Molecular Neurobiology

, Volume 49, Issue 1, pp 337–351 | Cite as

Myoloid-Related Protein 8, an Endogenous Ligand of Toll-Like Receptor 4, Is Involved in Epileptogenesis of Mesial Temporal Lobe Epilepsy Via Activation of the Nuclear Factor-κB Pathway in Astrocytes

  • Na Gan
  • Lifen Yang
  • Ahmed Omran
  • Jing Peng
  • Liwen Wu
  • Fang He
  • Ciliu Zhang
  • Qiulian Xiang
  • Huimin Kong
  • Yupin Ma
  • Muhammad Usman Ashhab
  • Xiaolu Deng
  • Fei Yin
Article

Abstract

The role of Toll-like receptor 4 (TLR4) in the activation of innate immunity has been extensively studied in the past several years. Here, we are the first to report that myeloid-related protein 8 (MRP8), an endogenous TLR4 ligand, is involved in the epileptogenesis of mesial temporal lobe epilepsy (MTLE). We find that the expression of MRP8, TLR4, and interleukin 1-β (IL-1β) was upregulated in a MTLE model during both acute and chronic disease stages. We next investigated the possible roles played by astrocytes, which have been shown to be the major source of IL-1β during epilepsy. Stimulation via MRP8 led to the induction of IL-1β in astrocytes in vitro, accompanied by the activation of Nuclear Factor-κB, while knockdown of TLR4 or inhibition of NF-κB in astrocytes prevented this IL-1β induction. Thus, MRP8 may potentiate the perpetuation of MTLE by activating the NF-κB pathway in astrocytes, and could be a new target for anticonvulsant therapies.

Keywords

Mesial temporal lobe epilepsy Myeloid-related protein 8 Toll-like receptor 4 Nuclear factor-kappa B Interleukin-1β 

Notes

Acknowledgments

We thank Dr. Zhiquan Yang (Department of Neurosurgery, Xiangya Hospital, China) for providing the experimental hippocampus of MTLE patients and Dr Hongzhuan Tan (Department of Public Health, Central South University, China) for revising the statistical analysis of our manuscript. This work was supported by the National Natural Science Foundation of China, 81171126 & 81100846, and the national 973 programs, 2012CB94460. Doctoral innovation project, hunan, China (CX2012B087).

Conflict of interest

The authors declare no actual or potential conflicts of interest.

References

  1. 1.
    Sander JW (2003) The epidemiology of epilepsy revisited. Curr Opin Neurol 16:165–170CrossRefPubMedGoogle Scholar
  2. 2.
    Rakhade SN, Jensen FE (2009) Epileptogenesis in the immature brain: emerging mechanisms. Nat Rev Neurol 5:380–391CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Friedman MJ, Sharieff GQ (2006) Seizures in children. Pediatr Clin North Am 53:257–277CrossRefPubMedGoogle Scholar
  4. 4.
    Cascino GD (2008) When drugs and surgery don't work. Epilepsia 49:79–84CrossRefPubMedGoogle Scholar
  5. 5.
    Turrin NP, Rivest S (2004) Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis 16:321–334CrossRefPubMedGoogle Scholar
  6. 6.
    Vezzani A, Granata T (2005) Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46:1724–1743CrossRefPubMedGoogle Scholar
  7. 7.
    Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29:142–160CrossRefPubMedGoogle Scholar
  8. 8.
    Choi J, Nordli DR Jr, Alden TD, DiPatri A Jr, Laux L, Kelley K, Rosenow J, Schuele SU, Rajaram V, Koh S (2009) Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation 6:38CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Peng J, Omran A, Ashhab MU, Kong H, Gan N, He F, Yin F (2013) Expression Patterns of miR-124, miR-134, miR-132, and miR-21 in an Immature Rat Model and Children with Mesial Temporal Lobe Epilepsy. J Mol Neurosci doi: 10.1007/s12031-013-9953-3.
  10. 10.
    Ashhab MU, Omran A, Kong H, Gan N, He F, Peng J, Yin F (2013) Expressions of Tumor Necrosis Factor-Alpha and MicroRNA-155 in Immature Rat Model of Status Epilepticus and Children with Mesial Temporal Lobe Epilepsy. J Mol Neurosci [Epub ahead of print]. doi: 10.1007/s12031-013-0013-9
  11. 11.
    Pitkanen A, Sutula TP (2002) Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol 1:173–181CrossRefPubMedGoogle Scholar
  12. 12.
    Galic MA, Riazi K, Henderson AK, Tsutsui S, Pittman QJ (2009) Viral-like brain inflammation during development causes increased seizure susceptibility in adult rats. Neurobiol Dis 36:343–351CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Rasmussen T, Olszewski J, Lloyd-Smith D (1958) Focal seizures due to chronic localized encephalitis. Neurology 8:435–445CrossRefPubMedGoogle Scholar
  14. 14.
    Cojocaru IM, Cojocaru M (2010) Reactions of the immune system in epilepsy. Maedica (Buchar) 3:201–206Google Scholar
  15. 15.
    Choi J, Min HJ, Shin JS (2011) Increased levels of HMGB1 and pro-inflammatory cytokines in children with febrile seizures. J Neuroinflammation 8:135CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Berg AT, Shinnar S (1996) Unprovoked seizures in children with febrile seizures: short-term outcome. Neurology 47:562–568CrossRefPubMedGoogle Scholar
  17. 17.
    Shinnar S (2003) Febrile seizures and mesial temporal sclerosis. Epilepsy Curr 3:115–118CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021PubMedGoogle Scholar
  19. 19.
    Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, Vezzani A (2010) Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16:413–419CrossRefPubMedGoogle Scholar
  20. 20.
    Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049CrossRefPubMedGoogle Scholar
  21. 21.
    Hayashi T, Nakamura T, Takaoka A (2011) Pattern recognition receptors. Nihon Rinsho Meneki Gakkai Kaishi 34:329–345CrossRefPubMedGoogle Scholar
  22. 22.
    Mencin A, Kluwe J, Schwabe RF (2009) Toll-like receptors as targets in chronic liver diseases. Gut 58:704–720CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Burkhardt K, Schwarz S, Pan C, Stelter F, Kotliar K, Von Eynatten M, Sollinger D, Lanzl I, Heemann U, Baumann M (2009) Myeloid-related protein 8/14 complex describes microcirculatory alterations in patients with type 2 diabetes and nephropathy. Cardiovasc Diabetol 8:10CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Achouiti A, Vogl T, Urban CF, Röhm M, Hommes TJ, van Zoelen MA, Florquin S, Roth J, van 't Veer C, de Vos AF, van der Poll T (2012) Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis. PLoS Pathog 8:e1002987Google Scholar
  25. 25.
    Maiseyeu A, Badgeley MA, Kampfrath T, Mihai G, Deiuliis JA, Liu C, Sun Q, Parthasarathy S, Simon DI, Croce K, Rajagopalan S (2012) In vivo targeting of inflammation-associated myeloid-related protein 8/14 via gadolinium immunonanoparticles. Arterioscler Thromb Vasc Biol 32:962–970CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Ziegler G, Prinz V, Albrecht MW, Harhausen D, Khojasteh U, Nacken W, Endres M, Dirnagl U, Nietfeld W, Trendelenburg G (2009) Mrp-8 and −14 mediate CNS injury in focal cerebral ischemia. Biochim Biophys Acta 1792:1198–1204CrossRefPubMedGoogle Scholar
  27. 27.
    Engel S, Schluesener H, Mittelbronn M, Seid K, Adjodah D, Wehner HD, Meyermann R (2000) Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 100:313–322CrossRefPubMedGoogle Scholar
  28. 28.
    Yonekawa K, Neidhart M, Altwegg LA, Wyss CA, Corti R, Vogl T, Grigorian M, Gay S, Lüscher TF, Maier W (2011) Myeloid related proteins activate Toll-like receptor 4 in human acute coronary syndromes. Atherosclerosis 218:486–492CrossRefPubMedGoogle Scholar
  29. 29.
    Holzinger D, Frosch M, Kastrup A, Prince FH, Otten MH, Van Suijlekom-Smit LW, ten Cate R, Hoppenreijs EP, Hansmann S, Moncrieffe H, Ursu S, Wedderburn LR, Roth J, Foell D, Wittkowski H (2012) The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann Rheum Dis 71:974–980CrossRefPubMedGoogle Scholar
  30. 30.
    Crespel A, Coubes P, Rousset MC, Brana C, Rougier A, Rondouin G, Bockaert J, Baldy-Moulinier M, Lerner-Natoli M (2002) Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Res 952:159–169CrossRefPubMedGoogle Scholar
  31. 31.
    Voutsinos-Porche B, Koning E, Kaplan H, Ferrandon A, Guenounou M, Nehlig A, Motte J (2004) Temporal patterns of the cerebral inflammatory response in the rat lithium-pilocarpine model of temporal lobe epilepsy. Neurobiol Dis 17:385–402CrossRefPubMedGoogle Scholar
  32. 32.
    Lubin FD, Ren Y, Xu X, Anderson AE (2007) Nuclear factor-kB regulates seizure threshold and gene transcription following convulsant stimulation. J Neurochem 103:1381–1395CrossRefPubMedGoogle Scholar
  33. 33.
    Chuang YC, Chen SD, Lin TK, Chang WN, Lu CH, Liou CW, Chan SH, Chang AY (2010) Transcriptional upregulation of nitric oxide synthase II by nuclear factor-kappaB promotes apoptotic neuronal cell death in the hippocampus following experimental status epilepticus. J Neurosci Res 88:1898–1907PubMedGoogle Scholar
  34. 34.
    Yu N, Di Q, Liu H, Hu Y, Jiang Y, Yan YK, Zhang YF, Zhang YD (2011) Nuclear factor-kappa B activity regulates brain expression of P-glycoprotein in the kainic acid-induced seizure rats. Mediators Inflamm : 670613Google Scholar
  35. 35.
    Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9CrossRefPubMedGoogle Scholar
  36. 36.
    Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34:269–281CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Sayyah M, Beheshti S, Shokrgozar MA, Eslami-far A, Deljoo Z, Khabiri AR, Haeri Rohani A (2005) Antiepileptogenic and nticonvulsant activity of interleukin-1 beta in amygdala-kindled rats. Exp Neurol 191:145–153CrossRefPubMedGoogle Scholar
  38. 38.
    Akin D, Ravizza T, Maroso M, Carcak N, Eryigit T, Vanzulli I, Aker RG, Vezzani A, Onat FY (2011) IL-1β is induced in reactive astrocytes in the somatosensory cortex of rats with genetic absence epilepsy at the onset of spike-and-wave discharges, and contributes to their occurrence. Neurobiol Dis 44:259–269CrossRefPubMedGoogle Scholar
  39. 39.
    Järvelä JT, Lopez-Picon FR, Plysjuk A, Ruohonen S, Holopainen IE (2011) Temporal profiles of age-dependent changes in cytokine mRNA expression and glial cell activation after status epilepticus in postnatal rat hippocampus. J Neuroinflammation 8:29CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Omran A, Peng J, Zhang C, Xiang QL, Xue J, Gan N, Kong H, Yin F (2012) Interleukin-1β and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 53:1215–1224CrossRefPubMedGoogle Scholar
  41. 41.
    Rizzi M, Perego C, Aliprandi M, Richichi C, Ravizza T, Colella D, Velískŏvá J, Moshé SL, De Simoni MG, Vezzani A (2003) Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis 14:494–503CrossRefPubMedGoogle Scholar
  42. 42.
    Vezzani A, Baram TZ (2007) New roles for interleukin-1 Beta in the mechanisms of epilepsy. Epilepsy Curr 7:45–50CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227CrossRefPubMedGoogle Scholar
  44. 44.
    Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294CrossRefPubMedGoogle Scholar
  45. 45.
    Blümcke I, Pauli E, Clusmann H, Schramm J, Becker A, Elger C, Merschhemke M, Meencke HJ, Lehmann T, von Deimling A, Scheiwe C, Zentner J, Volk B, Romstöck J, Stefan H, Hildebrandt M (2007) A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol 113:235–244CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Sloviter RS (1982) A simplified Timm stain procedure compatible with formaldehyde fixation and routine paraffin embedding of rat brain. Brain Res Bull 8:771–774CrossRefPubMedGoogle Scholar
  47. 47.
    Choi J, Koh S (2008) Role of Brain Inflammation in Epileptogenesis. Yonsei Med J 49:1–18CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Loscher W, Schmidt D (2006) New horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res 69:183–272CrossRefPubMedGoogle Scholar
  49. 49.
    Stafstrom CE (2010) Mechanisms of action of antiepileptic drugs: the search for synergy. Curr Opin Neurol 23:157–163CrossRefPubMedGoogle Scholar
  50. 50.
    Vezzani A, French J, Bartfai T, Baram TZ (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7(31–40):51Google Scholar
  51. 51.
    Ravizza T, Balosso S, Vezzani A (2011) Inflammation and prevention of epileptogenesis. Neurosci Lett 497:223–230CrossRefPubMedGoogle Scholar
  52. 52.
    Auvin S, Mazarati A, Shin D, Sankar R (2010) Inflammation enhances epileptogenesis in the developing rat brain. Neurobiol Dis 40:303–310CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D (2009) Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 33:171–181CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Abraham J, Fox PD, Condello C, Bartolini A, Koh S (2012) Minocycline attenuates microglia activation and blocks the long-term epileptogenic effects of early-life seizures. Neurobiol Dis 46:425–430CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Wang DD, Englot DJ, Garcia PA, Lawton MT, Young WL (2012) Minocycline- and tetracycline-class antibiotics are protective against partial seizures in vivo. Epilepsy Behav 24:314–318CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Jaworska-Adamu J, Dmowska M, Cybulska R, Krawczyk A, Pawlikowska-Pawlęga B (2011) Investigations of hippocampal astrocytes in lipopolysaccharide-preconditioned rats in the pilocarpine model ofepilepsy. Folia Histochem Cytobiol 49:219–224CrossRefPubMedGoogle Scholar
  57. 57.
    Lee SH, Kim BJ, Kim YB, Chung PW, Moon HS, Suh BC, Yoon WT, Jin DK, Park YS, Lee YT, Park KY (2012) IL-1β induction and IL-6 suppression are associated with aggravated neuronal damage in a lipopolysaccharide-pretreated kainic acid-induced rat pup seizure model. Neuroimmunomodulation 19:319–325CrossRefPubMedGoogle Scholar
  58. 58.
    Granata T, Cross H, Theodore W, Avanzini G (2011) Immune-mediated epilepsies. Epilepsia 52:5–11CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Kerkhoff C, Eue I, Sorg C (1999) The regulatory role of MRP8 (S100A8) and MRP14 (S100A9) in the transendothelial migration of human leukocytes. Pathobiology 67:230–232CrossRefPubMedGoogle Scholar
  60. 60.
    Meeuwsen S, Bsibsi M, Persoon-Deen C, Ravid R, van Noort JM (2005) Cultured human adult microglia from different donors display stable cytokine, chemokine and growth factor gene profiles but respond differently to a pro-inflammatory stimulus. Neuroimmunomodulation 12:235–245CrossRefPubMedGoogle Scholar
  61. 61.
    Roth J, Vogl T, Sorg C, Sunderkotter C (2003) Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol 24:155–158CrossRefPubMedGoogle Scholar
  62. 62.
    Foell D, Wittkowski H, Vogl T, Roth J (2007) S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol 81:28–37CrossRefPubMedGoogle Scholar
  63. 63.
    Foell D, Roth J (2004) Proinflammatory S100 proteins in arthritis and autoimmune disease. Arthritis Rheum 50:3762–3771CrossRefPubMedGoogle Scholar
  64. 64.
    Frosch M, Strey A, Vogl T, Wulffraat NM, Kuis W, Sunderkötter C, Harms E, Sorg C, Roth J (2000) Myeloid-related proteins 8 and 14 are specifically secreted during interaction of phagocytes and activated endothelium and are useful markers for monitoring disease activity in pauciarticular-onset juvenile rheumatoid arthritis. Arthritis Rheum 43:628–637CrossRefPubMedGoogle Scholar
  65. 65.
    Peltier DC, Simms A, Farmer JR, Miller DJ (2010) Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling. J Immunol 184:7010–7021CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Zurolo E, Iyer A, Maroso M, Carbonell C, Anink JJ, Ravizza T, Fluiter K, Spliet WG, van Rijen PC, Vezzani A, Aronica E (2011) Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain 134:10151032CrossRefGoogle Scholar
  67. 67.
    Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. GLIA 59:242–255CrossRefPubMedGoogle Scholar
  68. 68.
    Anderson KV (2000) Toll signaling pathways in the innate immune response. Curr Opin Immunol 12:13–19CrossRefPubMedGoogle Scholar
  69. 69.
    Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680CrossRefPubMedGoogle Scholar
  70. 70.
    Yan Q, Carmody RJ, Qu Z, Ruan Q, Jager J, Mullican SE, Lazar MA, Chen YH (2012) Nuclear factor-κB binding motifs specify Toll-like receptor-induced gene repression through an inducible repressosome. Proc Natl Acad Sci U S A 109:14140–14145CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Ge Y, Xu Y, Sun W, Man Z, Zhu L, Xia X, Zhao L, Zhao Y, Wang X (2012) The molecular mechanisms of the effect of Dexamethasone and Cyclosporin A on TLR4 /NF-κB signaling pathway activation in oral lichen planus. Gene 508:157–164CrossRefPubMedGoogle Scholar
  72. 72.
    Wang PP, Xie DY, Liang XJ, Peng L, Zhang GL, Ye YN, Xie C, Gao ZL (2012) HGF and direct mesenchymal stem cells contact synergize to inhibit hepatic stellate cells activation through TLR4/NF-kB pathway. PLoS One 7:e43408CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Ma CX, Yin WN, Cai BW, Wu J, Wang JY, He M, Sun H, Ding JL, You C (2009) Toll-like receptor 4/nuclear factor-kappa B signaling detected in brain after early subarachnoid hemorrhage. Chin Med J (Engl) 122:1575–1581Google Scholar
  74. 74.
    Dong XQ, Yu WH, Hu YY, Zhang ZY, Huang M (2011) Oxymatrine reduces neuronal cell apoptosis by inhibiting Toll-like receptor 4/nuclear factor kappa-B-dependent inflammatory responses in traumatic rat brain injury. Inflamm Res 60:533–539CrossRefPubMedGoogle Scholar
  75. 75.
    Lan L, Tao J, Chen A, Xie G, Huang J, Lin J, Peng J, Chen L (2013) Electroacupuncture exerts anti-inflammatory effects in cerebral ischemia-reperfusion injured rats via suppression of the TLR4/NF-κB pathway. Int J Mol Med 31:75–80PubMedGoogle Scholar
  76. 76.
    Lerner-Natoli M, Montpied P, Rousset MC, Bockaert J, Rondouin G (2000) Sequential expression of surface antigens and transcription factor NF-kappaB by hippocampal cells in excitotoxicity and experimental epilepsy. Epilepsy Res 41:141–154CrossRefPubMedGoogle Scholar
  77. 77.
    Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, De Simoni MG (1999) Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 19:5054–5065PubMedGoogle Scholar
  78. 78.
    Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, De Simoni MG, Sperk G, Andell-Jonsson S, Lundkvist J, Iverfeldt K, Bartfai T (2000) Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci U S A 97:11534–11539CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Ravizza T, Boer K, Redeker S, Spliet WG, van Rijen PC, Troost D, Vezzani A, Aronica E (2006) The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol Dis 24:128–143CrossRefPubMedGoogle Scholar
  80. 80.
    Xie C, Sun J, Qiao W, Lu D, Wei L, Na M, Song Y, Hou X, Lin Z (2011) Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. PLoS One 6:e24966CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Allan SM, Tyrrell PJ, Rothwell NJ (2005) Interleukin-1 and neuronal injury. Nat Rev Immunol 5:629–640CrossRefPubMedGoogle Scholar
  82. 82.
    Appel SH, Beers DR, Henkel JS (2009) T cell-microglial dialog in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol 31:7–17CrossRefPubMedGoogle Scholar
  83. 83.
    Volman V, Bazhenov M, Sejnowski TJ (2012) Computational models of neuron-astrocyte interaction in epilepsy. Front Comput Neurosci 6:58CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, Gorter JA, Aronica E (2012) MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 7:e44789CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Witcher MR, Ellis TL (2012) Astroglial networks and implications for therapeutic neuromodulation of epilepsy. Front Comput Neurosci 6:61CrossRefPubMedCentralPubMedGoogle Scholar
  86. 86.
    Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577CrossRefPubMedGoogle Scholar
  87. 87.
    Pousset F, Dantzer R, Kelley KW, Parnet P (2000) Interleukin-1 signaling in mouse astrocytes involves Akt: a study with interleukin-4 and IL-10. Eur Cytokine Netw 11:427–434PubMedGoogle Scholar
  88. 88.
    Couturier J, Paccalin M, Morel M, Terro F, Milin S, Pontcharraud R, Fauconneau B, Page G (2011) Prevention of the β-amyloid peptide-induced inflammatory process by inhibition of double-stranded RNA-dependent protein kinase in primary murine mixed co-cultures. J Neuroinflammation 8:72CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Na Gan
    • 1
  • Lifen Yang
    • 1
  • Ahmed Omran
    • 1
    • 2
  • Jing Peng
    • 1
  • Liwen Wu
    • 1
  • Fang He
    • 1
  • Ciliu Zhang
    • 1
  • Qiulian Xiang
    • 1
  • Huimin Kong
    • 1
  • Yupin Ma
    • 1
  • Muhammad Usman Ashhab
    • 1
  • Xiaolu Deng
    • 1
  • Fei Yin
    • 1
  1. 1.Department of PediatricsXiangya Hospital of Central South UniversityChangshaChina
  2. 2.Department of Pediatrics and NeonatologySuez Canal UniversityIsmailiaEgypt

Personalised recommendations