Molecular Neurobiology

, Volume 49, Issue 1, pp 413–423 | Cite as

Gene Expression Resulting from PrPC Ablation and PrPC Overexpression in Murine and Cellular Models

  • Franc Llorens
  • Isidre Ferrer
  • José Antonio del Río


The cellular prion protein (PrPC) plays a key role in prion diseases when it converts to the pathogenic form scrapie prion protein. Increasing knowledge of its participation in prion infection contrasts with the elusive and controversial data regarding its physiological role probably related to its pleiotropy, cell-specific functions, and cellular-specific milieu. Multiple approaches have been made to the increasing understanding of the molecular mechanisms and cellular functions modulated by PrPC at the transcriptomic and proteomic levels. Gene expression analyses have been made in several mouse and cellular models with regulated expression of PrPC resulting in PrPC ablation or PrPC overexpression. These analyses support previous functional data and have yielded clues about new potential functions. However, experiments on animal models have shown moderate and varied results which are difficult to interpret. Moreover, studies in cell cultures correlate little with in vivo counterparts. Yet, both animal and cell models have provided some insights on how to proceed in the future by using more refined methods and selected functional experiments.


Gene expression Prion protein Microarrays Deep sequencing RNA-seq Gene knockout Neurodegeneration 



Cellular prion protein


Scrapie prion protein


Central nervous system



The authors are deeply grateful to present and past members of our laboratory who contributed to gene expression experiments and to Dr. Lauro Sumoy for manuscript supervision. This study was funded by the Seventh Framework Programme of the European Commission, grant agreement 222887, FP7 PRIORITY, DEMTEST, and grant agreement 278486, DEVELAGE (Joint Programme on Neurodegenerative Diseases, PI11/03028); the Spanish Ministry of Science and Innovation (MINECO, BFU2012-32617); the Generalitat de Catalunya (SGR2009-366); La Caixa Obra Social Foundation; and the Carlos III Health Institute.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kovacs GG, Budka H (2009) Molecular pathology of human prion diseases. Int J Mol Sci 10(3):976–999. doi: 10.3390/ijms10030976 PubMedCentralPubMedGoogle Scholar
  2. 2.
    Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3(1):a006833. doi: 10.1101/cshperspect.a006833a006833 PubMedGoogle Scholar
  3. 3.
    Aguzzi A, Baumann F, Bremer J (2008) The prion’s elusive reason for being. Annu Rev Neurosci 31:439–477. doi: 10.1146/annurev.neuro.31.060407.125620 PubMedGoogle Scholar
  4. 4.
    Hegde RS, Mastrianni JA, Scott MR, DeFea KA, Tremblay P, Torchia M, DeArmond SJ, Prusiner SB, Lingappa VR (1998) A transmembrane form of the prion protein in neurodegenerative disease. Science 279(5352):827–834PubMedGoogle Scholar
  5. 5.
    Tremblay P, Bouzamondo-Bernstein E, Heinrich C, Prusiner SB, DeArmond SJ (2007) Developmental expression of PrP in the post-implantation embryo. Brain Res 1139:60–67. doi: 10.1016/j.brainres.2006.12.055 PubMedCentralPubMedGoogle Scholar
  6. 6.
    Harris DA, Lele P, Snider WD (1993) Localization of the mRNA for a chicken prion protein by in situ hybridization. Proc Natl Acad Sci U S A 90(9):4309–4313PubMedCentralPubMedGoogle Scholar
  7. 7.
    Ford MJ, Burton LJ, Morris RJ, Hall SM (2002) Selective expression of prion protein in peripheral tissues of the adult mouse. Neuroscience 113(1):177–192PubMedGoogle Scholar
  8. 8.
    Bons N, Mestre-Frances N, Belli P, Cathala F, Gajdusek DC, Brown P (1999) Natural and experimental oral infection of nonhuman primates by bovine spongiform encephalopathy agents. Proc Natl Acad Sci U S A 96(7):4046–4051PubMedCentralPubMedGoogle Scholar
  9. 9.
    Jeffrey M, Ryder S, Martin S, Hawkins SA, Terry L, Berthelin-Baker C, Bellworthy SJ (2001) Oral inoculation of sheep with the agent of bovine spongiform encephalopathy (BSE). 1. Onset and distribution of disease-specific PrP accumulation in brain and viscera. J Comp Pathol 124(4):280–289. doi: 10.1053/jcpa.2001.0465 PubMedGoogle Scholar
  10. 10.
    Hu W, Kieseier B, Frohman E, Eagar TN, Rosenberg RN, Hartung HP, Stuve O (2008) Prion proteins: physiological functions and role in neurological disorders. J Neurol Sci 264(1–2):1–8. doi: 10.1016/j.jns.2007.06.019 PubMedGoogle Scholar
  11. 11.
    Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728. doi: 10.1152/physrev.00007.2007 PubMedGoogle Scholar
  12. 12.
    Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15(6):1255–1264PubMedGoogle Scholar
  13. 13.
    Raeber AJ, Sailer A, Hegyi I, Klein MA, Rulicke T, Fischer M, Brandner S, Aguzzi A, Weissmann C (1999) Ectopic expression of prion protein (PrP) in T lymphocytes or hepatocytes of PrP knockout mice is insufficient to sustain prion replication. Proc Natl Acad Sci U S A 96(7):3987–3992PubMedCentralPubMedGoogle Scholar
  14. 14.
    Mallucci GR (2009) Prion neurodegeneration: starts and stops at the synapse. Prion 3(4):195–201PubMedCentralPubMedGoogle Scholar
  15. 15.
    Jouvin-Marche E, Attuil-Audenis V, Aude-Garcia C, Rachidi W, Zabel M, Podevin-Dimster V, Siret C, Huber C, Martinic M, Riondel J, Villiers CL, Favier A, Naquet P, Cesbron JY, Marche PN (2006) Overexpression of cellular prion protein induces an antioxidant environment altering T cell development in the thymus. J Immunol 176(6):3490–3497PubMedGoogle Scholar
  16. 16.
    Coulpier M, Messiaen S, Boucreaux D, Eloit M (2006) Axotomy-induced motoneuron death is delayed in mice overexpressing PrPc. Neuroscience 141(4):1827–1834. doi: 10.1016/j.neuroscience.2006.05.037 PubMedGoogle Scholar
  17. 17.
    Rangel A, Madronal N, Gruart A, Gavin R, Llorens F, Sumoy L, Torres JM, Delgado-Garcia JM, Del Rio JA (2009) Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice. PLoS One 4(10):e7592. doi: 10.1371/journal.pone.0007592 PubMedCentralPubMedGoogle Scholar
  18. 18.
    Westaway D, DeArmond SJ, Cayetano-Canlas J, Groth D, Foster D, Yang SL, Torchia M, Carlson GA, Prusiner SB (1994) Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 76(1):117–129PubMedGoogle Scholar
  19. 19.
    Rial D, Duarte FS, Xikota JC, Schmitz AE, Dafre AL, Figueiredo CP, Walz R, Prediger RD (2009) Cellular prion protein modulates age-related behavioral and neurochemical alterations in mice. Neuroscience 164(3):896–907. doi: 10.1016/j.neuroscience.2009.09.005 PubMedGoogle Scholar
  20. 20.
    Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, Prusiner SB, Aguet M, Weissmann C (1992) Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356(6370):577–582. doi: 10.1038/356577a0 PubMedGoogle Scholar
  21. 21.
    Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J (1994) 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 8(2–3):121–127PubMedGoogle Scholar
  22. 22.
    Moore RC, Lee IY, Silverman GL, Harrison PM, Strome R, Heinrich C, Karunaratne A, Pasternak SH, Chishti MA, Liang Y, Mastrangelo P, Wang K, Smit AF, Katamine S, Carlson GA, Cohen FE, Prusiner SB, Melton DW, Tremblay P, Hood LE, Westaway D (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel. J Mol Biol 292(4):797–817PubMedGoogle Scholar
  23. 23.
    Rossi D, Cozzio A, Flechsig E, Klein MA, Rulicke T, Aguzzi A, Weissmann C (2001) Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J 20(4):694–702PubMedGoogle Scholar
  24. 24.
    Sakaguchi S, Katamine S, Nishida N, Moriuchi R, Shigematsu K, Sugimoto T, Nakatani A, Kataoka Y, Houtani T, Shirabe S, Okada H, Hasegawa S, Miyamoto T, Noda T (1996) Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380(6574):528–531PubMedGoogle Scholar
  25. 25.
    Weissmann C, Aguzzi A (1999) Perspectives: neurobiology. PrP’s double causes trouble. Science 286(5441):914–915PubMedGoogle Scholar
  26. 26.
    Steele AD, Lindquist S, Aguzzi A (2007) The prion protein knockout mouse: a phenotype under challenge. Prion 1(2):83–93PubMedCentralPubMedGoogle Scholar
  27. 27.
    Weissmann C, Flechsig E (2003) PrP knock-out and PrP transgenic mice in prion research. Br Med Bull 66:43–60PubMedGoogle Scholar
  28. 28.
    Raeber AJ, Brandner S, Klein MA, Benninger Y, Musahl C, Frigg R, Roeckl C, Fischer MB, Weissmann C, Aguzzi A (1998) Transgenic and knockout mice in research on prion diseases. Brain Pathol 8(4):715–733PubMedGoogle Scholar
  29. 29.
    Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C (1993) Mice devoid of PrP are resistant to scrapie. Cell 73(7):1339–1347PubMedGoogle Scholar
  30. 30.
    Sailer A, Bueler H, Fischer M, Aguzzi A, Weissmann C (1994) No propagation of prions in mice devoid of PrP. Cell 77(7):967–968PubMedGoogle Scholar
  31. 31.
    Sakaguchi S, Katamine S, Shigematsu K, Nakatani A, Moriuchi R, Nishida N, Kurokawa K, Nakaoke R, Sato H, Jishage K et al (1995) Accumulation of proteinase K-resistant prion protein (PrP) is restricted by the expression level of normal PrP in mice inoculated with a mouse-adapted strain of the Creutzfeldt–Jakob disease agent. J Virol 69(12):7586–7592PubMedCentralPubMedGoogle Scholar
  32. 32.
    Richt JA, Kasinathan P, Hamir AN, Castilla J, Sathiyaseelan T, Vargas F, Sathiyaseelan J, Wu H, Matsushita H, Koster J, Kato S, Ishida I, Soto C, Robl JM, Kuroiwa Y (2007) Production of cattle lacking prion protein. Nat Biotechnol 25(1):132–138. doi: 10.1038/nbt1271 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Manson J, West JD, Thomson V, McBride P, Kaufman MH, Hope J (1992) The prion protein gene: a role in mouse embryogenesis? Development 115(1):117–122PubMedGoogle Scholar
  34. 34.
    Miele G, Alejo Blanco AR, Baybutt H, Horvat S, Manson J, Clinton M (2003) Embryonic activation and developmental expression of the murine prion protein gene. Gene Expr 11(1):1–12PubMedGoogle Scholar
  35. 35.
    Mallucci GR, Ratte S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J (2002) Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J 21(3):202–210PubMedGoogle Scholar
  36. 36.
    Nowak MA, Boerlijst MC, Cooke J, Smith JM (1997) Evolution of genetic redundancy. Nature 388(6638):167–171. doi: 10.1038/40618 PubMedGoogle Scholar
  37. 37.
    Watts JC, Westaway D (2007) The prion protein family: diversity, rivalry, and dysfunction. Biochim Biophys Acta 1772(6):654–672PubMedGoogle Scholar
  38. 38.
    Paisley D, Banks S, Selfridge J, McLennan NF, Ritchie AM, McEwan C, Irvine DS, Saunders PT, Manson JC, Melton DW (2004) Male infertility and DNA damage in Doppel knockout and prion protein/Doppel double-knockout mice. Am J Pathol 164(6):2279–2288. doi: 10.1016/S0002-9440(10)63784-4 PubMedGoogle Scholar
  39. 39.
    Daude N, Wohlgemuth S, Brown R, Pitstick R, Gapeshina H, Yang J, Carlson GA, Westaway D (2012) Knockout of the prion protein (PrP)-like Sprn gene does not produce embryonic lethality in combination with PrPC-deficiency. Proc Natl Acad Sci U S A 109(23):9035–9040. doi: 10.1073/pnas.1202130109 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Young R, Passet B, Vilotte M, Cribiu EP, Beringue V, Le Provost F, Laude H, Vilotte JL (2009) The prion or the related Shadoo protein is required for early mouse embryogenesis. FEBS Lett 583(19):3296–3300. doi: 10.1016/j.febslet.2009.09.027 PubMedGoogle Scholar
  41. 41.
    Beck JA, Campbell TA, Adamson G, Poulter M, Uphill JB, Molou E, Collinge J, Mead S (2008) Association of a null allele of SPRN with variant Creutzfeldt–Jakob disease. J Med Genet 45(12):813–817. doi: 10.1136/jmg.2008.061804 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC (1996) Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature 380(6575):639–642. doi: 10.1038/380639a0 PubMedGoogle Scholar
  43. 43.
    Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG (1994) Prion protein is necessary for normal synaptic function. Nature 370(6487):295–297PubMedGoogle Scholar
  44. 44.
    Caiati MD, Safiulina VF, Fattorini G, Sivakumaran S, Legname G, Cherubini E (2013) PrPC controls via protein kinase A the direction of synaptic plasticity in the immature hippocampus. J Neurosci 33(7):2973–2983. doi: 10.1523/JNEUROSCI.4149-12.2013 PubMedGoogle Scholar
  45. 45.
    Lobao-Soares B, Walz R, Prediger RD, Freitas RL, Calvo F, Bianchin MM, Leite JP, Landemberger MC, Coimbra NC (2008) Cellular prion protein modulates defensive attention and innate fear-induced behaviour evoked in transgenic mice submitted to an agonistic encounter with the tropical coral snake Oxyrhopus guibei. Behav Brain Res 194(2):129–137. doi: 10.1016/j.bbr.2008.06.006 PubMedGoogle Scholar
  46. 46.
    Gadotti VM, Bonfield SP, Zamponi GW (2012) Depressive-like behaviour of mice lacking cellular prion protein. Behav Brain Res 227(2):319–323. doi: 10.1016/j.bbr.2011.03.012 PubMedGoogle Scholar
  47. 47.
    Lobao-Soares B, Walz R, Carlotti CG Jr, Sakamoto AC, Calvo F, Terzian AL, da Silva JA, Wichert-Ana L, Coimbra NC, Bianchin MM (2007) Cellular prion protein regulates the motor behaviour performance and anxiety-induced responses in genetically modified mice. Behav Brain Res 183(1):87–94. doi: 10.1016/j.bbr.2007.05.027 PubMedGoogle Scholar
  48. 48.
    Singh A, Mohan ML, Isaac AO, Luo X, Petrak J, Vyoral D, Singh N (2009) Prion protein modulates cellular iron uptake: a novel function with implications for prion disease pathogenesis. PLoS One 4(2):e4468. doi: 10.1371/journal.pone.0004468 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Strom A, Wang GS, Scott FW (2011) Impaired glucose tolerance in mice lacking cellular prion protein. Pancreas 40(2):229–232PubMedGoogle Scholar
  50. 50.
    Bremer J, Baumann F, Tiberi C, Wessig C, Fischer H, Schwarz P, Steele AD, Toyka KV, Nave KA, Weis J, Aguzzi A (2010) Axonal prion protein is required for peripheral myelin maintenance. Nat Neurosci 13(3):310–318. doi: 10.1038/nn.2483 PubMedGoogle Scholar
  51. 51.
    Carulla P, Bribian A, Rangel A, Gavin R, Ferrer I, Caelles C, Del Rio JA, Llorens F (2011) Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell 22(17):3041–3054. doi: 10.1091/mbc.E11-04-0321 PubMedCentralPubMedGoogle Scholar
  52. 52.
    Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, Zamponi GW (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 181(3):551–565. doi: 10.1083/jcb.200711002 PubMedGoogle Scholar
  53. 53.
    Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, de Oliveira E, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21(13):3307–3316. doi: 10.1093/emboj/cdf325 PubMedGoogle Scholar
  54. 54.
    Rangel A, Burgaya F, Gavin R, Soriano E, Aguzzi A, Del Rio JA (2007) Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: role of AMPA/kainate receptors. J Neurosci Res 85(12):2741–2755. doi: 10.1002/jnr.21215 PubMedGoogle Scholar
  55. 55.
    Chiarini LB, Freitas AR, Zanata SM, Brentani RR, Martins VR, Linden R (2002) Cellular prion protein transduces neuroprotective signals. EMBO J 21(13):3317–3326. doi: 10.1093/emboj/cdf324 PubMedGoogle Scholar
  56. 56.
    Walz R, Amaral OB, Rockenbach IC, Roesler R, Izquierdo I, Cavalheiro EA, Martins VR, Brentani RR (1999) Increased sensitivity to seizures in mice lacking cellular prion protein. Epilepsia 40(12):1679–1682PubMedGoogle Scholar
  57. 57.
    Fleisch VC, Leighton PL, Wang H, Pillay LM, Ritzel RG, Bhinder G, Roy B, Tierney KB, Ali DW, Waskiewicz AJ, Allison WT (2013) Targeted mutation of the gene encoding prion protein in zebrafish reveals a conserved role in neuron excitability. Neurobiol Dis 55:11–25. doi: 10.1016/j.nbd.2013.03.007 PubMedGoogle Scholar
  58. 58.
    Llorens F, Del Rio JA (2012) Unraveling the neuroprotective mechanisms of PrP (C) in excitotoxicity. Prion 6(3):245–51PubMedCentralPubMedGoogle Scholar
  59. 59.
    Brown DR, Nicholas RS, Canevari L (2002) Lack of prion protein expression results in a neuronal phenotype sensitive to stress. J Neurosci Res 67(2):211–224PubMedGoogle Scholar
  60. 60.
    Aude-Garcia C, Villiers C, Candeias SM, Garrel C, Bertrand C, Collin V, Marche PN, Jouvin-Marche E (2011) Enhanced susceptibility of T lymphocytes to oxidative stress in the absence of the cellular prion protein. Cell Mol Life Sci 68(4):687–696. doi: 10.1007/s00018-010-0477-5 PubMedGoogle Scholar
  61. 61.
    Satoh J, Yamamura T (2004) Gene expression profile following stable expression of the cellular prion protein. Cell Mol Neurobiol 24(6):793–814PubMedGoogle Scholar
  62. 62.
    Loubet D, Dakowski C, Pietri M, Pradines E, Bernard S, Callebert J, Ardila-Osorio H, Mouillet-Richard S, Launay JM, Kellermann O, Schneider B (2012) Neuritogenesis: the prion protein controls beta1 integrin signaling activity. FASEB J 26(2):678–690. doi: 10.1096/fj.11-185579 PubMedGoogle Scholar
  63. 63.
    Liang J, Pan Y, Zhang D, Guo C, Shi Y, Wang J, Chen Y, Wang X, Liu J, Guo X, Chen Z, Qiao T, Fan D (2007) Cellular prion protein promotes proliferation and G1/S transition of human gastric cancer cells SGC7901 and AGS. FASEB J 21(9):2247–2256. doi: 10.1096/fj.06-7799com PubMedGoogle Scholar
  64. 64.
    Llorens F, Carulla P, Villa A, Torres JM, Fortes P, Ferrer I, Del Rio JA (2013) PrP regulates EGFR function and cell shape dynamics in Neuro2a cells. J Neurochem. doi: 10.1111/jnc.12283 PubMedGoogle Scholar
  65. 65.
    Miranda A, Pericuesta E, Ramirez MA, Gutierrez-Adan A (2011) Prion protein expression regulates embryonic stem cell pluripotency and differentiation. PLoS One 6(4):e18422. doi: 10.1371/journal.pone.0018422 PubMedCentralPubMedGoogle Scholar
  66. 66.
    Kuwahara C, Takeuchi AM, Nishimura T, Haraguchi K, Kubosaki A, Matsumoto Y, Saeki K, Yokoyama T, Itohara S, Onodera T (1999) Prions prevent neuronal cell-line death. Nature 400(6741):225–226. doi: 10.1038/22241 PubMedGoogle Scholar
  67. 67.
    Zahn R, Liu A, Luhrs T, Riek R, von Schroetter C, Lopez Garcia F, Billeter M, Calzolai L, Wider G, Wuthrich K (2000) NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A 97(1):145–150PubMedCentralPubMedGoogle Scholar
  68. 68.
    Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD (2006) Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci U S A 103(9):3416–3421. doi: 10.1073/pnas.0511290103 PubMedCentralPubMedGoogle Scholar
  69. 69.
    Fujisawa M, Kanai Y, Nam SY, Maeda S, Nakamuta N, Kano K, Kurohmaru M, Hayashi Y (2004) Expression of Prnp mRNA (prion protein gene) in mouse spermatogenic cells. J Reprod Dev 50(5):565–570PubMedGoogle Scholar
  70. 70.
    Kim BH, Kim JI, Choi EK, Carp RI, Kim YS (2005) A neuronal cell line that does not express either prion or doppel proteins. Neuroreport 16(5):425–429PubMedGoogle Scholar
  71. 71.
    Bribian A, Fontana X, Llorens F, Gavin R, Reina M, Garcia-Verdugo JM, Torres JM, de Castro F, del Rio JA (2012) Role of the cellular prion protein in oligodendrocyte precursor cell proliferation and differentiation in the developing and adult mouse CNS. PLoS One 7(4):e33872. doi: 10.1371/journal.pone.0033872 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Santos TG, Silva IR, Costa-Silva B, Lepique AP, Martins VR, Lopes MH (2011) Enhanced neural progenitor/stem cells self-renewal via the interaction of stress-inducible protein 1 with the prion protein. Stem Cells 29(7):1126–1136. doi: 10.1002/stem.664 PubMedGoogle Scholar
  73. 73.
    Erlich RB, Kahn SA, Lima FR, Muras AG, Martins RA, Linden R, Chiarini LB, Martins VR, Moura Neto V (2007) STI1 promotes glioma proliferation through MAPK and PI3K pathways. Glia 55(16):1690–1698. doi: 10.1002/glia.20579 PubMedGoogle Scholar
  74. 74.
    Cheng Y, Tao L, Xu J, Li Q, Yu J, Jin Y, Chen Q, Xu Z, Zou Q, Liu X (2013) CD44/cellular prion protein interact in multidrug resistant breast cancer cells and correlate with responses to neoadjuvant chemotherapy in breast cancer patients. Mol Carcinog. doi: 10.1002/mc.22021 Google Scholar
  75. 75.
    Martin SF, Herva ME, Espinosa JC, Parra B, Castilla J, Brun A, Torres JM (2006) Cell expression of a four extra octarepeat mutated PrPC modifies cell structure and cell cycle regulation. FEBS Lett 580(17):4097–4104. doi: 10.1016/j.febslet.2006.06.054 PubMedGoogle Scholar
  76. 76.
    Basu U, Guan le L, Moore SS (2012) Functional genomics approach for identification of molecular processes underlying neurodegenerative disorders in prion diseases. Curr Genomics 13(5):369–378. doi: 10.2174/138920212801619223 PubMedGoogle Scholar
  77. 77.
    Benvegnù S, Roncaglia P, Agostini F, Casalone C, Corona C, Gustincich S, Legname G (2011) Developmental influence of the cellular prion protein on the gene expression profile in mouse hippocampus. Physiol Genomics 43(12):711–725. doi: 10.1152/physiolgenomics.00205.2010 PubMedGoogle Scholar
  78. 78.
    Bodrikov V, Solis GP, Stuermer CA (2011) Prion protein promotes growth cone development through reggie/flotillin-dependent N-cadherin trafficking. J Neurosci 31(49):18013–18025. doi: 10.1523/JNEUROSCI.4729-11.2011 PubMedGoogle Scholar
  79. 79.
    Nieznanska H, Dudek E, Zajkowski T, Szczesna E, Kasprzak AA, Nieznanski K (2012) Prion protein impairs kinesin-driven transport. Biochem Biophys Res Commun 425(4):788–793. doi: 10.1016/j.bbrc.2012.07.153 PubMedGoogle Scholar
  80. 80.
    Osiecka KM, Nieznanska H, Skowronek KJ, Jozwiak J, Nieznanski K (2011) Tau inhibits tubulin oligomerization induced by prion protein. Biochim Biophys Acta 1813(10):1845–1853. doi: 10.1016/j.bbamcr.2011.06.016 PubMedGoogle Scholar
  81. 81.
    Le Brigand K, Russell R, Moreilhon C, Rouillard JM, Jost B, Amiot F, Magnone V, Bole-Feysot C, Rostagno P, Virolle V, Defamie V, Dessen P, Williams G, Lyons P, Rios G, Mari B, Gulari E, Kastner P, Gidrol X, Freeman TC, Barbry P (2006) An open-access long oligonucleotide microarray resource for analysis of the human and mouse transcriptomes. Nucleic Acids Res 34(12):e87. doi: 10.1093/nar/gkl485 PubMedCentralPubMedGoogle Scholar
  82. 82.
    Chadi S, Young R, Le Guillou S, Tilly G, Bitton F, Martin-Magniette ML, Soubigou-Taconnat L, Balzergue S, Vilotte M, Peyre C, Passet B, Beringue V, Renou JP, Le Provost F, Laude H, Vilotte JL (2010) Brain transcriptional stability upon prion protein-encoding gene invalidation in zygotic or adult mouse. BMC Genomics 11:448. doi: 10.1186/1471-2164-11-448 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Hooper NM, Taylor DR, Watt NT (2008) Mechanism of the metal-mediated endocytosis of the prion protein. Biochem Soc Trans 36(Pt 6):1272–1276. doi: 10.1042/BST0361272 PubMedGoogle Scholar
  84. 84.
    Caetano FA, Lopes MH, Hajj GN, Machado CF, Pinto Arantes C, Magalhaes AC, Vieira Mde P, Americo TA, Massensini AR, Priola SA, Vorberg I, Gomez MV, Linden R, Prado VF, Martins VR, Prado MA (2008) Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J Neurosci 28(26):6691–6702. doi: 10.1523/JNEUROSCI.1701-08.2008 PubMedCentralPubMedGoogle Scholar
  85. 85.
    Laine J, Marc ME, Sy MS, Axelrad H (2001) Cellular and subcellular morphological localization of normal prion protein in rodent cerebellum. Eur J Neurosci 14(1):47–56PubMedGoogle Scholar
  86. 86.
    Bailly Y, Haeberle AM, Blanquet-Grossard F, Chasserot-Golaz S, Grant N, Schulze T, Bombarde G, Grassi J, Cesbron JY, Lemaire-Vieille C (2004) Prion protein (PrPc) immunocytochemistry and expression of the green fluorescent protein reporter gene under control of the bovine PrP gene promoter in the mouse brain. J Comp Neurol 473(2):244–269. doi: 10.1002/cne.20117 PubMedGoogle Scholar
  87. 87.
    Mironov A Jr, Latawiec D, Wille H, Bouzamondo-Bernstein E, Legname G, Williamson RA, Burton D, DeArmond SJ, Prusiner SB, Peters PJ (2003) Cytosolic prion protein in neurons. J Neurosci 23(18):7183–7193PubMedGoogle Scholar
  88. 88.
    Malaga-Trillo E, Solis GP, Schrock Y, Geiss C, Luncz L, Thomanetz V, Stuermer CA (2009) Regulation of embryonic cell adhesion by the prion protein. PLoS Biol 7(3):e55. doi: 10.1371/journal.pbio.1000055 PubMedGoogle Scholar
  89. 89.
    Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98. doi: 10.1038/nrg2934 PubMedCentralPubMedGoogle Scholar
  90. 90.
    Khalifé M, Young R, Passet B, Halliez S, Vilotte M, Jaffrezic F, Marthey S, Beringue V, Vaiman D, Le Provost F, Laude H, Vilotte JL (2011) Transcriptomic analysis brings new insight into the biological role of the prion protein during mouse embryogenesis. PLoS One 6(8):e23253. doi: 10.1371/journal.pone.0023253 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Nourizadeh-Lillabadi R, Seilo Torgersen J, Vestrheim O, Konig M, Alestrom P, Syed M (2010) Early embryonic gene expression profiling of zebrafish prion protein (Prp2) morphants. PLoS One 5(10):e13573. doi: 10.1371/journal.pone.0013573 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Satoh J, Kuroda Y, Katamine S (2000) Gene expression profile in prion protein-deficient fibroblasts in culture. Am J Pathol 157(1):59–68PubMedGoogle Scholar
  93. 93.
    Li S, Wilkinson M, Xia X, David M, Xu L, Purkel-Sutton A, Bhardwaj A (2005) Induction of IFN-regulated factors and antitumoral surveillance by transfected placebo plasmid DNA. Mol Ther 11(1):112–119. doi: 10.1016/j.ymthe.2004.09.008 PubMedGoogle Scholar
  94. 94.
    Liang J, Luo G, Ning X, Shi Y, Zhai H, Sun S, Jin H, Liu Z, Zhang F, Lu Y, Zhao Y, Chen X, Zhang H, Guo X, Wu K, Fan D (2007) Differential expression of calcium-related genes in gastric cancer cells transfected with cellular prion protein. Biochem Cell Biol 85(3):375–383. doi: 10.1139/o07-052 PubMedGoogle Scholar
  95. 95.
    Lazzari C, Peggion C, Stella R, Massimino ML, Lim D, Bertoli A, Sorgato MC (2011) Cellular prion protein is implicated in the regulation of local Ca2+ movements in cerebellar granule neurons. J Neurochem 116(5):881–890. doi: 10.1111/j.1471-4159.2010.07015.x PubMedGoogle Scholar
  96. 96.
    Schrock Y, Solis GP, Stuermer CA (2009) Regulation of focal adhesion formation and filopodia extension by the cellular prion protein (PrPC). FEBS Lett 583(2):389–393. doi: 10.1016/j.febslet.2008.12.038 PubMedGoogle Scholar
  97. 97.
    Li C, Yu S, Nakamura F, Yin S, Xu J, Petrolla AA, Singh N, Tartakoff A, Abbott DW, Xin W, Sy MS (2009) Binding of pro-prion to filamin A disrupts cytoskeleton and correlates with poor prognosis in pancreatic cancer. J Clin Invest 119(9):2725–2736. doi: 10.1172/JCI39542 PubMedCentralPubMedGoogle Scholar
  98. 98.
    de Wit M, Jimenez CR, Carvalho B, Belien JA, Delis-van Diemen PM, Mongera S, Piersma SR, Vikas M, Navani S, Ponten F, Meijer GA, Fijneman RJ (2012) Cell surface proteomics identifies glucose transporter type 1 and prion protein as candidate biomarkers for colorectal adenoma-to-carcinoma progression. Gut 61(6):855–864. doi: 10.1136/gutjnl-2011-300511 PubMedGoogle Scholar
  99. 99.
    Crecelius AC, Helmstetter D, Strangmann J, Mitteregger G, Frohlich T, Arnold GJ, Kretzschmar HA (2008) The brain proteome profile is highly conserved between Prnp −/− and Prnp +/+ mice. Neuroreport 19(10):1027–1031. doi: 10.1097/WNR.0b013e3283046157 PubMedGoogle Scholar
  100. 100.
    Stella R, Cifani P, Peggion C, Hansson K, Lazzari C, Bendz M, Levander F, Sorgato MC, Bertoli A, James P (2012) Relative quantification of membrane proteins in wild-type and prion protein (PrP)-knockout cerebellar granule neurons. J Proteome Res 11(2):523–536. doi: 10.1021/pr200759m PubMedGoogle Scholar
  101. 101.
    Cloonan N, Grimmond SM (2008) Transcriptome content and dynamics at single-nucleotide resolution. Genome Biol 9(9):234. doi: 10.1186/gb-2008-9-9-234 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Llorens F, Hummel M, Pastor X, Ferrer A, Pluvinet R, Vivancos A, Castillo E, Iraola S, Mosquera AM, Gonzalez E, Lozano J, Ingham M, Dohm JC, Noguera M, Kofler R, del Rio JA, Bayes M, Himmelbauer H, Sumoy L (2011) Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis. BMC Genomics 12:326. doi: 10.1186/1471-2164-12-326 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Bottomly D, Walter NA, Hunter JE, Darakjian P, Kawane S, Buck KJ, Searles RP, Mooney M, McWeeney SK, Hitzemann R (2011) Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-seq and microarrays. PLoS One 6(3):e17820. doi: 10.1371/journal.pone.0017820 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Llorens F, Hummel M, Pantano L, Pastor X, Vivancos A, Castillo E, Mattlin H, Ferrer A, Ingham M, Noguera M, Kofler R, Dohm JC, Pluvinet R, Bayes M, Himmelbauer H, Del Rio JA, Marti E, Sumoy L (2013) Microarray and deep sequencing cross-platform analysis of the mirRNome and isomiR variation in response to epidermal growth factor. BMC Genomics 14:371. doi: 10.1186/1471-2164-14-371 PubMedCentralPubMedGoogle Scholar
  105. 105.
    Choi HJ, Kang KS, Fukui M, Zhu BT (2011) Critical role of the JNK-p53-GADD45alpha apoptotic cascade in mediating oxidative cytotoxicity in hippocampal neurons. Br J Pharmacol 162(1):175–192. doi: 10.1111/j.1476-5381.2010.01041.x PubMedGoogle Scholar
  106. 106.
    Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274–1281PubMedGoogle Scholar
  107. 107.
    Junn E, Mouradian MM (2012) MicroRNAs in neurodegenerative diseases and their therapeutic potential. Pharmacol Ther 133(2):142–150. doi: 10.1016/j.pharmthera.2011.10.002 PubMedCentralPubMedGoogle Scholar
  108. 108.
    Abe M, Bonini NM (2013) MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol 23(1):30–36. doi: 10.1016/j.tcb.2012.08.013 PubMedCentralPubMedGoogle Scholar
  109. 109.
    Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA (2008) A miRNA signature of prion induced neurodegeneration. PLoS One 3(11):e3652. doi: 10.1371/journal.pone.0003652 PubMedCentralPubMedGoogle Scholar
  110. 110.
    Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524. doi: 10.1101/gad.1399806 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Franc Llorens
    • 1
    • 2
  • Isidre Ferrer
    • 1
    • 2
    • 5
  • José Antonio del Río
    • 2
    • 3
    • 4
  1. 1.Institute of NeuropathologyUniversity Hospital Bellvitge—Bellvitge Biomedical Research Institute (IDIBELL)L’Hospitalet de LlobregatSpain
  2. 2.Network Biomedical Research Center for Neurodegenerative Diseases (CIBERNED)MadridSpain
  3. 3.Institute for Bioengineering of Catalonia (IBEC)BarcelonaSpain
  4. 4.Department of Cell BiologyUniversity of Barcelona (UB)BarcelonaSpain
  5. 5.Department of Pathology and Experimental TherapeuticsUniversity of Barcelona (UB)L’Hospitalet de LlobregatSpain

Personalised recommendations