Molecular Neurobiology

, Volume 48, Issue 2, pp 302–307 | Cite as

Utilization of Neural Stem Cell-Derived Models to Study Anesthesia-Related Toxicity and Preventative Approaches

  • Cheng Wang
  • Fang Liu
  • Tucker A. Patterson
  • Merle G. Paule
  • William SlikkerJr.


Early-life stress has been shown in both preclinical and clinical studies to cause neuroanatomical and biological alterations and disruptions in homeostasis. These alterations can lead to dysfunction in critical regulatory systems and concomitant increases in risk for the development of pathology. The existing data from research using in vivo animal models have implicated some general anesthetics as being toxic to the developing brain and causing cognitive deficits later in life. Because of obvious limitations, it is not possible to thoroughly explore the effects of early-life stress—e.g., prolonged exposure to anesthetic agents—on neurons in vivo in human infants or children. However, the availability of stem cell-derived models, especially human embryonic neural stem cells, along with their capacity for proliferation and ability to differentiate, has provided a potentially invaluable tool for examining the developmental effects of anesthetic agents in vitro. This review focuses on how embryonic neural stem cells, when combined with biochemical, pathological, and pharmacokinetic assessments, might serve as a bridging platform to provide the most expeditious approaches toward decreasing the uncertainty in extrapolating preclinical data to the human condition. This review presents key concepts in stem cell biology with respect to the nervous system, presents an overview of neural development, and summarizes the involvement of neural cell types in developmental neurotoxicity associated with anesthetic exposure.


Neural stem cells Development Anesthesia Toxicology Neuroprotection 



  1. 1.
    Brokhman I, Gamarnik-Ziegler L, Pomp O, Aharonowiz M, Reubinoff BE, Goldstein RS (2008) Peripheral sensory neurons differentiate from neural precursors derived from human embryonic stem cells. Differentiation 76:145–155PubMedCrossRefGoogle Scholar
  2. 2.
    Wang C, Rougon G, Kiss JZ (1994) Requirement of polysialic acid for the migration of the O-2A glial progenitor cell from neurohypophyseal explants. J Neurosci 14:4446–4457PubMedGoogle Scholar
  3. 3.
    Wang C, Pralong WF, Schulz MF, Rougon G, Aubry JM, Pagliusi S, Robert A, Kiss JZ (1996) Functional N-methyl-d-aspartate receptors in O-2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration. J Cell Biol 135:1565–1581PubMedCrossRefGoogle Scholar
  4. 4.
    Trujillo CA, Schwindt TT, Martins AH, Alves JM, Mello LE, Ulrich H (2009) Novel perspectives of neural stem cell differentiation: from neurotransmitters to therapeutics. Cytometry A 75:38–53PubMedGoogle Scholar
  5. 5.
    Kiss JZ, Wang C, Olive S, Rougon G, Lang J, Baetens D, Harry D, Pralong WF (1994) Activity-dependent mobilization of the adhesion molecule polysialic NCAM to the cell surface of neurons and endocrine cells. EMBO J 13:5284–5292PubMedGoogle Scholar
  6. 6.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813PubMedCrossRefGoogle Scholar
  7. 7.
    Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95:13726–13731PubMedCrossRefGoogle Scholar
  8. 8.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  9. 9.
    Kang SM, Cho MS, Seo H, Yoon CJ, Oh SK, Choi YM, Kim DW (2007) Efficient induction of oligodendrocytes from human embryonic stem cells. Stem Cells 25:419–424PubMedCrossRefGoogle Scholar
  10. 10.
    Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25:4694–4705PubMedCrossRefGoogle Scholar
  11. 11.
    Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103:12769–12774PubMedCrossRefGoogle Scholar
  12. 12.
    Lee DS, Yu K, Rho JY, Lee E, Han JS, Koo DB, Cho YS, Kim J, Lee KK, Han YM (2006) Cyclopamine treatment of human embryonic stem cells followed by culture in human astrocyte medium promotes differentiation into nestin- and GFAP-expressing astrocytic lineage. Life Sci 80:154–159PubMedCrossRefGoogle Scholar
  13. 13.
    Li XJ, Du ZW, Zarnowska ED, Pankratz M, Hansen LO, Pearce RA, Zhang SC (2005) Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 23:215–221PubMedCrossRefGoogle Scholar
  14. 14.
    Park CH, Minn YK, Lee JY, Choi DH, Chang MY, Shim JW, Ko JY, Koh HC, Kang MJ, Kang JS, Rhie DJ, Lee YS, Son H, Moon SY, Kim KS, Lee SH (2005) In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. J Neurochem 92:1265–1276PubMedCrossRefGoogle Scholar
  15. 15.
    Molero AE, Gokhan S, Gonzalez S, Feig JL, Alexandre LC, Mehler MF (2009) Impairment of developmental stem cell-mediated striatal neurogenesis and pluripotency genes in a knock-in model of Huntington's disease. Proc Natl Acad Sci U S A 106:21900–21905PubMedCrossRefGoogle Scholar
  16. 16.
    Wang C, Fridley J, Johnson KM (2005) The role of NMDA receptor upregulation in phencyclidine-induced cortical apoptosis in organotypic culture. Biochem Pharmacol 69:1373–1383PubMedCrossRefGoogle Scholar
  17. 17.
    Wang C, Sadovova N, Fu X, Schmued L, Scallet A, Hanig J, Slikker W (2005) The role of the N-methyl-d-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture. Neuroscience 132:967–977PubMedCrossRefGoogle Scholar
  18. 18.
    Wang C, Sadovova N, Hotchkiss C, Fu X, Scallet AC, Patterson TA, Hanig J, Paule MG, Slikker W Jr (2006) Blockade of N-methyl-d-aspartate receptors by ketamine produces loss of postnatal day 3 monkey frontal cortical neurons in culture. Toxicol Sci 91:192–201PubMedCrossRefGoogle Scholar
  19. 19.
    Slikker W Jr, Zou X, Hotchkiss CE, Divine RL, Sadovova N, Twaddle NC, Doerge DR, Scallet AC, Patterson TA, Hanig JP, Paule MG, Wang C (2007) Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci 98:145–158PubMedCrossRefGoogle Scholar
  20. 20.
    Zou X, Sadovova N, Patterson TA, Divine RL, Hotchkiss CE, Ali SF, Hanig JP, Paule MG, Slikker W Jr, Wang C (2008) The effects of l-carnitine on the combination of, inhalation anesthetic-induced developmental, neuronal apoptosis in the rat frontal cortex. Neuroscience 151:1053–1065PubMedCrossRefGoogle Scholar
  21. 21.
    Wang C, Sadovova N, Patterson TA, Zou X, Fu X, Hanig JP, Paule MG, Ali SF, Zhang X, Slikker W Jr (2008) Protective effects of 7-nitroindazole on ketamine-induced neurotoxicity in rat forebrain culture. Neurotoxicology 29:613–620PubMedCrossRefGoogle Scholar
  22. 22.
    Liu F, Zhang X, Patterson TA, Liu S, Ali SF, Paule MG, Slikker W Jr, Wang C (2012) Assessment of potential neuronal toxicity of inhaled anesthetics in the developing nonhuman primate. Journal of Drug and Alcohol Research 1:9. doi: 10.4303/jdar/235607
  23. 23.
    Kalkman CJ, Peelen L, Moons KG, Veenhuizen M, Bruens M, Sinnema G, de Jong TP (2009) Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 110:805–812PubMedCrossRefGoogle Scholar
  24. 24.
    Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804PubMedCrossRefGoogle Scholar
  25. 25.
    Culley DJ, Boyd JD, Palanisamy A, Xie Z, Kojima K, Vacanti CA, Tanzi RE, Crosby G (2011) Isoflurane decreases self-renewal capacity of rat cultured neural stem cells. Anesthesiology 115:754–763PubMedCrossRefGoogle Scholar
  26. 26.
    Shi Q, Guo L, Patterson TA, Dial S, Li Q, Sadovova N, Zhang X, Hanig JP, Paule MG, Slikker W Jr, Wang C (2010) Gene expression profiling in the developing rat brain exposed to ketamine. Neuroscience 166:852–863PubMedCrossRefGoogle Scholar
  27. 27.
    Zou X, Patterson TA, Sadovova N, Twaddle NC, Doerge DR, Zhang X, Fu X, Hanig JP, Paule MG, Slikker W, Wang C (2009) Potential neurotoxicity of ketamine in the developing rat brain. Toxicol Sci 108:149–158PubMedCrossRefGoogle Scholar
  28. 28.
    Wang C (2012) Advanced pre-clinical research approaches and models to studying pediatric anesthetic neurotoxicity. Front Neurol 3:142PubMedGoogle Scholar
  29. 29.
    Temple S (2001) The development of neural stem cells. Nature 414:112–117PubMedCrossRefGoogle Scholar
  30. 30.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970PubMedCrossRefGoogle Scholar
  31. 31.
    Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441PubMedCrossRefGoogle Scholar
  32. 32.
    Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA (2006) Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12:1259–1268PubMedCrossRefGoogle Scholar
  33. 33.
    Yan Y, Yang D, Zarnowska ED, Du Z, Werbel B, Valliere C, Pearce RA, Thomson JA, Zhang SC (2005) Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 23:781–790PubMedCrossRefGoogle Scholar
  34. 34.
    Pogge A, Slikker W Jr (2004) Neuroimaging: new approaches for neurotoxicology. Neurotoxicology 25:525–531PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang X, Paule MG, Newport GD, Sadovova N, Berridge MS, Apana SM, Kabalka G, Miao W, Slikker W Jr, Wang C (2011) MicroPET imaging of ketamine-induced neuronal apoptosis with radiolabeled DFNSH. J Neural Transm 118:203–211PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang X, Paule MG, Newport GD, Zou X, Sadovova N, Berridge MS, Apana SM, Hanig JP, Slikker W Jr, Wang C (2009) A minimally invasive, translational biomarker of ketamine-induced neuronal death in rats: microPET imaging using 18F-annexin V. Toxicol Sci 111:355–361PubMedCrossRefGoogle Scholar
  37. 37.
    Eckelman WC (2003) The use of gene-manipulated mice in the validation of receptor binding radiotracer. Nucl Med Biol 30:851–860PubMedCrossRefGoogle Scholar
  38. 38.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580PubMedCrossRefGoogle Scholar
  39. 39.
    Min JJ, Gambhir SS (2004) Gene therapy progress and prospects: noninvasive imaging of gene therapy in living subjects. Gene Ther 11:115–125PubMedGoogle Scholar
  40. 40.
    Slikker W, Xu Z, Wang C (2005) Application of a systems biology approach to developmental neurotoxicology. Reprod Toxicol 19:305–319PubMedCrossRefGoogle Scholar
  41. 41.
    Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336PubMedCrossRefGoogle Scholar
  42. 42.
    Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80SPubMedCrossRefGoogle Scholar
  43. 43.
    Rueger MA, Backes H, Walberer M, Neumaier B, Ullrich R, Simard ML, Emig B, Fink GR, Hoehn M, Graf R, Schroeter M (2010) Noninvasive imaging of endogenous neural stem cell mobilization in vivo using positron emission tomography. J Neurosci 30:6454–6460PubMedCrossRefGoogle Scholar
  44. 44.
    Jacobs AH, Rueger MA, Winkeler A, Li H, Vollmar S, Waerzeggers Y, Rueckriem B, Kummer C, Dittmar C, Klein M, Heneka MT, Herrlinger U, Fraefel C, Graf R, Wienhard K, Heiss WD (2007) Imaging-guided gene therapy of experimental gliomas. Cancer Res 67:1706–1715PubMedCrossRefGoogle Scholar
  45. 45.
    Toyohara J, Kumata K, Fukushi K, Irie T, Suzuki K (2006) Evaluation of 4′-[methyl-14C]thiothymidine for in vivo DNA synthesis imaging. J Nucl Med 47:1717–1722PubMedGoogle Scholar
  46. 46.
    Toyohara J, Okada M, Toramatsu C, Suzuki K, Irie T (2008) Feasibility studies of 4′-[methyl-11C]thiothymidine as a tumor proliferation imaging agent in mice. Nucl Med Biol 35:67–74PubMedCrossRefGoogle Scholar
  47. 47.
    Toyohara J, Nariai T, Sakata M, Oda K, Ishii K, Kawabe T, Irie T, Saga T, Kubota K, Ishiwata K (2011) Whole-body distribution and brain tumor imaging with 11C-4DST: a pilot study. J Nucl Med 52:1322–1328PubMedCrossRefGoogle Scholar
  48. 48.
    Toyohara J, Elsinga PH, Ishiwata K, Sijbesma JW, Dierckx RA, van Waarde A (2012) Evaluation of 4′-[methyl-11C]thiothymidine in a rodent tumor and inflammation model. J Nucl Med 53:488–494PubMedCrossRefGoogle Scholar
  49. 49.
    Myers R (2001) The biological application of small animal PET imaging. Nucl Med Biol 28:585–593PubMedCrossRefGoogle Scholar
  50. 50.
    Chatziioannou AF (2002) Molecular imaging of small animals with dedicated PET tomographs. Eur J Nucl Med Mol Imaging 29:98–114PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  • Cheng Wang
    • 1
    • 3
  • Fang Liu
    • 1
  • Tucker A. Patterson
    • 1
  • Merle G. Paule
    • 1
  • William SlikkerJr.
    • 2
  1. 1.Division of NeurotoxicologyNational Center for Toxicological Research (NCTR)/FDAJeffersonUSA
  2. 2.Office of the DirectorNational Center for Toxicological Research (NCTR)/FDAJeffersonUSA
  3. 3.National Center for Toxicological Research, HFT-132Food and Drug AdministrationJeffersonUSA

Personalised recommendations