Molecular Neurobiology

, Volume 49, Issue 1, pp 222–233 | Cite as

Cannabidiol Normalizes Caspase 3, Synaptophysin, and Mitochondrial Fission Protein DNM1L Expression Levels in Rats with Brain Iron Overload: Implications for Neuroprotection

  • Vanessa Kappel da Silva
  • Betânia Souza de Freitas
  • Arethuza da Silva Dornelles
  • Laura Roesler Nery
  • Lucio Falavigna
  • Rafael Dal Ponte Ferreira
  • Maurício Reis Bogo
  • Jaime Eduardo Cecílio Hallak
  • Antônio Waldo Zuardi
  • José Alexandre S. Crippa
  • Nadja Schröder
Article

Abstract

We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson’s and Alzheimer’s, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.

Keywords

Cannabidiol Iron Mitochondria Apoptosis Neurodegenerative disorders 

References

  1. 1.
    Stankiewicz JM, Brass SD (2009) Role of iron in neurotoxicity: a cause for concern in the elderly? Curr Opin Clin Nutr Metab Care 12(1):22–29CrossRefPubMedGoogle Scholar
  2. 2.
    Mills E, Dong XP, Wang F, Xu H (2010) Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Med Chem 2(1):51–64CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975CrossRefPubMedGoogle Scholar
  4. 4.
    Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991) Iron and aluminum increase in the substantia nigra of patients with Parkinson's disease: an X-ray microanalysis. J Neurochem 56(2):446–451CrossRefPubMedGoogle Scholar
  5. 5.
    Good PF, Perl DP, Bierer LM, Schmeidler J (1992) Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer's disease: a laser microprobe (LAMMA) study. Ann Neurol 31(3):286–292CrossRefPubMedGoogle Scholar
  6. 6.
    Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873CrossRefPubMedGoogle Scholar
  7. 7.
    Schenck JF, Zimmerman EA, Li Z, Adak S, Saha A, Tandon R et al (2006) High-field magnetic resonance imaging of brain iron in Alzheimer disease. Top Magn Reson Imaging 17(1):41–50CrossRefPubMedGoogle Scholar
  8. 8.
    Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA et al (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68(21):1820–1825CrossRefPubMedGoogle Scholar
  9. 9.
    Zhu WZ, Zhong WD, Wang W, Zhan CJ, Wang CY, Qi JP et al (2009) Quantitative MR phase-corrected imaging to investigate increased brain iron deposition of patients with Alzheimer disease. Radiology 253(2):497–504CrossRefPubMedGoogle Scholar
  10. 10.
    Pujol J, Junqué C, Vendrell P, Grau JM, Martí-Vilalta JL, Olivé C et al (1992) Biological significance of iron-related magnetic resonance imaging changes in the brain. Arch Neurol 49(7):711–717CrossRefPubMedGoogle Scholar
  11. 11.
    Sullivan EV, Adalsteinsson E, Rohlfing T, Pfefferbaum A (2009) Relevance of iron deposition in deep gray matter brain structures to cognitive and motor performance in healthy elderly men and women: exploratory findings. Brain Imaging Behav 3(2):167–175CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Bartzokis G, Lu PH, Tingus K, Peters DG, Amar CP, Tishler TA et al (2011) Gender and iron genes may modify associations between brain iron and memory in healthy aging. Neuropsychopharmacology 36(7):1375–1384CrossRefPubMedGoogle Scholar
  13. 13.
    Penke L, Valdés Hernandéz MC, Maniega SM, Gow AJ, Murray C, Starr JM et al (2012) Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiol Aging 33(3):510–517CrossRefPubMedGoogle Scholar
  14. 14.
    Rodrigue KM, Daugherty AM, Haacke EM, Raz N (2012) The role of hippocampal iron concentration and hippocampal volume in age-related differences in memory. Cereb Cortex, DOI: 10.1093/cercor/bhs139
  15. 15.
    Brass SD, Benedict RH, Weinstock-Guttman B, Munschauer F, Bakshi R (2006) Cognitive impairment is associated with subcortical magnetic resonance imaging grey matter T2 hypointensity in multiple sclerosis. Mult Scler 12(4):437–444CrossRefPubMedGoogle Scholar
  16. 16.
    House MJ, St Pierre TG, Foster JK, Martins RN, Clarnette R (2006) Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. AJNR Am J Neuroradiol 27(2):430–439PubMedGoogle Scholar
  17. 17.
    Ding B, Chen KM, Ling HW, Sun F, Li X, Wan T et al (2009) Correlation of iron in the hippocampus with MMSE in patients with Alzheimer's disease. J Magn Reson Imaging 29(4):793–798CrossRefPubMedGoogle Scholar
  18. 18.
    Fredriksson A, Schröder N, Eriksson P, Izquierdo I, Archer T (1999) Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol 159(1):25–30CrossRefPubMedGoogle Scholar
  19. 19.
    Schröder N, Fredriksson A, Vianna MR, Roesler R, Izquierdo I, Archer T (2001) Memory deficits in adult rats following postnatal iron administration. Behav Brain Res 124(1):77–85CrossRefPubMedGoogle Scholar
  20. 20.
    de Lima MN, Polydoro M, Laranja DC, Bonatto F, Bromberg E, Moreira JC et al (2005) Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. Eur J Neurosci 21(9):2521–2528CrossRefPubMedGoogle Scholar
  21. 21.
    Schröder N, Figueiredo LS, de Lima MNM (2013) Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies. J Alzheimers Dis 34(4):797–812PubMedGoogle Scholar
  22. 22.
    Liu W, Tian F, Kurata T, Morimoto N, Abe K (2012) Dynamic changes of mitochondrial fusion and fission proteins after transient cerebral ischemia in mice. J Neurosci Res 90(6):1183–1189CrossRefPubMedGoogle Scholar
  23. 23.
    Wang X, Su B, Zheng L, Perry G, Smith MA, Zhu X (2009) The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. J Neurochem 109(1):153–159CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 15(6):706–716CrossRefPubMedGoogle Scholar
  25. 25.
    Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777CrossRefPubMedGoogle Scholar
  26. 26.
    Shimada A, Keino H, Satoh M, Kishikawa M, Hosokawa M (2003) Age-related loss of synapses in the frontal cortex of SAMP10 mouse: a model of cerebral degeneration. Synapse 48(4):198–204CrossRefPubMedGoogle Scholar
  27. 27.
    Kajta M (2004) Apoptosis in the central nervous system: Mechanisms and protective strategies. Pol J Pharmacol 56(6):689–700CrossRefPubMedGoogle Scholar
  28. 28.
    Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (−) Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A 95(14):8268–8273CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    García-Arencibia M, González S, de Lago E, Ramos JA, Mechoulam R, Fernández-Ruiz J (2007) Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res 1134(1):162–170CrossRefPubMedGoogle Scholar
  30. 30.
    Castillo A, Tolón MR, Fernández-Ruiz J, Romero J, Martinez-Orgado J (2010) The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors. Neurobiol Dis 37(2):434–440CrossRefPubMedGoogle Scholar
  31. 31.
    Iuvone T, Esposito G, Esposito R, Santamaria R, Di Rosa M, Izzo AA (2004) Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells. J Neurochem 89(1):134–141CrossRefPubMedGoogle Scholar
  32. 32.
    Pazos MR, Cinquina V, Gómez A, Layunta R, Santos M, Fernández-Ruiz J et al (2012) Cannabidiol administration after hypoxia–ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology 63(5):776–783CrossRefPubMedGoogle Scholar
  33. 33.
    Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernández-Ruiz J (2007) Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid, vanilloid TRPV1 and adenosine A2A receptors. Eur J Neurosci 26(4):843–851CrossRefPubMedGoogle Scholar
  34. 34.
    Fagherazzi EV, Garcia VA, Maurmann N, Bervanger T, Halmenschlager LH, Busato SB et al (2012) Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology (Berlin) 219(4):1133–1140CrossRefGoogle Scholar
  35. 35.
    Karl T, Cheng D, Garner B, Arnold JC (2012) The therapeutic potential of the endocannabinoid system for Alzheimer's disease. Expert Opin Ther Targets 16(4):407–420CrossRefPubMedGoogle Scholar
  36. 36.
    Silva PF, Garcia VA, da Dornelles AS, Silva VK, Maurmann N, Portal BC et al (2012) Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate. Neuroscience 200:42–49CrossRefPubMedGoogle Scholar
  37. 37.
    Arciello M, Capo CR, Cozzolino M, Ferri A, Nencini M, Carrì MT et al (2010) Inactivation of cytochrome c oxidase by mutant SOD1s in mouse motoneuronal NSC-34 cells is independent from copper availability but is because of nitric oxide. J Neurochem 112(1):183–192CrossRefPubMedGoogle Scholar
  38. 38.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  39. 39.
    Amaral AU, Seminotti B, Cecatto C, Fernandes CG, Busanello EN, Zanatta A et al (2012) Reduction of Na(+), K(+)-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: A possible mechanism for brain injury in glutaric aciduria type I. Mol Genet Metab 107(3):375–382CrossRefPubMedGoogle Scholar
  40. 40.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Bonefeld BE, Elfving B, Wegener G (2008) Reference genes for normalization: a study of rat brain tissue. Synapse 62:302–309CrossRefPubMedGoogle Scholar
  42. 42.
    Kar R, Mishra N, Singha PK, Venkatachalam MA, Saikumar P (2010) Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1. Biochem Biophys Res Commun 399(4):548–554CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Loucks FA, Schroeder EK, Zommer AE, Hilger S, Kelsey NA, Bouchard RJ et al (2009) Caspases indirectly regulate cleavage of the mitochondrial fusion GTPase OPA1 in neurons undergoing apoptosis. Brain Res 1250:63–74CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Evans LC, Liu H, Thompson LP (2012) Differential effect of intrauterine hypoxia on caspase 3 and DNA fragmentation in fetal guinea pig hearts and brains. Reprod Sci 19(3):298–305CrossRefPubMedGoogle Scholar
  45. 45.
    Manczak M, Reddy PH (2012) Abnormal interaction between the mitochondrial fission protein Drp1 and hyperphosphorylated tau in Alzheimer's disease neurons: implications for mitochondrial dysfunction and neuronal damage. Hum Mol Genet 21(11):2538–2547CrossRefPubMedGoogle Scholar
  46. 46.
    Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y et al (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 105(49):19318–19323CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Horowitz MP, Greenamyre JT (2010) Mitochondrial iron metabolism and its role in neurodegeneration. J Alzheimers Dis 20(Suppl 2):S551–S568PubMedCentralPubMedGoogle Scholar
  48. 48.
    Dal-Pizzol F, Klamt F, Frota ML, Andrades ME, Caregnato FF, Vianna M et al (2001) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Brain Res Dev Brain Res 130:109–114CrossRefPubMedGoogle Scholar
  49. 49.
    Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56(8):933–944CrossRefPubMedGoogle Scholar
  50. 50.
    Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W Jr et al (2005) Differential loss of synaptic proteins in Alzheimer's disease: implications for synaptic dysfunction. J Alzheimers Dis 7(2):103–117PubMedGoogle Scholar
  51. 51.
    Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6(8):657–663CrossRefPubMedGoogle Scholar
  52. 52.
    Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252CrossRefPubMedGoogle Scholar
  53. 53.
    Miwa CP, de Lima MN, Scalco F, Vedana G, Mattos R, Fernandez LL et al (2011) Neonatal iron treatment increases apoptotic markers in hippocampal and cortical areas of adult rats. Neurotox Res 19(4):527–535CrossRefPubMedGoogle Scholar
  54. 54.
    Salvador GA, Oteiza PI (2011) Iron overload triggers redox-sensitive signals in human IMR-32 neuroblastoma cells. Neurotoxicology 32(1):75–82CrossRefPubMedGoogle Scholar
  55. 55.
    Avramovich-Tirosh Y, Reznichenko L, Mit T, Zheng H, Fridkin M, Weinreb O et al (2007) Neurorescue activity, APP regulation and amyloid-beta peptide reduction by novel multi-functional brain permeable iron-chelating-antioxidants, M-30 and green tea polyphenol, EGCG. Curr Alzheimer Res 4(4):403–411CrossRefPubMedGoogle Scholar
  56. 56.
    Demirakca T, Sartorius A, Ende G, Meyer N, Welzel H, Skopp G et al (2011) Diminished gray matter in the hippocampus of cannabis users: possible protective effects of cannabidiol. Drug Alcohol Depend 114(2–3):242–245PubMedGoogle Scholar
  57. 57.
    Englund A, Morrison PD, Nottage J, Hague D, Kane F, Bonaccorso S et al (2013) Cannabidiol inhibits THC-elicited paranoid symptoms and hippocampal-dependent memory impairment. J Psychopharmacol 27(1):19–27CrossRefPubMedGoogle Scholar
  58. 58.
    Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B (2009) Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci 29(7):2053–2063CrossRefPubMedGoogle Scholar
  59. 59.
    LeVine SM, Bilgen M, Lynch SG (2013) Iron accumulation in multiple sclerosis: an early pathogenic event. Expert Rev Neurother 13(3):247–250CrossRefPubMedGoogle Scholar
  60. 60.
    de Lima MN, Presti-Torres J, Garcia VA, Guimarães MR, Scalco FS, Roesler R et al (2008) Amelioration of recognition memory impairment associated with iron loading or aging by the type 4-specific phosphodiesterase inhibitor rolipram in rats. Neuropharmacology 55(5):788–792CrossRefPubMedGoogle Scholar
  61. 61.
    Perez VP, de Lima MN, da Silva RS, Dornelles AS, Vedana G, Bogo MR et al (2010) Iron leads to memory impairment that is associated with a decrease in acetylcholinesterase pathways. Curr Neurovasc Res 7(1):15–22CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vanessa Kappel da Silva
    • 1
    • 2
  • Betânia Souza de Freitas
    • 1
  • Arethuza da Silva Dornelles
    • 1
  • Laura Roesler Nery
    • 1
  • Lucio Falavigna
    • 1
  • Rafael Dal Ponte Ferreira
    • 1
  • Maurício Reis Bogo
    • 2
    • 3
  • Jaime Eduardo Cecílio Hallak
    • 2
    • 4
  • Antônio Waldo Zuardi
    • 2
    • 4
  • José Alexandre S. Crippa
    • 2
    • 4
  • Nadja Schröder
    • 1
    • 2
    • 5
  1. 1.Neurobiology and Developmental Biology Laboratory, Faculty of BiosciencesPontifical Catholic UniversityPorto AlegreBrazil
  2. 2.National Institute for Translational Medicine (INCT-TM)Porto AlegreBrazil
  3. 3.Center for Genomics and Molecular Biology, Faculty of BiosciencesPontifical Catholic UniversityPorto AlegreBrazil
  4. 4.Department of Neuroscience and Behavior, Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão PretoBrazil
  5. 5.Department of Physiological Sciences, Faculty of BiosciencesPontifical Catholic UniversityPorto AlegreBrazil

Personalised recommendations