Advertisement

Molecular Neurobiology

, Volume 49, Issue 1, pp 187–198 | Cite as

Elevated Cerebral Cortical CD24 Levels in Patients and Mice with Traumatic Brain Injury: A Potential Negative Role in Nuclear Factor Kappa B/Inflammatory Factor Pathway

  • Wei Li
  • Hai-Ping Ling
  • Wan-Chun You
  • Huan-Dong Liu
  • Qing Sun
  • Meng-Liang Zhou
  • Wei Shen
  • Jin-Bing Zhao
  • Lin Zhu
  • Chun-Hua Hang
Article

Abstract

Increasing evidence indicates that sterile inflammatory response contributes to secondary brain injury following traumatic brain injury (TBI). However, the specific mechanisms remain largely unknown, as is whether CD24, known as an important regulator in the non-infectious inflammatory response, plays a role in secondary brain injury after TBI. Here, the expression of CD24 was detected in samples from patients with TBI by quantitative real-time polymerase chain reaction (PCR), western blotting, immunohistochemistry and immunofluorescence. RNA interference was used to investigate the effects of CD24 on inflammatory response in a mouse model of TBI. Nuclear factor kappa B (NF-κB) DNA-binding activity was measured by electrophoretic mobility shift assay, and the levels of downstream pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and Interleukin 1β (IL-1β) were detected by real-time PCR. The results indicated that both the mRNA and protein levels of CD24 were markedly elevated after TBI in humans and mice, showing a time-dependent expression. The expression of CD24 could be observed in neurons, astrocytes and microglia in both humans and mice. Meanwhile, downregulation of CD24 significantly induced an increase of NF-κB DNA-binding activity and mRNA levels of TNF-α and IL-1β. These findings indicated that CD24 expression could negatively regulate the NF-κB/inflammatory factor pathway after experimental TBI in mice, thus providing a novel target for therapeutic intervention of TBI.

Keywords

Traumatic brain injury CD24 Inflammatory response Short hairpin RNA Knockdown 

Notes

Acknowledgments

We gratefully acknowledge the generous technical assistance from Dr. Gen-bao Feng. This study was supported by grants from the National Natural Science Foundation, China (no. 81171170 for C.H. Hang, no. 8100053 for M.L. Zhou, and no. 81271377 for L. Zhu).

Competing Interests

The authors declare no conflict of interests related to this study.

References

  1. 1.
    Ghajar J (2000) Traumatic brain injury. Lancet 356(9233):923–929PubMedCrossRefGoogle Scholar
  2. 2.
    Maas AI, Dearden M, Servadei F, Stocchetti N, Unterberg A (2000) Current recommendations for neurotrauma. Curr Opin Crit Care 6(4):281–292PubMedCrossRefGoogle Scholar
  3. 3.
    Schmidt OI, Heyde CE, Ertel W, Stahel PF (2005) Closed head injury—an inflammatory disease? Brain Res Brain Res Rev 48(2):388–399PubMedCrossRefGoogle Scholar
  4. 4.
    Lescot T, Abdennour L, Degos V, Boch AL, Puybasset L (2007) Management of severe traumatic brain injury. Presse Med 36(7–8):1117–1126PubMedCrossRefGoogle Scholar
  5. 5.
    Sande A, West C (2010) Traumatic brain injury: a review of pathophysiology and management. J Vet Emerg Crit Care (San Antonio) 20(2):177–190CrossRefGoogle Scholar
  6. 6.
    Harting MT, Jimenez F, Adams SD, Mercer DW, Cox CS Jr (2008) Acute, regional inflammatory response after traumatic brain injury: Implications for cellular therapy. Surgery 144(5):803–813PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Lu J, Goh SJ, Tng PY, Deng YY, Ling EA, Moochhala S (2009) Systemic inflammatory response following acute traumatic brain injury. Front Biosci 14:3795–3813CrossRefGoogle Scholar
  8. 8.
    Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T (2002) Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 8(2):101–105PubMedCrossRefGoogle Scholar
  9. 9.
    Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35(3):255–262PubMedCrossRefGoogle Scholar
  10. 10.
    Kay R, Rosten PM, Humphries RK (1991) CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol 147(4):1412–1416PubMedGoogle Scholar
  11. 11.
    Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, Yagita H, Sleeman JP (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65(23):10783–10793PubMedCrossRefGoogle Scholar
  12. 12.
    Belvindrah R, Rougon G, Chazal G (2002) Increased neurogenesis in adult mCD24-deficient mice. J Neurosci 22(9):3594–3607PubMedGoogle Scholar
  13. 13.
    Bai XF, Li O, Zhou Q, Zhang H, Joshi PS, Zheng X, Liu Y, Wang Y, Zheng P (2004) CD24 controls expansion and persistence of autoreactive T cells in the central nervous system during experimental autoimmune encephalomyelitis. J Exp Med 200(4):447–458PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Calaora V, Chazal G, Nielsen PJ, Rougon G, Moreau H (1996) mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience 73(2):581–594PubMedCrossRefGoogle Scholar
  15. 15.
    Liu Y, Zheng P (2007) CD24: a genetic checkpoint in T cell homeostasis and autoimmune diseases. Trends Immunol 28(7):315–320PubMedCrossRefGoogle Scholar
  16. 16.
    Ahmed MA, Jackson D, Seth R, Robins A, Lobo DN, Tomlinson IP, Ilyas M (2010) CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation. Inflamm Bowel Dis 16(5):795–803PubMedCrossRefGoogle Scholar
  17. 17.
    Bianchi ME, Manfredi AA (2009) Immunology. Dangers in and out. Science 323(5922):1683–1684PubMedCrossRefGoogle Scholar
  18. 18.
    Chen GY, Tang J, Zheng P, Liu Y (2009) CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323(5922):1722–1725PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Liu Y, Chen GY, Zheng P (2009) CD24-Siglec G/10 discriminates danger from pathogen-associated molecular patterns. Trends Immunol 30(12):557–561PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E (2009) Mouse closed head injury model induced by a weight-drop device. Nat Protoc 4(9):1328–1337PubMedCrossRefGoogle Scholar
  21. 21.
    Stahel PF, Shohami E, Younis FM, Kariya K, Otto VI, Lenzlinger PM, Grosjean MB, Eugster HP, Trentz O, Kossmann T, Morganti-Kossmann MC (2000) Experimental closed head injury: analysis of neurological outcome, blood–brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J Cereb Blood Flow Metab 20(2):369–380PubMedCrossRefGoogle Scholar
  22. 22.
    Li W, Ling HP, You WC, Ji XJ, Tang Y, Zhao JB, Su XF, Hang CH (2013) Recombinant high-mobility group box 1 protein (HMGB-1) promotes myeloid differentiation primary response protein 88 (Myd88) upregulation in mouse primary cortical neurons. Neurol Sci 34(6):847–853PubMedCrossRefGoogle Scholar
  23. 23.
    Ling HP, Li W, Zhou ML, Tang Y, Chen ZR, Hang CH (2013) Expression of intestinal myeloid differentiation primary response protein 88 (Myd88) following experimental traumatic brain injury in a mouse model. J Surg Res 179(1):e227–e234PubMedCrossRefGoogle Scholar
  24. 24.
    Li GZ, Zhang Y, Zhao JB, Wu GJ, Su XF, Hang CH (2011) Expression of myeloid differentiation primary response protein 88 (Myd88) in the cerebral cortex after experimental traumatic brain injury in rats. Brain Res 1396:96–104PubMedCrossRefGoogle Scholar
  25. 25.
    Zhao JB, Zhang Y, Li GZ, Su XF, Hang CH (2011) Activation of JAK2/STAT pathway in cerebral cortex after experimental traumatic brain injury of rats. Neurosci Lett 498(2):147–152PubMedCrossRefGoogle Scholar
  26. 26.
    Hang CH, Chen G, Shi JX, Zhang X, Li JS (2006) Cortical expression of nuclear factor kappaB after human brain contusion. Brain Res 1109(1):14–21PubMedCrossRefGoogle Scholar
  27. 27.
    Hang CH, Shi JX, Li JS, Wu W, Yin HX (2005) Concomitant upregulation of nuclear factor-κB activity, proinflammatory cytokines and ICAM-1 in the injured brain after cortical contusion trauma in a rat model. Neurol India 53(3):312–317PubMedCrossRefGoogle Scholar
  28. 28.
    Fukushima T, Tezuka T, Shimomura T, Nakano S, Kataoka H (2007) Silencing of insulin-like growth factor-binding protein-2 in human glioblastoma cells reduces both invasiveness and expression of progression-associated gene CD24. J Biol Chem 282(25):18634–18644PubMedCrossRefGoogle Scholar
  29. 29.
    Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397PubMedCrossRefGoogle Scholar
  30. 30.
    Cavassani KA, Ishii M, Wen H, Schaller MA, Lincoln PM, Lukacs NW, Hogaboam CM, Kunkel SL (2008) TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 205(11):2609–2621PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045PubMedCrossRefGoogle Scholar
  32. 32.
    Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8(5):487–496PubMedCrossRefGoogle Scholar
  33. 33.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059PubMedCrossRefGoogle Scholar
  34. 34.
    Warger T, Hilf N, Rechtsteiner G, Haselmayer P, Carrick DM, Jonuleit H, von Landenberg P, Rammensee HG, Nicchitta CV, Radsak MP, Schild H (2006) Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem 281(32):22545–22553PubMedCrossRefGoogle Scholar
  35. 35.
    Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585(23):3798–3805PubMedCrossRefGoogle Scholar
  36. 36.
    Bleckmann C, Geyer H, Reinhold V, Lieberoth A, Schachner M, Kleene R, Geyer R (2009) Glycomic analysis of N-linked carbohydrate epitopes from CD24 of mouse brain. J Proteome Res 8(2):567–582PubMedCrossRefGoogle Scholar
  37. 37.
    Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5(3):195–208PubMedCrossRefGoogle Scholar
  38. 38.
    Bai XF, Liu JQ, Liu X, Guo Y, Cox K, Wen J, Zheng P, Liu Y (2000) The heat-stable antigen determines pathogenicity of self-reactive T cells in experimental autoimmune encephalomyelitis. J Clin Invest 105(9):1227–1232PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Jiang W, Sui X, Zhang D, Liu M, Ding M, Shi Y, Deng H (2011) CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells 29(4):609–617PubMedCrossRefGoogle Scholar
  40. 40.
    Qiu Q, Hernandez JC, Dean AM, Rao PH, Darlington GJ (2011) CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells. Stem Cells Dev 20(12):2177–2188PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wei Li
    • 1
  • Hai-Ping Ling
    • 2
  • Wan-Chun You
    • 1
  • Huan-Dong Liu
    • 2
  • Qing Sun
    • 1
  • Meng-Liang Zhou
    • 1
    • 2
  • Wei Shen
    • 2
  • Jin-Bing Zhao
    • 3
  • Lin Zhu
    • 1
    • 2
  • Chun-Hua Hang
    • 1
    • 2
  1. 1.Department of Neurosurgery, Jinling Hospital, School of MedicineNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Department of Neurosurgery, Jinling Hospital, School of MedicineSouthern Medical University (Guangzhou)NanjingPeople’s Republic of China
  3. 3.Department of NeurosurgeryNanjing Brain Hospital, Affiliated to Nanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations