Molecular Neurobiology

, Volume 49, Issue 1, pp 176–186 | Cite as

Activation of Liver X Receptor Is Protective Against Ethanol-Induced Developmental Impairment of Bergmann Glia and Purkinje Neurons in the Mouse Cerebellum

  • Yang Yang
  • Yongping Tang
  • Yan Xing
  • Meina Zhao
  • Xiaohang Bao
  • Dayu Sun
  • Xiaotong Tang
  • Yuzhang Wu
  • Haiwei XuEmail author
  • Xiaotang FanEmail author


Cerebellar Purkinje cell and granule cell development are coordinated by Bergmann glia, and are particularly sensitive to ethanol (EtOH) exposure. The liver X receptor (LXR) plays important roles in Bergmann glial development. However, the effect of LXR activation on EtOH-mediated impairment of Bergmann glia and subsequently on Purkinje cell dendritogenesis remains undetermined. Therefore, using immunohistochemistry, quantitative real-time PCR and Western blot, we tested the possible protection of LXR agonist T0901317 (T0) on Bergmann glia and Purkinje cell dendritogenesis in mice exposed to ethanol. Results showed that a brief exposure of EtOH on postnatal day (PD 5) significantly decreased the average body weight of mice at PD 6 without alteration in the brain weight. In EtOH-exposed mice, the number of migrating granule cells in the molecular layer was significantly decreased, and this effect was attenuated by pretreatment of T0. EtOH exposure also resulted in the significant reduction of calbindin-labeled Purkinje cells, their maximum dendrite length, and impairment of Purkinje cell dendritogenesis. Furthermore, EtOH induced the activation of microglia in the Purkinje cell layer and impaired the development of Bergmann glia. However, pretreatment of T0 effectively blocked all of these responses. These responses were found to be mediated by the inhibition of upregulated levels of β-catenin and transcription factor LEF1 in the cerebellum. Overall, the results suggest that activating LXRs on postnatal mice exposed to EtOH is protective to Bergmann glia, and thus may play a critical role in preventing EtOH-induced defects during cerebellar development.


Cerebellum Development Ethanol Mouse Liver X receptor 



This study was supported by the National Nature Science Foundation of China (no. 31070927 and no. 31071299) and the Foundation of the Third Military Medical University (no. 2011XQN05).


  1. 1.
    González-Burgos I, Alejandre-Gómez M (2005) Cerebellar granule cell and Bergmann glial cell maturation in the rat is disrupted by pre-and post-natal exposure to moderate levels of ethanol. Int J Dev Neurosci 23(4):383–388CrossRefPubMedGoogle Scholar
  2. 2.
    Charness ME (1993) Brain lesions in alcoholics. Alcohol Clin Exp Res 17(1):2–11CrossRefPubMedGoogle Scholar
  3. 3.
    Maier SE, West JR (2001) Regional differences in cell loss associated with binge-like alcohol exposure during the first two trimesters equivalent in the rat. Alcohol (Fayetteville, NY) 23(1):49CrossRefGoogle Scholar
  4. 4.
    Sakata-Haga H, Sawada K, Hisano S, Fukui Y (2001) Abnormalities of cerebellar foliation in rats prenatally exposed to ethanol. Acta Neuropathol 102(1):36–40PubMedGoogle Scholar
  5. 5.
    Nowoslawski L, Klocke BJ, Roth KA (2005) Molecular regulation of acute ethanol-induced neuron apoptosis. J Neuropathol Exp Neurol 64(6):490–497PubMedGoogle Scholar
  6. 6.
    Olney JW, Young C, Wozniak DF, Jevtovic-Todorovic V, Ikonomidou C (2004) Do pediatric drugs cause developing neurons to commit suicide? Trends Pharmacol Sci 25(3):135–139CrossRefPubMedGoogle Scholar
  7. 7.
    Goodlett CR, Eilers AT (1997) Alcohol-induced Purkinje cell loss with a single binge exposure in neonatal rats: a stereological study of temporal windows of vulnerability. Alcohol Clin Exp Res 21(4):738–744PubMedGoogle Scholar
  8. 8.
    Hamre KM, West JR (1993) The effects of the timing of ethanol exposure during the brain growth spurt on the number of cerebellar Purkinje and granule cell nuclear profiles. Alcohol Clin Exp Res 17(3):610–622CrossRefPubMedGoogle Scholar
  9. 9.
    Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22(1):511–539CrossRefPubMedGoogle Scholar
  10. 10.
    Xu HW, Yang Y, Tang XT, Zhao MN, Liang FC, Xu P, Hou BK, Xing Y, Bao XH, Fan XT (2013) Bergmann glia function in granule cell migration during cerebellum development. Mol Neurobiol 47(3):833–844CrossRefPubMedGoogle Scholar
  11. 11.
    Rakic P (1971) Neuron–glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus. J Comp Neurol 141(3):283–312CrossRefPubMedGoogle Scholar
  12. 12.
    Rakic P, Sidman RL (1973) Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 152(2):133–161CrossRefPubMedGoogle Scholar
  13. 13.
    Lippman JJ, Lordkipanidze T, Buell ME, Yoon SO, Dunaevsky A (2008) Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia 56(13):1463–1477CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Lordkipanidze T, Dunaevsky A (2005) Purkinje cell dendrites grow in alignment with Bergmann glia. Glia 51(3):229–234CrossRefPubMedGoogle Scholar
  15. 15.
    Ge WP, Yang XJ, Zhang Z, Wang HK, Shen W, Deng QD, Duan S (2006) Long-term potentiation of neuron–glia synapses mediated by Ca2+−permeable AMPA receptors. Sci Signal 312(5779):1533Google Scholar
  16. 16.
    Takatsuru Y, Takayasu Y, Iino M, Nikkuni O, Ueda Y, Tanaka K, Ozawa S (2006) Roles of glial glutamate transporters in shaping EPSCs at the climbing fiber-Purkinje cell synapses. Neurosci Res 54(2):140CrossRefPubMedGoogle Scholar
  17. 17.
    Takayasu Y, Iino M, Shimamoto K, Tanaka K, Ozawa S (2006) Glial glutamate transporters maintain one-to-one relationship at the climbing fiber–Purkinje cell synapse by preventing glutamate spillover. J Neurosci 26(24):6563–6572CrossRefPubMedGoogle Scholar
  18. 18.
    Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ (2001) Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34(4):272–282CrossRefPubMedGoogle Scholar
  19. 19.
    Pérez-Torrero E, Durán P, Granados L, Gutiérrez-Ospina G, Cintra L, Dı́az-Cintra S (1997) Effects of acute prenatal ethanol exposure on Bergmann glia cells early postnatal development. Brain Res 746(1):305–308CrossRefPubMedGoogle Scholar
  20. 20.
    Yamada K, Watanabe M (2002) Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77(2):94–108CrossRefPubMedGoogle Scholar
  21. 21.
    Archer A, Lauter G, Hauptmann G, Mode A, Gustafsson JÅ (2008) Transcriptional activity and developmental expression of liver X receptor (lxr) in zebrafish. Dev Dyn 237(4):1090–1098CrossRefPubMedGoogle Scholar
  22. 22.
    Teboul M, Enmark E, Li Q, Wikström A, Pelto-Huikko M, Gustafsson J (1995) OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor. Proc Natl Acad Sci 92(6):2096–2100CrossRefPubMedGoogle Scholar
  23. 23.
    Fan X, Kim HJ, Bouton D, Warner M, Gustafsson JA (2008) Expression of liver X receptor beta is essential for formation of superficial cortical layers and migration of later-born neurons. Proc Natl Acad Sci U S A 105(36):13445–13450CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Xing Y, Fan XT, Ying DJ (2010) Liver X receptor agonist treatment promotes the migration of granule neurons during cerebellar development. J Neurochem 115(6):1486–1494CrossRefPubMedGoogle Scholar
  25. 25.
    Pöschl JGD, Dorostkar MM, Kretzschmar HA, Schüller U (2013) Constitutive activation of β-catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system. Dev Biol 374(2):319–332CrossRefPubMedGoogle Scholar
  26. 26.
    Uno S, Endo K, Jeong Y, Kawana K, Miyachi H, Hashimoto Y, Makishima M (2009) Suppression of β-catenin signaling by liver X receptor ligands. Biochem Pharmacol 77(2):186–195CrossRefPubMedGoogle Scholar
  27. 27.
    Dikranian K, Qin Y-Q, Labruyere J, Nemmers B, Olney JW (2005) Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Dev Brain Res 155(1):1–13CrossRefGoogle Scholar
  28. 28.
    Taranukhin AG, Taranukhina EY, Saransaari P, Podkletnova IM, Pelto-Huikko M, Oja SS (2010) Neuroprotection by taurine in ethanol-induced apoptosis in the developing cerebellum. J Biomed Sci 17(Suppl 1):S12CrossRefPubMedGoogle Scholar
  29. 29.
    Li ZF, Gao CY, Huang HQ, Sun WZ, Yi HL, Fan XT, Xu HW (2010) Neurotransmitter phenotype differentiation and synapse formation of neural precursors engrafting in amyloid-beta(1-40) injured rat hippocampus. J Alz Dis 21(4):1233–1247Google Scholar
  30. 30.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408CrossRefPubMedGoogle Scholar
  31. 31.
    Eiraku M, Tohgo A, Ono K, Kaneko M, Fujishima K, Hirano T, Kengaku M (2005) DNER acts as a neuron-specific Notch ligand during Bergmann glial development. Nat Neurosci 8(7):873–880CrossRefPubMedGoogle Scholar
  32. 32.
    Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, Watanabe M (2000) Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol 418(1):106–120CrossRefPubMedGoogle Scholar
  33. 33.
    Weyer A, Schilling K (2003) Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum. J Neurosci Res 73(3):400–409CrossRefPubMedGoogle Scholar
  34. 34.
    Willert K, Nusse R (1998) β-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8(1):95–102CrossRefPubMedGoogle Scholar
  35. 35.
    Riikonen J, Jaatinen P, Rintala J, Pörsti I, Karjala K, Hervonen A (2002) Intermittent ethanol exposure increases the number of cerebellar microglia. Alcohol and Alcohol 37(5):421–426CrossRefGoogle Scholar
  36. 36.
    Grosche J, Matyash V, Möller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2(2):139–143CrossRefPubMedGoogle Scholar
  37. 37.
    Iino M, Goto K, Kakegawa W, Okado H, Sudo M, Ishiuchi S, Miwa A, Takayasu Y, Saito I, Tsuzuki K (2001) Glia-synapse interaction through Ca2+−permeable AMPA receptors in Bergmann glia. Sci Signal 292(5518):926Google Scholar
  38. 38.
    Selvadurai HJ, Mason JO (2011) Wnt/β-catenin signalling is active in a highly dynamic pattern during development of the mouse cerebellum. PLoS One 6(8):e23012CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Wang X, Imura T, Sofroniew MV, Fushiki S (2011) Loss of adenomatous polyposis coli in Bergmann glia disrupts their unique architecture and leads to cell nonautonomous neurodegeneration of cerebellar Purkinje neurons. Glia 59(6):857–868CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Makoukji J, Meffre D, Grenier J, Liere P, Lobaccaro J-MA, Schumacher M, Massaad C (2011) Interplay between LXR and Wnt/β-catenin signaling in the negative regulation of peripheral myelin genes by oxysterols. J Neurosci 31(26):9620–9629CrossRefPubMedGoogle Scholar
  41. 41.
    Chuu C-P (2011) Modulation of liver X receptor signaling as a prevention and therapy for colon cancer. Med Hypotheses 76(5):697–699CrossRefPubMedGoogle Scholar
  42. 42.
    Shackleford GG, Makoukji J, Grenier J, Liere P, Meffre D, Massaad C (2013) Differential regulation of Wnt/beta-catenin signaling by liver X receptors in Schwann cells and oligodendrocytes. Biochem Pharmacol 86(1):106–114CrossRefPubMedGoogle Scholar
  43. 43.
    Tiwari V, Chopra K (2013) Resveratrol abrogates alcohol-induced cognitive deficits by attenuating oxidative-nitrosative stress and inflammatory cascade in the adult rat brain. Neurochem Int 62(6):861–869CrossRefPubMedGoogle Scholar
  44. 44.
    Crews F, Nixon K, Kim D, Joseph J, Shukitt–Hale B, Qin L, Zou J (2006) BHT blocks NF-κB activation and ethanol-induced brain damage. Alcohol Clin Exp Res 30(11):1938–1949CrossRefPubMedGoogle Scholar
  45. 45.
    Shirpoor A, Salami S, Khadem-Ansari MH, Minassian S, Yegiazarian M (2009) Protective effect of vitamin E against ethanol-induced hyperhomocysteinemia, DNA damage, and atrophy in the developing male rat brain. Alcohol Clin Exp Res 33(7):1181–1186CrossRefPubMedGoogle Scholar
  46. 46.
    Tiwari V, Chopra K (2012) Attenuation of oxidative stress, neuroinflammation, and apoptosis by curcumin prevents cognitive deficits in rats postnatally exposed to ethanol. Psychopharmacology 224(4):519–535CrossRefPubMedGoogle Scholar
  47. 47.
    Xu P, Li D, Tang X, Bao X, Huang J, Tang Y, Yang Y, Xu H, Fan X (2013) LXR agonists: new potential therapeutic drug for neurodegenerative diseases. Mol Neurobiol. doi: 10.1007/s12035-013-8461-3 Google Scholar
  48. 48.
    Zhang-Gandhi CX, Drew PD (2007) Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J Neuroimmunol 183(1):50–59CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Marı́n-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41(4):535–547CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yang Yang
    • 1
  • Yongping Tang
    • 2
    • 3
  • Yan Xing
    • 4
  • Meina Zhao
    • 1
  • Xiaohang Bao
    • 5
  • Dayu Sun
    • 1
  • Xiaotong Tang
    • 1
  • Yuzhang Wu
    • 4
  • Haiwei Xu
    • 2
    • 3
    Email author
  • Xiaotang Fan
    • 1
    Email author
  1. 1.Department of Histology and EmbryologyThird Military Medical UniversityChongqingPeople’s Republic of China
  2. 2.Southwest Eye Hospital, Southwest HospitalThird Military Medical UniversityChongqingPeople’s Republic of China
  3. 3.Key Laboratory of Visual Damage and Regeneration and Restoration of ChongqingChongqingPeople’s Republic of China
  4. 4.Institute of Immunology, PLAThird Military Medical UniversityChongqingPeople’s Republic of China
  5. 5.Department of Anesthesiology, Xinqiao HospitalThird Military Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations