvall K, Gustafsdottir S, Westermark B, Forsberg-Nilsson K (2006) Autocrine/paracrine platelet-derived growth factor regulates proliferation of neural progenitor cells. Cancer Res 66(16):8042–8048PubMedGoogle Scholar
  331. 331.
    Erlandsson A, Enarsson M, Forsberg-Nilsson K (2001) Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J Neurosci 21(10):3483–3491PubMedGoogle Scholar
  332. 332.
    Hu JG, Fu SL, Wang YX, Li Y, Jiang XY, Wang XF, Qiu MS, Lu PH, Xu XM (2008) Platelet-derived growth factor-AA mediates oligodendrocyte lineage differentiation through activation of extracellular signal-regulated kinase signaling pathway. Neuroscience 151(1):138–147PubMedGoogle Scholar
  333. 333.
    McKinnon RD, Waldron S, Kiel ME (2005) PDGF a-receptor signal strength controls an RTK rheostat that integrates phosphoinositol 3'-kinase and phospholipase Cg pathways during oligodendrocyte maturation. J Neurosci 25(14):3499–3508PubMedGoogle Scholar
  334. 334.
    Woodruff RH, Fruttiger M, Richardson WD, Franklin RJ (2004) Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci 25(2):252–262. doi: 10.1016/j.mcn.2003.10.014 PubMedGoogle Scholar
  335. 335.
    Zeger M, Popken G, Zhang J, Xuan S, Lu QR, Schwab MH, Nave KA, Rowitch D, D’Ercole AJ, Ye P (2007) Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal in vivo oligodendrocyte development and myelination. Glia 55(4):400–411. doi: 10.1002/glia.20469 PubMedCentralPubMedGoogle Scholar
  336. 336.
    Bibollet-Bahena O, Almazan G (2009) IGF-1-stimulated protein synthesis in oligodendrocyte progenitors requires PI3K/mTOR/Akt and MEK/ERK pathways. J Neurochem 109(5):1440–1451PubMedGoogle Scholar
  337. 337.
    Annenkov A (2009) The insulin-like growth factor (IGF) receptor type 1 (IGF1R) as an essential component of the signalling network regulating neurogenesis. Mol Neurobiol 40(3):195–216PubMedGoogle Scholar
  338. 338.
    Ye P, Hu Q, Liu H, Yan Y, D’Ercole AJ (2010) b-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures. Glia 58(9):1031–1041. doi: 10.1002/glia.20984 PubMedCentralPubMedGoogle Scholar
  339. 339.
    Murtie JC, Zhou YX, Le TQ, Vana AC, Armstrong RC (2005) PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol Dis 19(1–2):171–182. doi: 10.1016/j.nbd.2004.12.006 PubMedGoogle Scholar
  340. 340.
    Baron W, Metz B, Bansal R, Hoekstra D, de Vries H (2000) PDGF and FGF-2 signaling in oligodendrocyte progenitor cells: regulation of proliferation and differentiation by multiple intracellular signaling pathways. Mol Cell Neurosci 15(3):314–329. doi: 10.1006/mcne.1999.0827 PubMedGoogle Scholar
  341. 341.
    Thommes KB, Hoppe J, Vetter H, Sachinidis A (1996) The synergistic effect of PDGF-AA and IGF-1 on VSMC proliferation might be explained by the differential activation of their intracellular signaling pathways. Exp Cell Res 226(1):59–66. doi: 10.1006/excr.1996.0202 PubMedGoogle Scholar
  342. 342.
    Pedraza CE, Monk R, Lei J, Hao Q, Macklin WB (2008) Production, characterization, and efficient transfection of highly pure oligodendrocyte precursor cultures from mouse embryonic neural progenitors. Glia 56(12):1339–1352. doi: 10.1002/glia.20702 PubMedGoogle Scholar
  343. 343.
    McKinnon RD, Matsui T, Dubois-Dalcq M, Aaronson SA (1990) FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 5(5):603–614PubMedGoogle Scholar
  344. 344.
    Watatani K, Hirabayashi Y, Itoh Y, Gotoh Y (2012) PDK1 regulates the generation of oligodendrocyte precursor cells at an early stage of mouse telencephalic development. Genes Cells 17(4):326–335. doi: 10.1111/j.1365-2443.2012.01591.x PubMedGoogle Scholar
  345. 345.
    Ebner S, Dunbar M, McKinnon RD (2000) Distinct roles for PI3K in proliferation and survival of oligodendrocyte progenitor cells. J Neurosci Res 62(3):336–345PubMedGoogle Scholar
  346. 346.
    Frederick TJ, Wood TL (2004) IGF-I and FGF-2 coordinately enhance cyclin D1 and cyclin E-cdk2 association and activity to promote G1 progression in oligodendrocyte progenitor cells. Mol Cell Neurosci 25(3):480–492PubMedGoogle Scholar
  347. 347.
    Frederick TJ, Min J, Altieri SC, Mitchell NE, Wood TL (2007) Synergistic induction of cyclin D1 in oligodendrocyte progenitor cells by IGF-I and FGF-2 requires differential stimulation of multiple signaling pathways. Glia 55(10):1011–1022PubMedGoogle Scholar
  348. 348.
    Min J, Singh S, Fitzgerald-Bocarsly P, Wood TL (2012) Insulin-like growth factor I regulates G2/M progression through mammalian target of rapamycin signaling in oligodendrocyte progenitors. Glia 60(11):1684–1695. doi: 10.1002/glia.22387 PubMedGoogle Scholar
  349. 349.
    Chew LJ, Coley W, Cheng Y, Gallo V (2010) Mechanisms of regulation of oligodendrocyte development by p38 mitogen-activated protein kinase. J Neurosci 30(33):11011–11027. doi: 10.1523/jneurosci.2546-10.2010 PubMedCentralPubMedGoogle Scholar
  350. 350.
    Kuo E, Park DK, Tzvetanova ID, Leiton CV, Cho BS, Colognato H (2010) Tyrosine phosphatases Shp1 and Shp2 have unique and opposing roles in oligodendrocyte development. J Neurochem 113(1):200–212. doi: 10.1111/j.1471-4159.2010.06596.x PubMedCentralPubMedGoogle Scholar
  351. 351.
    Grossmann KS, Wende H, Paul FE, Cheret C, Garratt AN, Zurborg S, Feinberg K, Besser D, Schulz H, Peles E, Selbach M, Birchmeier W, Birchmeier C (2009) The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development. Proc Natl Acad Sci U S A 106(39):16704–16709. doi: 10.1073/pnas.0904336106 PubMedCentralPubMedGoogle Scholar
  352. 352.
    Zhu Y, Park J, Hu X, Zheng K, Li H, Cao Q, Feng GS, Qiu M (2010) Control of oligodendrocyte generation and proliferation by Shp2 protein tyrosine phosphatase. Glia 58(12):1407–1414. doi: 10.1002/glia.21016 PubMedCentralPubMedGoogle Scholar
  353. 353.
    Yim SH, Hammer JA, Quarles RH (2001) Differences in signal transduction pathways by which platelet-derived and fibroblast growth factors activate extracellular signal-regulated kinase in differentiating oligodendrocytes. J Neurochem 76(6):1925–1934PubMedGoogle Scholar
  354. 354.
    Newbern JM, Li X, Shoemaker SE, Zhou J, Zhong J, Wu Y, Bonder D, Hollenback S, Coppola G, Geschwind DH, Landreth GE, Snider WD (2011) Specific functions for ERK/MAPK signaling during PNS development. Neuron 69(1):91–105. doi: 10.1016/j.neuron.2010.12.003 PubMedCentralPubMedGoogle Scholar
  355. 355.
    Ishii A, Fyffe-Maricich SL, Furusho M, Miller RH, Bansal R (2012) ERK1/ERK2 MAPK signaling is required to increase myelin thickness independent of oligodendrocyte differentiation and initiation of myelination. J Neurosci 32(26):8855–8864. doi: 10.1523/jneurosci.0137-12.2012 PubMedCentralPubMedGoogle Scholar
  356. 356.
    Guardiola-Diaz HM, Ishii A, Bansal R (2012) Erk1/2 MAPK and mTOR signaling sequentially regulates progression through distinct stages of oligodendrocyte differentiation. Glia 60(3):476–486. doi: 10.1002/glia.22281 PubMedCentralPubMedGoogle Scholar
  357. 357.
    Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13(5):1071–1082PubMedGoogle Scholar
  358. 358.
    Moe MC, Westerlund U, Varghese M, Berg-Johnsen J, Svensson M, Langmoen IA (2005) Development of neuronal networks from single stem cells harvested from the adult human brain. Neurosurgery 56(6):1182–1188, discussion 1188–1190PubMedGoogle Scholar
  359. 359.
    Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491(2):109–122. doi: 10.1002/cne.20714 PubMedCentralPubMedGoogle Scholar
  360. 360.
    Walton NM, Sutter BM, Chen HX, Chang LJ, Roper SN, Scheffler B, Steindler DA (2006) Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 133(18):3671–3681PubMedGoogle Scholar
  361. 361.
    Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90(5):2074–2077PubMedCentralPubMedGoogle Scholar
  362. 362.
    Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13(5):543–550PubMedGoogle Scholar
  363. 363.
    Riquelme PA, Drapeau E, Doetsch F (2008) Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 363(1489):123–137. doi: 10.1098/rstb.2006.2016 PubMedGoogle Scholar
  364. 364.
    Platel JC, Gordon V, Heintz T, Bordey A (2009) GFAP-GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia 57(1):66–78. doi: 10.1002/glia.20735 PubMedGoogle Scholar
  365. 365.
    Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17(13):5046–5061PubMedGoogle Scholar
  366. 366.
    Liu X, Bolteus AJ, Balkin DM, Henschel O, Bordey A (2006) GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes. Glia 54(5):394–410PubMedGoogle Scholar
  367. 367.
    Fricker-Gates RA (2006) Radial glia: a changing role in the central nervous system. Neuroreport 17(11):1081–1084PubMedGoogle Scholar
  368. 368.
    Bonfanti L, Peretto P (2007) Radial glial origin of the adult neural stem cells in the subventricular zone. Prog Neurobiol 83(1):24–36PubMedGoogle Scholar
  369. 369.
    Nyfeler Y, Kirch RD, Mantei N, Leone DP, Radtke F, Suter U, Taylor V (2005) Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J 24(19):3504–3515PubMedGoogle Scholar
  370. 370.
    Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28(3):713–726PubMedGoogle Scholar
  371. 371.
    Das AV, Mallya KB, Zhao X, Ahmad F, Bhattacharya S, Thoreson WB, Hegde GV, Ahmad I (2006) Neural stem cell properties of Muller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev Biol 299(1):283–302. doi: 10.1016/j.ydbio.2006.07.029 PubMedGoogle Scholar
  372. 372.
    Ramirez-Castillejo C, Sanchez-Sanchez F, Andreu-Agullo C, Ferron SR, Aroca-Aguilar JD, Sanchez P, Mira H, Escribano J, Farinas I (2006) Pigment epithelium-derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9(3):331–339PubMedGoogle Scholar
  373. 373.
    Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26(46):12089–12099PubMedGoogle Scholar
  374. 374.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442(7104):823–826PubMedGoogle Scholar
  375. 375.
    Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP, Fishell G (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39(6):937–950PubMedGoogle Scholar
  376. 376.
    Garcion E, Faissner A, Ffrench-Constant C (2001) Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. Development 128(13):2485–2496PubMedGoogle Scholar
  377. 377.
    Campos LS, Decker L, Taylor V, Skarnes W (2006) Notch, epidermal growth factor receptor, and b1-integrin pathways are coordinated in neural stem cells. J Biol Chem 281(8):5300–5309PubMedGoogle Scholar
  378. 378.
    Goldberg JS, Hirschi KK (2009) Diverse roles of the vasculature within the neural stem cell niche. Regen Med 4(6):879–897. doi: 10.2217/rme.09.61 PubMedCentralPubMedGoogle Scholar
  379. 379.
    Milner R (2007) A novel three-dimensional system to study interactions between endothelial cells and neural cells of the developing central nervous system. BMC Neurosci 8(1):3PubMedCentralPubMedGoogle Scholar
  380. 380.
    Chojnacki AK, Mak GK, Weiss S (2009) Identity crisis for adult periventricular neural stem cells: subventricular zone astrocytes, ependymal cells or both? Nat Rev Neurosci 10(2):153–163PubMedGoogle Scholar
  381. 381.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710PubMedGoogle Scholar
  382. 382.
    Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6(11):1127–1134. doi: 10.1038/nn1144 PubMedGoogle Scholar
  383. 383.
    Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, Deloulme JC (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55(2):165–177. doi: 10.1002/glia.20445 PubMedCentralPubMedGoogle Scholar
  384. 384.
    Morshead CM, van der Kooy D (1992) Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J Neurosci 12(1):249–256PubMedGoogle Scholar
  385. 385.
    Alexson TO, Hitoshi S, Coles BL, Bernstein A, van der Kooy D (2006) Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche. Dev Neurosci 28(1–2):34–48PubMedGoogle Scholar
  386. 386.
    Fernando RN, Eleuteri B, Abdelhady S, Nussenzweig A, Andang M, Ernfors P (2011) Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc Natl Acad Sci U S A 108(14):5837–5842. doi: 10.1073/pnas.1014993108 PubMedCentralPubMedGoogle Scholar
  387. 387.
    Suh Y, Obernier K, Holzl-Wenig G, Mandl C, Herrmann A, Worner K, Eckstein V, Ciccolini F (2009) Interaction between DLX2 and EGFR regulates proliferation and neurogenesis of SVZ precursors. Mol Cell Neurosci 42(4):308–314. doi: 10.1016/j.mcn.2009.08.003 PubMedGoogle Scholar
  388. 388.
    Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981PubMedGoogle Scholar
  389. 389.
    Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137(4):433–457. doi: 10.1002/cne.901370404 PubMedGoogle Scholar
  390. 390.
    Tropepe V, Craig CG, Morshead CM, van der Kooy D (1997) Transforming growth factor-a null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 17(20):7850–7859PubMedGoogle Scholar
  391. 391.
    Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17(15):5820–5829PubMedGoogle Scholar
  392. 392.
    Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034PubMedGoogle Scholar
  393. 393.
    Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S, Loughlin S (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A 97(26):14686–14691. doi: 10.1073/pnas.97.26.14686 PubMedCentralPubMedGoogle Scholar
  394. 394.
    Pastrana E, Cheng LC, Doetsch F (2009) Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci U S A 106(15):6387–6392PubMedCentralPubMedGoogle Scholar
  395. 395.
    Cesetti T, Obernier K, Bengtson CP, Fila T, Mandl C, Holzl-Wenig G, Worner K, Eckstein V, Ciccolini F (2009) Analysis of stem cell lineage progression in the neonatal subventricular zone identifies EGFR+/NG2- cells as transit-amplifying precursors. Stem Cells 27(6):1443–1454PubMedGoogle Scholar
  396. 396.
    O’Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA (2009) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci U S A 106(21):8754–8759. doi: 10.1073/pnas.0803955106 PubMedCentralPubMedGoogle Scholar
  397. 397.
    Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467(7313):323–327. doi: 10.1038/nature09347 PubMedCentralPubMedGoogle Scholar
  398. 398.
    Ferron SR, Pozo N, Laguna A, Aranda S, Porlan E, Moreno M, Fillat C, de la Luna S, Sanchez P, Arbones ML, Farinas I (2010) Regulated segregation of kinase Dyrk1A during asymmetric neural stem cell division is critical for EGFR-mediated biased signaling. Cell Stem Cell 7(3):367–379. doi: 10.1016/j.stem.2010.06.021 PubMedGoogle Scholar
  399. 399.
    Chojnacki A, Mak G, Weiss S (2011) PDGFRa expression distinguishes GFAP-expressing neural stem cells from PDGF-responsive neural precursors in the adult periventricular area. J Neurosci 31(26):9503–9512. doi: 10.1523/jneurosci.1531-11.2011 PubMedGoogle Scholar
  400. 400.
    Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, Vandenberg S, Alvarez-Buylla A (2006) PDGFRa-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51(2):187–199PubMedGoogle Scholar
  401. 401.
    Xu G, Shen J, Ishii Y, Fukuchi M, Dang TC, Zheng Y, Hamashima T, Fujimori T, Tsuda M, Funa K, Sasahara M (2013) Functional analysis of platelet-derived growth factor receptor-beta in neural stem/progenitor cells. Neuroscience 238:195–208. doi: 10.1016/j.neuroscience.2013.02.021 PubMedGoogle Scholar
  402. 402.
    Ishii Y, Matsumoto Y, Watanabe R, Elmi M, Fujimori T, Nissen J, Cao Y, Nabeshima Y, Sasahara M, Funa K (2008) Characterization of neuroprogenitor cells expressing the PDGF b-receptor within the subventricular zone of postnatal mice. Mol Cell Neurosci 37(3):507–518. doi: 10.1016/j.mcn.2007.11.006 PubMedGoogle Scholar
  403. 403.
    Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11(12):1392–1401. doi: 10.1038/nn.2220 PubMedGoogle Scholar
  404. 404.
    Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30):7907–7918PubMedGoogle Scholar
  405. 405.
    Komitova M, Zhu X, Serwanski DR, Nishiyama A (2008) NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol 512(5):702–716Google Scholar
  406. 406.
    Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10(1):9–22PubMedGoogle Scholar
  407. 407.
    Aguirre AA, Chittajallu R, Belachew S, Gallo V (2004) NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J Cell Biol 165(4):575–589. doi: 10.1083/jcb.200311141 PubMedGoogle Scholar
  408. 408.
    Aguirre A, Gallo V (2004) Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. J Neurosci 24(46):10530–10541. doi: 10.1523/jneurosci.3572-04.2004 PubMedGoogle Scholar
  409. 409.
    Gonzalez-Perez O, Romero-Rodriguez R, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2009) Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes. Stem Cells 27(8):2032–2043. doi: 10.1002/stem.119 PubMedCentralPubMedGoogle Scholar
  410. 410.
    Aguirre A, Dupree JL, Mangin JM, Gallo V (2007) A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci 10(8):990–1002. doi: 10.1038/nn1938 PubMedGoogle Scholar
  411. 411.
    Ivkovic S, Canoll P, Goldman JE (2008) Constitutive EGFR signaling in oligodendrocyte progenitors leads to diffuse hyperplasia in postnatal white matter. J Neurosci 28(4):914–922. doi: 10.1523/jneurosci.4327-07.2008 PubMedCentralPubMedGoogle Scholar
  412. 412.
    Aguirre A, Rizvi TA, Ratner N, Gallo V (2005) Overexpression of the epidermal growth factor receptor confers migratory properties to nonmigratory postnatal neural progenitors. J Neurosci 25(48):11092–11106. doi: 10.1523/jneurosci.2981-05.2005 PubMedGoogle Scholar
  413. 413.
    Gonzalez-Perez O, Quinones-Hinojosa A (2010) Dose-dependent effect of EGF on migration and differentiation of adult subventricular zone astrocytes. Glia 58(8):975–983. doi: 10.1002/glia.20979 PubMedCentralPubMedGoogle Scholar
  414. 414.
    Lindberg OR, Brederlau A, Jansson A, Nannmark U, Cooper-Kuhn C, Kuhn HG (2012) Characterization of epidermal growth factor-induced dysplasia in the adult rat subventricular zone. Stem Cells Dev 21(8):1356–1366. doi: 10.1089/scd.2011.0275 PubMedGoogle Scholar
  415. 415.
    Danilov AI, Gomes-Leal W, Ahlenius H, Kokaia Z, Carlemalm E, Lindvall O (2009) Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia 57(2):136–152. doi: 10.1002/glia.20741 PubMedGoogle Scholar
  416. 416.
    Zheng W, Nowakowski RS, Vaccarino FM (2004) Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev Neurosci 26(2–4):181–196PubMedGoogle Scholar
  417. 417.
    Gomez-Pinilla F, Lee J, Cotman C (1992) Basic FGF in adult rat brain: cellular distribution and response to entorhinal lesion and fimbria-fornix transection. J Neurosci 12(1):345–355PubMedGoogle Scholar
  418. 418.
    Bernal GM, Peterson DA (2011) Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells. Aging Cell 10(3):466–482. doi: 10.1111/j.1474-9726.2011.00694.x PubMedCentralPubMedGoogle Scholar
  419. 419.
    Chadashvili T, Peterson DA (2006) Cytoarchitecture of fibroblast growth factor receptor 2 (FGFR-2) immunoreactivity in astrocytes of neurogenic and non-neurogenic regions of the young adult and aged rat brain. J Comp Neurol 498(1):1–15PubMedGoogle Scholar
  420. 420.
    Azim K, Raineteau O, Butt AM (2012) Intraventricular injection of FGF-2 promotes generation of oligodendrocyte-lineage cells in the postnatal and adult forebrain. Glia. doi: 10.1002/glia.22413 PubMedGoogle Scholar
  421. 421.
    Kalluri HS, Vemuganti R, Dempsey RJ (2007) Mechanism of insulin-like growth factor I-mediated proliferation of adult neural progenitor cells: role of Akt. Eur J Neurosci 25(4):1041–1048PubMedGoogle Scholar
  422. 422.
    Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93(2):182–203. doi: 10.1016/j.pneurobio.2010.10.007 PubMedGoogle Scholar
  423. 423.
    Yan YP, Sailor KA, Vemuganti R, Dempsey RJ (2006) Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur J Neurosci 24(1):45–54PubMedGoogle Scholar
  424. 424.
    Ma DK, Ponnusamy K, Song MR, Ming GL, Song H (2009) Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCg1 activation for self-renewal of adult neural stem cells. Mol Brain 2(1):16PubMedCentralPubMedGoogle Scholar
  425. 425.
    Ponti G, Reitano E, Aimar P, Cattaneo E, Conti L, Bonfanti L (2010) Neural-specific inactivation of ShcA functions results in anatomical disorganization of subventricular zone neural stem cell niche in the adult brain. Neuroscience 168(1):314–322. doi: 10.1016/j.neuroscience.2010.03.008 PubMedGoogle Scholar
  426. 426.
    Ortensi B, Osti D, Pellegatta S, Pisati F, Brescia P, Fornasari L, Levi D, Gaetani P, Colombo P, Ferri A, Nicolis S, Finocchiaro G, Pelicci G (2012) Rai is a new regulator of neural progenitor migration and glioblastoma invasion. Stem Cells 30(5):817–832. doi: 10.1002/stem.1056 PubMedGoogle Scholar
  427. 427.
    Navarro-Quiroga I, Hernandez-Valdes M, Lin SL, Naegele JR (2006) Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex. J Comp Neurol 497(5):833–845PubMedGoogle Scholar
  428. 428.
    Ponti G, Peretto P, Bonfanti L (2006) A subpial, transitory germinal zone forms chains of neuronal precursors in the rabbit cerebellum. Dev Biol 294(1):168–180PubMedGoogle Scholar
  429. 429.
    Sottile V, Li M, Scotting PJ (2006) Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res 1099(1):8–17PubMedGoogle Scholar
  430. 430.
    Pekcec A, Loscher W, Potschka H (2006) Neurogenesis in the adult rat piriform cortex. Neuroreport 17(6):571–574PubMedGoogle Scholar
  431. 431.
    Moyse E, Bauer S, Charrier C, Coronas V, Krantic S, Jean A (2006) Neurogenesis and neural stem cells in the dorsal vagal complex of adult rat brain: new vistas about autonomic regulations—a review. Auton Neurosci 126–127:50–58. doi: 10.1016/j.autneu.2006.03.006 PubMedGoogle Scholar
  432. 432.
    Pecchi E, Dallaporta M, Charrier C, Pio J, Jean A, Moyse E, Troadec JD (2007) Glial fibrillary acidic protein (GFAP)-positive radial-like cells are present in the vicinity of proliferative progenitors in the nucleus tractus solitarius of adult rat. J Comp Neurol 501(3):353–368PubMedGoogle Scholar
  433. 433.
    Ahmed AI, Shtaya AB, Zaben MJ, Owens EV, Kiecker C, Gray WP (2012) Endogenous GFAP-positive neural stem/progenitor cells in the postnatal mouse cortex are activated following traumatic brain injury. J Neurotrauma 29(5):828–842. doi: 10.1089/neu.2011.1923 PubMedGoogle Scholar
  434. 434.
    Stevens HE, Jiang GY, Schwartz ML, Vaccarino FM (2012) Learning and memory depend on fibroblast growth factor receptor 2 functioning in hippocampus. Biol Psychiatry 71(12):1090–1098. doi: 10.1016/j.biopsych.2012.03.013 PubMedCentralPubMedGoogle Scholar
  435. 435.
    Weickert CS, Kittell DA, Saunders RC, Herman MM, Horlick RA, Kleinman JE, Hyde TM (2005) Basic fibroblast growth factor and fibroblast growth factor receptor-1 in the human hippocampal formation. Neuroscience 131(1):219–233. doi: 10.1016/j.neuroscience.2004.09.070 PubMedGoogle Scholar
  436. 436.
    Trejo JL, Llorens-Martin MV, Torres-Aleman I (2008) The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol Cell Neurosci 37(2):402–411PubMedGoogle Scholar
  437. 437.
    Glasper ER, Llorens-Martin MV, Leuner B, Gould E, Trejo JL (2010) Blockade of insulin-like growth factor-I has complex effects on structural plasticity in the hippocampus. Hippocampus 20(6):706–712. doi: 10.1002/hipo.20672 PubMedGoogle Scholar
  438. 438.
    Llorens-Martin M, Torres-Aleman I, Trejo JL (2009) Mechanisms mediating brain plasticity: IGF1 and adult hippocampal neurogenesis. Neuroscientist 15(2):134–148PubMedGoogle Scholar
  439. 439.
    Zou J, Pan YW, Wang Z, Chang SY, Wang W, Wang X, Tournier C, Storm DR, Xia Z (2012) Targeted deletion of ERK5 MAP kinase in the developing nervous system impairs development of GABAergic interneurons in the main olfactory bulb and behavioral discrimination between structurally similar odorants. J Neurosci 32(12):4118–4132. doi: 10.1523/jneurosci.6260-11.2012 PubMedCentralPubMedGoogle Scholar
  440. 440.
    Pan YW, Chan GC, Kuo CT, Storm DR, Xia Z (2012) Inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 mitogen-activated protein kinase specifically in adult neurogenic regions impairs contextual fear extinction and remote fear memory. J Neurosci 32(19):6444–6455. doi: 10.1523/jneurosci.6076-11.2012 PubMedCentralPubMedGoogle Scholar
  441. 441.
    Polito A, Reynolds R (2005) NG2-expressing cells as oligodendrocyte progenitors in the normal and demyelinated adult central nervous system. J Anat 207(6):707–716. doi: 10.1111/j.1469-7580.2005.00454.x PubMedGoogle Scholar
  442. 442.
    Dawson MR, Polito A, Levine JM, Reynolds R (2003) NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol Cell Neurosci 24(2):476–488PubMedGoogle Scholar
  443. 443.
    Calver AR, Hall AC, Yu WP, Walsh FS, Heath JK, Betsholtz C, Richardson WD (1998) Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20(5):869–882PubMedGoogle Scholar
  444. 444.
    Nazarenko I, Hedren A, Sjodin H, Orrego A, Andrae J, Afink GB, Nister M, Lindstrom MS (2011) Brain abnormalities and glioma-like lesions in mice overexpressing the long isoform of PDGF-A in astrocytic cells. PLoS One 6(4):e18303. doi: 10.1371/journal.pone.0018303 PubMedCentralPubMedGoogle Scholar
  445. 445.
    Mason JL, Goldman JE (2002) A2B5+ and O4+ Cycling progenitors in the adult forebrain white matter respond differentially to PDGF-AA, FGF-2, and IGF-1. Mol Cell Neurosci 20(1):30–42PubMedGoogle Scholar
  446. 446.
    Cohen RI, Chandross KJ (2000) Fibroblast growth factor-9 modulates the expression of myelin related proteins and multiple fibroblast growth factor receptors in developing oligodendrocytes. J Neurosci Res 61(3):273–287PubMedGoogle Scholar
  447. 447.
    Fortin D, Rom E, Sun H, Yayon A, Bansal R (2005) Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J Neurosci 25(32):7470–7479PubMedGoogle Scholar
  448. 448.
    Bansal R, Lakhina V, Remedios R, Tole S (2003) Expression of FGF receptors 1, 2, 3 in the embryonic and postnatal mouse brain compared with PDGFRa, Olig2 and Plp/dm20: implications for oligodendrocyte development. Dev Neurosci 25(2–4):83–95PubMedGoogle Scholar
  449. 449.
    Oh LY, Denninger A, Colvin JS, Vyas A, Tole S, Ornitz DM, Bansal R (2003) Fibroblast growth factor receptor 3 signaling regulates the onset of oligodendrocyte terminal differentiation. J Neurosci 23(3):883–894PubMedGoogle Scholar
  450. 450.
    Bryant MR, Marta CB, Kim FS, Bansal R (2009) Phosphorylation and lipid raft association of fibroblast growth factor receptor-2 in oligodendrocytes. Glia 57(9):935–946. doi: 10.1002/glia.20818 PubMedCentralPubMedGoogle Scholar
  451. 451.
    Zhou YX, Flint NC, Murtie JC, Le TQ, Armstrong RC (2006) Retroviral lineage analysis of fibroblast growth factor receptor signaling in FGF2 inhibition of oligodendrocyte progenitor differentiation. Glia 54(6):578–590. doi: 10.1002/glia.20410 PubMedCentralPubMedGoogle Scholar
  452. 452.
    Armstrong RC, Le TQ, Flint NC, Vana AC, Zhou YX (2006) Endogenous cell repair of chronic demyelination. J Neuropathol Exp Neurol 65(3):245–256. doi: 10.1097/01.jnen.0000205142.08716.7e PubMedCentralPubMedGoogle Scholar
  453. 453.
    Zhou YX, Pannu R, Le TQ, Armstrong RC (2012) Fibroblast growth factor 1 (FGFR1) modulation regulates repair capacity of oligodendrocyte progenitor cells following chronic demyelination. Neurobiol Dis 45(1):196–205. doi: 10.1016/j.nbd.2011.08.004 PubMedCentralPubMedGoogle Scholar
  454. 454.
    Zhou YX, Armstrong RC (2007) Interaction of fibroblast growth factor 2 (FGF2) and notch signaling components in inhibition of oligodendrocyte progenitor (OP) differentiation. Neurosci Lett 421(1):27–32. doi: 10.1016/j.neulet.2007.05.020 PubMedCentralPubMedGoogle Scholar
  455. 455.
    Furusho M, Dupree JL, Nave KA, Bansal R (2012) Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness. J Neurosci 32(19):6631–6641. doi: 10.1523/jneurosci.6005-11.2012 PubMedCentralPubMedGoogle Scholar
  456. 456.
    Boockvar JA, Kapitonov D, Kapoor G, Schouten J, Counelis GJ, Bogler O, Snyder EY, McIntosh TK, O’Rourke DM (2003) Constitutive EGFR signaling confers a motile phenotype to neural stem cells. Mol Cell Neurosci 24(4):1116–1130PubMedGoogle Scholar
  457. 457.
    Ju P, Zhang S, Yeap Y, Feng Z (2012) Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury. Glia 60(11):1801–1814. doi: 10.1002/glia.22398 PubMedGoogle Scholar
  458. 458.
    White RE, Rao M, Gensel JC, McTigue DM, Kaspar BK, Jakeman LB (2011) Transforming growth factor alpha transforms astrocytes to a growth-supportive phenotype after spinal cord injury. J Neurosci 31(42):15173–15187. doi: 10.1523/jneurosci.3441-11.2011 PubMedCentralPubMedGoogle Scholar
  459. 459.
    Ebert AD, Beres AJ, Barber AE, Svendsen CN (2008) Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol 209(1):213–223. doi: 10.1016/j.expneurol.2007.09.022 PubMedGoogle Scholar
  460. 460.
    Miltiadous P, Kouroupi G, Stamatakis A, Koutsoudaki PN, Matsas R, Stylianopoulou F (2013) Subventricular zone-derived neural stem cell grafts protect against hippocampal degeneration and restore cognitive function in the mouse following intrahippocampal kainic acid administration. Stem Cells Transl Med 2(3):185–198. doi: 10.5966/sctm.2012-0074 PubMedGoogle Scholar
  461. 461.
    Dayer AG, Jenny B, Sauvain MO, Potter G, Salmon P, Zgraggen E, Kanemitsu M, Gascon E, Sizonenko S, Trono D, Kiss JZ (2007) Expression of FGF-2 in neural progenitor cells enhances their potential for cellular brain repair in the rodent cortex. Brain 130(Pt 11):2962–2976PubMedGoogle Scholar
  462. 462.
    Jenny B, Kanemitsu M, Tsupykov O, Potter G, Salmon P, Zgraggen E, Gascon E, Skibo G, Dayer AG, Kiss JZ (2009) Fibroblast growth factor-2 0overexpression in transplanted neural progenitors promotes perivascular cluster formation with a neurogenic potential. Stem Cells 27(6):1309–1317PubMedGoogle Scholar
  463. 463.
    Ouchi Y, Banno Y, Shimizu Y, Ando S, Hasegawa H, Adachi K, Iwamoto T (2013) Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2. J Neurosci 33(22):9408–9419. doi: 10.1523/jneurosci.2700-12.2013 PubMedGoogle Scholar
  464. 464.
    Nakaguchi K, Jinnou H, Kaneko N, Sawada M, Hikita T, Saitoh S, Tabata Y, Sawamoto K (2012) Growth factors released from gelatin hydrogel microspheres increase new neurons in the adult mouse brain. Stem Cells Int 2012:915160. doi: 10.1155/2012/915160 PubMedCentralPubMedGoogle Scholar
  465. 465.
    Zhu W, Fan Y, Hao Q, Shen F, Hashimoto T, Yang GY, Gasmi M, Bartus RT, Young WL, Chen Y (2009) Postischemic IGF-1 gene transfer promotes neurovascular regeneration after experimental stroke. J Cereb Blood Flow Metab 29(9):1528–1537. doi: 10.1038/jcbfm.2009.75 PubMedCentralPubMedGoogle Scholar
  466. 466.
    Oya S, Yoshikawa G, Takai K, Tanaka J, Higashiyama S, Saito N, Kirino T, Kawahara N (2008) Region-specific proliferative response of neural progenitors to exogenous stimulation by growth factors following ischemia. Neuroreport 19(8):805–809. doi: 10.1097/WNR.0b013e3282ff8641 PubMedGoogle Scholar
  467. 467.
    Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA (2001) FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A 98(10):5874–5879. doi: 10.1073/pnas.101034998 PubMedCentralPubMedGoogle Scholar
  468. 468.
    Sun D, Bullock MR, McGinn MJ, Zhou Z, Altememi N, Hagood S, Hamm R, Colello RJ (2009) Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 216(1):56–65. doi: 10.1016/j.expneurol.2008.11.011 PubMedCentralPubMedGoogle Scholar
  469. 469.
    Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C, Logvinova A, Greenberg DA (2003) Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2(3):175–183PubMedGoogle Scholar
  470. 470.
    Ayuso-Sacido A, Graham C, Greenfield JP, Boockvar JA (2006) The duality of epidermal growth factor receptor (EGFR) signaling and neural stem cell phenotype: cell enhancer or cell transformer? Curr Stem Cell Res Ther 1(3):387–394PubMedGoogle Scholar
  471. 471.
    Alzheimer C, Werner S (2002) Fibroblast growth factors and neuroprotection. Adv Exp Med Biol 513:335–351PubMedGoogle Scholar
  472. 472.
    O’Connor R, Kauffmann-Zeh A, Liu Y, Lehar S, Evan GI, Baserga R, Blattler WA (1997) Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis. Mol Cell Biol 17(1):427–435PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Bone and Joint Research Unit, William Harvey Research Institute, Bart’s and The London School of MedicineQueen Mary University of LondonLondonUK

Personalised recommendations