Molecular Neurobiology

, Volume 48, Issue 2, pp 315–332 | Cite as

Platelet-Rich Plasma and the Elimination of Neuropathic Pain

  • Damien P. KufflerEmail author


Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.


Prolotherapy Stem cells Mesenchymal cells Nerve trauma Inflammation Wound healing Axon regeneration Target reinnervation 



Production of this paper involved no financial support or conflicts of interest.


  1. 1.
    Devor M (2006) Sodium channels and mechanisms of neuropathic pain. J Pain 7:S3–S12PubMedGoogle Scholar
  2. 2.
    Cummins TR, Sheets PL, Waxman SG (2007) The roles of sodium channels in nociception: implications for mechanisms of pain. Pain 131:243–257PubMedCrossRefGoogle Scholar
  3. 3.
    Finnerup NB, Sindrup SH, Jensen TS (2010) The evidence for pharmacological treatment of neuropathic pain. Pain 150:573–581PubMedCrossRefGoogle Scholar
  4. 4.
    Zieglgansberger W, Berthele A, Tolle TR (2005) Understanding neuropathic pain. CNS Spectr 10:285–297Google Scholar
  5. 5.
    Shin HS, Oh HY (2012) The effect of platelet-rich plasma on wounds of OLETF rats using expression of matrix metalloproteinase-2 and -9 mRNA. Arch Plast Surg 39:106–112PubMedCrossRefGoogle Scholar
  6. 6.
    Park SI, Lee HR, Kim S, Ahn MW, Do SH (2012) Time-sequential modulation in expression of growth factors from platelet-rich plasma (PRP) on the chondrocyte cultures. Mol Cell Biochem 361:9–17PubMedCrossRefGoogle Scholar
  7. 7.
    Yuan T, Guo SC, Han P, Zhang CQ, Zeng BF (2012) Applications of leukocyte- and platelet-rich plasma (L-PRP) in trauma surgery. Curr Pharm Biotechnol 13:1173–1184PubMedCrossRefGoogle Scholar
  8. 8.
    Saucedo JM, Yaffe MA, Berschback JC, Hsu WK, Kalainov DM (2012) Platelet-rich plasma. J Hand Surg Am 37:587–589, quiz 590PubMedCrossRefGoogle Scholar
  9. 9.
    Sanchez-Gonzalez DJ, Mendez-Bolaina E, Trejo-Bahena NI (2012) Platelet-rich plasma peptides: key for regeneration. Int J Pept 2012:532519PubMedGoogle Scholar
  10. 10.
    Rodrigues SV, Acharya AB, Thakur SL (2012) Platelet-rich plasma. A review. N Y State Dent J 78:26–30PubMedGoogle Scholar
  11. 11.
    Havran WL, Jameson JM (2010) Epidermal T cells and wound healing. J Immunol 184:5423–5428PubMedCrossRefGoogle Scholar
  12. 12.
    Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737PubMedCrossRefGoogle Scholar
  13. 13.
    Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289PubMedCrossRefGoogle Scholar
  14. 14.
    Mack JA, Feldman RJ, Itano N, Kimata K, Lauer M, Hascall VC, Maytin EV (2012) Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J Invest Dermatol 132:198–207PubMedCrossRefGoogle Scholar
  15. 15.
    Santiago-Figueroa JSI, Reyes O, Guzmán H, Hernández R, Kuffler DP (2013) Reducing and eliminating human neuropathic pain following peripheral nerve trauma. J Pain Manag (in press)Google Scholar
  16. 16.
    Thanasas C, Papadimitriou G, Charalambidis C, Paraskevopoulos I, Papanikolaou A (2011) Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis: a randomized controlled clinical trial. Am J Sports Med 39:2130–2134PubMedCrossRefGoogle Scholar
  17. 17.
    Chen L, Dong SW, Liu JP, Tao X, Tang KL, Xu JZ (2012) Synergy of tendon stem cells and platelet-rich plasma in tendon healing. J Orthop Res 30:991–997PubMedCrossRefGoogle Scholar
  18. 18.
    Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52:77–92PubMedCrossRefGoogle Scholar
  19. 19.
    Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284PubMedCrossRefGoogle Scholar
  20. 20.
    Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758PubMedCrossRefGoogle Scholar
  21. 21.
    Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51:240–264PubMedCrossRefGoogle Scholar
  22. 22.
    Shokouhi BN, Wong BZ, Siddiqui S, Lieberman AR, Campbell G, Tohyama K, Anderson PN (2010) Microglial responses around intrinsic CNS neurons are correlated with axonal regeneration. BMC Neurosci 11:13PubMedCrossRefGoogle Scholar
  23. 23.
    Meltzer NE, Alam DS (2010) Facial paralysis rehabilitation: state of the art. Curr Opin Otolaryngol Head Neck Surg 18:232–237PubMedCrossRefGoogle Scholar
  24. 24.
    Navarro A, Saldana MT, Perez C, Torrades S, Rejas J (2011) A cost-consequences analysis of the effect of pregabalin in the treatment of peripheral neuropathic pain in routine medical practice in primary care settings. BMC Neurol 11:7PubMedCrossRefGoogle Scholar
  25. 25.
    van Kollenburg EG, Lavrijsen JC, Verhagen SC, Zuidema SU, Schalkwijk A, Vissers KC (2012) Prevalence, causes, and treatment of neuropathic pain in dutch nursing home residents: a retrospective chart review. J Am Geriatr Soc 60:1418PubMedCrossRefGoogle Scholar
  26. 26.
    Benninger M, Walner D (2007) Obstructive sleep-disordered breathing in children. Clin Cornerstone 9(Suppl 1):S6–S12PubMedCrossRefGoogle Scholar
  27. 27.
    Djouhri L, Fang X, Koutsikou S, Lawson SN (2012) Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain 153:1824–1836PubMedCrossRefGoogle Scholar
  28. 28.
    Hibner M, Castellanos ME, Drachman D, Balducci J (2012) Repeat operation for treatment of persistent pudendal nerve entrapment after pudendal neurolysis. J Minim Invasive Gynecol 19:325–330PubMedCrossRefGoogle Scholar
  29. 29.
    Baron R (2006) Mechanisms of disease: neuropathic pain–a clinical perspective. Nat Clin Pract Neurol 2:95–106PubMedCrossRefGoogle Scholar
  30. 30.
    Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286PubMedCrossRefGoogle Scholar
  31. 31.
    Benowitz LI, Popovich PG (2011) Inflammation and axon regeneration. Curr Opin Neurol 24:577–583PubMedCrossRefGoogle Scholar
  32. 32.
    Thomson EM, Williams A, Yauk CL, Vincent R (2012) Overexpression of tumor necrosis factor-alpha in the lungs alters immune response, matrix remodeling, and repair and maintenance pathways. Am J Pathol 180:1413–1430PubMedCrossRefGoogle Scholar
  33. 33.
    Ashcroft GS, Jeong MJ, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, Wild T, McCartney-Francis N, Sim D, McGrady G, Song XY, Wahl SM (2012) Tumor necrosis factor-alpha (TNF-alpha) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen 20:38–49PubMedCrossRefGoogle Scholar
  34. 34.
    Scull CM, Hays WD, Fischer TH (2010) Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J Inflamm (Lond) 7:53CrossRefGoogle Scholar
  35. 35.
    Falanga V, Grinnell F, Gilchrest B, Maddox YT, Moshell A (1994) Workshop on the pathogenesis of chronic wounds. J Invest Dermatol 102:125–127PubMedCrossRefGoogle Scholar
  36. 36.
    Abdulla FA, Smith PA (2001) Axotomy- and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. J Neurophysiol 85:630–643PubMedGoogle Scholar
  37. 37.
    Zheng JH, Walters ET, Song XJ (2007) Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP. J Neurophysiol 97:15–25PubMedCrossRefGoogle Scholar
  38. 38.
    Ma C, LaMotte RH (2005) Enhanced excitability of dissociated primary sensory neurons after chronic compression of the dorsal root ganglion in the rat. Pain 113:106–112PubMedCrossRefGoogle Scholar
  39. 39.
    Moalem G, Grafe P, Tracey DJ (2005) Chemical mediators enhance the excitability of unmyelinated sensory axons in normal and injured peripheral nerve of the rat. Neuroscience 134:1399–1411PubMedCrossRefGoogle Scholar
  40. 40.
    Sun W, Miao B, Wang XC, Duan JH, Wang WT, Kuang F, Xie RG, Xing JL, Xu H, Song XJ, Luo C, Hu SJ (2012) Reduced conduction failure of the main axon of polymodal nociceptive C-fibres contributes to painful diabetic neuropathy in rats. Brain 135:359–375PubMedCrossRefGoogle Scholar
  41. 41.
    Lolignier S, Amsalem M, Maingret F, Padilla F, Gabriac M, Chapuy E, Eschalier A, Delmas P, Busserolles J (2011) Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS One 6:e23083PubMedCrossRefGoogle Scholar
  42. 42.
    Patel SR, Blackwell T, Redline S, Ancoli-Israel S, Cauley JA, Hillier TA, Lewis CE, Orwoll ES, Stefanick ML, Taylor BC, Yaffe K, Stone KL (2008) The association between sleep duration and obesity in older adults. Int J Obes 32:1825–1834CrossRefGoogle Scholar
  43. 43.
    Spiegel K (2008) Sleep loss as a risk factor for obesity and diabetes. Int J Pediatr Obes IJPO Off J Int Assoc Study Obes 3(Suppl 2):27–28CrossRefGoogle Scholar
  44. 44.
    Obata K, Yamanaka H, Fukuoka T, Yi D, Tokunaga A, Hashimoto N, Yoshikawa H, Noguchi K (2003) Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 101:65–77PubMedCrossRefGoogle Scholar
  45. 45.
    Decosterd I, Ji RR, Abdi S, Tate S, Woolf CJ (2002) The pattern of expression of the voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain 96:269–277PubMedCrossRefGoogle Scholar
  46. 46.
    Del Valle L, Schwartzman RJ, Alexander G (2009) Spinal cord histopathological alterations in a patient with longstanding complex regional pain syndrome. Brain Behav Immun 23:85–91PubMedCrossRefGoogle Scholar
  47. 47.
    Yuan LP, Bo Y, Ming G, Zhou QL (2012) Expression of acid-sensing ion channels of gastric mucosa from patients with Henoch–Schonlein purpura. J Pediatr Gastroenterol Nutr 54:561–563PubMedCrossRefGoogle Scholar
  48. 48.
    Etulain J, Negrotto S, Carestia A, Pozner RG, Romaniuk MA, D'Atri LP, Klement GL, Schattner M (2012) Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets. Thromb Haemost 107:99–110PubMedCrossRefGoogle Scholar
  49. 49.
    Liu X, He L, Dinger B, Fidone SJ (2011) Chronic hypoxia-induced acid-sensitive ion channel expression in chemoafferent neurons contributes to chemoreceptor hypersensitivity. Am J Physiol Lung Cell Mol Physiol 301:L985–L992PubMedCrossRefGoogle Scholar
  50. 50.
    Huang CW, Tzeng JN, Chen YJ, Tsai WF, Chen CC, Sun WH (2007) Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors. Mol Cell Neurosci 36:195–210PubMedCrossRefGoogle Scholar
  51. 51.
    Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296–18305PubMedCrossRefGoogle Scholar
  52. 52.
    Andreev YA, Vassilevski AA, Kozlov SA (2012) Molecules to selectively target receptors for treatment of pain and neurogenic inflammation. Recent Patents Inflamm Allergy Drug Discov 6:35–45CrossRefGoogle Scholar
  53. 53.
    Mamet J, Baron A, Lazdunski M, Voilley N (2002) Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci Off J Soc Neurosci 22:10662–10670Google Scholar
  54. 54.
    Juchem G, Weiss DR, Knott M, Senftl A, Forch S, Fischlein T, Kreuzer E, Reichart B, Laufer S, Nees S (2012) Regulation of coronary venular barrier function by blood borne inflammatory mediators and pharmacological tools: insights from novel microvascular wall models. Am J Physiol Heart Circ Physiol 302:H567–H581PubMedCrossRefGoogle Scholar
  55. 55.
    Cloutier N, Pare A, Farndale RW, Schumacher HR, Nigrovic PA, Lacroix S, Boilard E (2012) Platelets can enhance vascular permeability. Blood 120:1334–1343PubMedCrossRefGoogle Scholar
  56. 56.
    Kurita J, Miyamoto M, Ishii Y, Aoyama J, Takagi G, Naito Z, Tabata Y, Ochi M, Shimizu K (2011) Enhanced vascularization by controlled release of platelet-rich plasma impregnated in biodegradable gelatin hydrogel. Ann Thorac Surg 92:837–844, discussion 844PubMedCrossRefGoogle Scholar
  57. 57.
    Roy S, Driggs J, Elgharably H, Biswas S, Findley M, Khanna S, Gnyawali U, Bergdall VK, Sen CK (2011) Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation. Wound Repair Regen Off Publ Wound Healing Soc Eur Tissue Repair Soc 19:753–766CrossRefGoogle Scholar
  58. 58.
    Harrison S, Vavken P, Kevy S, Jacobson M, Zurakowski D, Murray MM (2011) Platelet activation by collagen provides sustained release of anabolic cytokines. Am J Sports Med 39:729–734PubMedCrossRefGoogle Scholar
  59. 59.
    Ranzato E, Martinotti S, Volante A, Mazzucco L, Burlando B (2011) Platelet lysate modulates MMP-2 and MMP-9 expression, matrix deposition and cell-to-matrix adhesion in keratinocytes and fibroblasts. Exp Dermatol 20:308–313PubMedCrossRefGoogle Scholar
  60. 60.
    Nadeau S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D, Iwakura Y, de Rivero Vaccari JP, Keane RW, Lacroix S (2011) Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1beta and TNF: implications for neuropathic pain. J Neurosci Off J Soc Neurosci 31:12533–12542CrossRefGoogle Scholar
  61. 61.
    Hochstrasser T, Ehrlich D, Sperner-Unterweger B, Humpel C (2013) Antidepressants and anti-inflammatory drugs differentially reduce the release of NGF and BDNF from rat platelets. Pharmacopsychiatry 46:29–34PubMedGoogle Scholar
  62. 62.
    Hamza M, Wang XM, Adam A, Brahim JS, Rowan JS, Carmona GN, Dionne RA (2010) Kinin B1 receptors contributes to acute pain following minor surgery in humans. Mol Pain 6:12PubMedCrossRefGoogle Scholar
  63. 63.
    Sakamoto H, Ooshima A (1985) Activation of neutrophil phagocytosis of complement coated and IgG coated sheep erythrocytes by platelet release products. Br J Haematol 60:173–181PubMedCrossRefGoogle Scholar
  64. 64.
    Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538PubMedCrossRefGoogle Scholar
  65. 65.
    Cruz Duarte P, St-Jacques B, Ma W (2012) Prostaglandin E2 contributes to the synthesis of brain-derived neurotrophic factor in primary sensory neuron in ganglion explant cultures and in a neuropathic pain model. Exp Neurol 234:466–481PubMedCrossRefGoogle Scholar
  66. 66.
    Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13:1299–1312PubMedCrossRefGoogle Scholar
  67. 67.
    Wu Y, Wang J, Scott PG, Tredget EE (2007) Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 15(Suppl 1):S18–S26PubMedCrossRefGoogle Scholar
  68. 68.
    Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One 3:e3336PubMedCrossRefGoogle Scholar
  69. 69.
    Goel RK, Suri V, Suri A, Sarkar C, Mohanty S, Sharma MC, Yadav PK, Srivastava A (2009) Effect of bone marrow-derived mononuclear cells on nerve regeneration in the transection model of the rat sciatic nerve. J Clin Neurosci 16:1211–1217PubMedCrossRefGoogle Scholar
  70. 70.
    Wang Y, Jia H, Li WY, Tong XJ, Liu GB, Kang SW (2012) Synergistic effects of bone mesenchymal stem cells and chondroitinase abc on nerve regeneration after acellular nerve allograft in rats. Cell Mol Neurobiol 32:361–371PubMedCrossRefGoogle Scholar
  71. 71.
    Zwezdaryk KJ, Coffelt SB, Figueroa YG, Liu J, Phinney DG, LaMarca HL, Florez L, Morris CB, Hoyle GW, Scandurro AB (2007) Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Exp Hematol 35:640–652PubMedCrossRefGoogle Scholar
  72. 72.
    Bueno L, Fioramonti J (1999) Effects of inflammatory mediators on gut sensitivity. Can J Gastroenterol 13(Suppl A):42A–46APubMedGoogle Scholar
  73. 73.
    Selak MA (1994) Neutrophil-platelet interactions in inflammation. Receptor 4:3–7PubMedGoogle Scholar
  74. 74.
    Lam FW, Burns AR, Smith CW, Rumbaut RE (2011) Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1. Am J Physiol Heart Circ Physiol 300:H468–H475PubMedCrossRefGoogle Scholar
  75. 75.
    Theoharides TC, Cochrane DE (2004) Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol 146:1–12PubMedCrossRefGoogle Scholar
  76. 76.
    Egozi EI, Ferreira AM, Burns AL, Gamelli RL, Dipietro LA (2003) Mast cells modulate the inflammatory but not the proliferative response in healing wounds. Wound Repair Regen 11:46–54PubMedCrossRefGoogle Scholar
  77. 77.
    Hoffmeister C, Trevisan G, Rossato MF, de Oliveira SM, Gomez MV, Ferreira J (2011) Role of TRPV1 in nociception and edema induced by monosodium urate crystals in rats. Pain 152:1777–1788PubMedCrossRefGoogle Scholar
  78. 78.
    Sommer C (2004) Serotonin in pain and analgesia: actions in the periphery. Mol Neurobiol 30:117–125PubMedCrossRefGoogle Scholar
  79. 79.
    Loyd DR, Weiss G, Henry MA, Hargreaves KM (2011) Serotonin increases the functional activity of capsaicin-sensitive rat trigeminal nociceptors via peripheral serotonin receptors. Pain 152:2267–2276PubMedCrossRefGoogle Scholar
  80. 80.
    Galli SJ, Wedemeyer J, Tsai M (2002) Analyzing the roles of mast cells and basophils in host defense and other biological responses. Int J Hematol 75:363–369PubMedCrossRefGoogle Scholar
  81. 81.
    Yong T, Bebo BF Jr, Sapatino BV, Welsh CJ, Orr EL, Linthicum DS (1994) Histamine-induced microvascular leakage in pial venules: differences between the SJL/J and BALB/c inbred strains of mice. J Neurotrauma 11:161–171PubMedCrossRefGoogle Scholar
  82. 82.
    Heitsch H (2000) Bradykinin B2 receptor as a potential therapeutic target. Drug News Perspect 13:213–225PubMedGoogle Scholar
  83. 83.
    Liu B, Linley JE, Du X, Zhang X, Ooi L, Zhang H, Gamper N (2010) The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl− channels. J Clin Invest 120:1240–1252PubMedCrossRefGoogle Scholar
  84. 84.
    Steranka LR, Manning DC, DeHaas CJ, Ferkany JW, Borosky SA, Connor JR, Vavrek RJ, Stewart JM, Snyder SH (1988) Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc Natl Acad Sci U S A 85:3245–3249PubMedCrossRefGoogle Scholar
  85. 85.
    Linley JE, Rose K, Patil M, Robertson B, Akopian AN, Gamper N (2008) Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception. J Neurosci 28:11240–11249PubMedCrossRefGoogle Scholar
  86. 86.
    Zhao P, Waxman SG, Hains BC (2006) Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury. Mol Pain 2:27PubMedCrossRefGoogle Scholar
  87. 87.
    Cao XH, Chen SR, Li L, Pan HL (2012) Nerve injury increases brain-derived neurotrophic factor levels to suppress BK channel activity in primary sensory neurons. J Neurochem 121:944–953PubMedCrossRefGoogle Scholar
  88. 88.
    Hakim AW, Dong X, Cairns BE (2011) TNFalpha mechanically sensitizes masseter muscle nociceptors by increasing prostaglandin E2 levels. J Neurophysiol 105:154–161PubMedCrossRefGoogle Scholar
  89. 89.
    Zoga V, Kawano T, Liang MY, Bienengraeber M, Weihrauch D, McCallum B, Gemes G, Hogan Q, Sarantopoulos C (2010) KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy. Mol Pain 6:6PubMedCrossRefGoogle Scholar
  90. 90.
    Ungless MA, Gasull X, Walters ET (2002) Long-term alteration of S-type potassium current and passive membrane properties in aplysia sensory neurons following axotomy. J Neurophysiol 87:2408–2420PubMedGoogle Scholar
  91. 91.
    Rasband MN, Park EW, Vanderah TW, Lai J, Porreca F, Trimmer JS (2001) Distinct potassium channels on pain-sensing neurons. Proc Natl Acad Sci U S A 98:13373–13378PubMedCrossRefGoogle Scholar
  92. 92.
    Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184PubMedCrossRefGoogle Scholar
  93. 93.
    Ambron RT, Walters ET (1996) Priming events and retrograde injury signals. A new perspective on the cellular and molecular biology of nerve regeneration. Mol Neurobiol 13:61–79PubMedCrossRefGoogle Scholar
  94. 94.
    Zimmermann M, Herdegen T (1996) Plasticity of the nervous system at the systematic, cellular and molecular levels: a mechanism of chronic pain and hyperalgesia. Prog Brain Res 110:233–259PubMedCrossRefGoogle Scholar
  95. 95.
    LaMotte RH, Zhang JM, Petersen M (1996) Alterations in the functional properties of dorsal root ganglion cells with unmyelinated axons after a chronic nerve constriction in the rat. Prog Brain Res 110:105–111PubMedCrossRefGoogle Scholar
  96. 96.
    Shen C, de Hertogh G, Bullens DM, Van Assche G, Geboes K, Rutgeerts P, Ceuppens JL (2007) Remission-inducing effect of anti-TNF monoclonal antibody in TNBS colitis: mechanisms beyond neutralization? Inflamm Bowel Dis 13:308–316PubMedCrossRefGoogle Scholar
  97. 97.
    Khan SB, Cook HT, Bhangal G, Smith J, Tam FW, Pusey CD (2005) Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int 67:1812–1820PubMedCrossRefGoogle Scholar
  98. 98.
    Obata K, Noguchi K (2006) BDNF in sensory neurons and chronic pain. Neurosci Res 55:1–10PubMedCrossRefGoogle Scholar
  99. 99.
    Watanabe T, Ito T, Inoue G, Ohtori S, Kitajo K, Doya H, Takahashi K, Yamashita T (2008) The p75 receptor is associated with inflammatory thermal hypersensitivity. J Neurosci Res 86:3566–3574PubMedCrossRefGoogle Scholar
  100. 100.
    Miura M, Sasaki M, Mizukoshi K, Shibasaki M, Izumi Y, Shimosato G, Amaya F (2011) Peripheral sensitization caused by insulin-like growth factor 1 contributes to pain hypersensitivity after tissue injury. Pain 152:888–895PubMedCrossRefGoogle Scholar
  101. 101.
    Huang J, Fan Y, Jia Y, Hong Y (2011) Antagonism of 5-HT(2A) receptors inhibits the expression of pronociceptive mediator and enhances endogenous opioid mechanism in carrageenan-induced inflammation in rats. Eur J Pharmacol 654:33–41PubMedCrossRefGoogle Scholar
  102. 102.
    Bardin L (2011) The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 22:390–404PubMedCrossRefGoogle Scholar
  103. 103.
    Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S (2011) Glial TNFalpha in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 7:40PubMedCrossRefGoogle Scholar
  104. 104.
    Steenfos HH (1994) Growth factors and wound healing. Scand J Plast Reconstr Surg Hand Surg 28:95–105PubMedCrossRefGoogle Scholar
  105. 105.
    Liou JT, Liu FC, Mao CC, Lai YS, Day YJ (2011) Inflammation confers dual effects on nociceptive processing in chronic neuropathic pain model. Anesthesiology 114:660–672PubMedCrossRefGoogle Scholar
  106. 106.
    McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100:1160–1167PubMedGoogle Scholar
  107. 107.
    Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508PubMedCrossRefGoogle Scholar
  108. 108.
    Wuertz K, Quero L, Sekiguchi M, Klawitter M, Nerlich A, Konno S, Kikuchi S, Boos N (2011) The red wine polyphenol resveratrol shows promising potential for the treatment of nucleus pulposus-mediated pain in vitro and in vivo. Spine 36:E1373–E1384PubMedCrossRefGoogle Scholar
  109. 109.
    Milligan ED, Sloane EM, Langer SJ, Cruz PE, Chacur M, Spataro L, Wieseler-Frank J, Hammack SE, Maier SF, Flotte TR, Forsayeth JR, Leinwand LA, Chavez R, Watkins LR (2005) Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain 1:9PubMedCrossRefGoogle Scholar
  110. 110.
    Sloane EM, Soderquist RG, Maier SF, Mahoney MJ, Watkins LR, Milligan ED (2009) Long-term control of neuropathic pain in a non-viral gene therapy paradigm. Gene Ther 16:470–475PubMedCrossRefGoogle Scholar
  111. 111.
    Sato Y, Ohshima T, Kondo T (1999) Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem Biophys Res Commun 265:194–199PubMedCrossRefGoogle Scholar
  112. 112.
    Gum RJ, Wakefield B, Jarvis MF (2012) P2X receptor antagonists for pain management: examination of binding and physicochemical properties. Purinergic Signal 8:41–56PubMedCrossRefGoogle Scholar
  113. 113.
    McGaraughty S, Chu KL, Namovic MT, Donnelly-Roberts DL, Harris RR, Zhang XF, Shieh CC, Wismer CT, Zhu CZ, Gauvin DM, Fabiyi AC, Honore P, Gregg RJ, Kort ME, Nelson DW, Carroll WA, Marsh K, Faltynek CR, Jarvis MF (2007) P2X7-related modulation of pathological nociception in rats. Neuroscience 146:1817–1828PubMedCrossRefGoogle Scholar
  114. 114.
    Honore P, Donnelly-Roberts D, Namovic M, Zhong C, Wade C, Chandran P, Zhu C, Carroll W, Perez-Medrano A, Iwakura Y, Jarvis MF (2009) The antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is lost in IL-1alphabeta knockout mice. Behav Brain Res 204:77–81PubMedCrossRefGoogle Scholar
  115. 115.
    Ford AP (2012) In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal 8:3–26PubMedCrossRefGoogle Scholar
  116. 116.
    Vyklicky L, Lyfenko A, Kuffler DP, Vlachova V (2003) Vanilloid receptor TRPV1 is not activated by vanilloids applied intracellularly. Neuroreport 14:1061–1065PubMedCrossRefGoogle Scholar
  117. 117.
    Honore P, Wismer CT, Mikusa JP, Zhu CZ, Zhong C, Gauvin DM, Gomtsyan A, El Kouhen R, Lee CH, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2013) A-425619, a novel TRPV1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther (in press)Google Scholar
  118. 118.
    Valenzano KJ, Sun Q (2004) Current perspectives on the therapeutic utility of VR1 antagonists. Curr Med Chem 11:3185–3202PubMedCrossRefGoogle Scholar
  119. 119.
    Li H, Xie W, Strong JA, Zhang JM (2007) Systemic antiinflammatory corticosteroid reduces mechanical pain behavior, sympathetic sprouting, and elevation of proinflammatory cytokines in a rat model of neuropathic pain. Anesthesiology 107:469–477PubMedCrossRefGoogle Scholar
  120. 120.
    Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ, Fu G, Xu SH, Cheng XP, Yan Q, Zhu ZD, Zhang X, Chen Z, Han ZG (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 99:8360–8365PubMedCrossRefGoogle Scholar
  121. 121.
    Bannwarth B, Kostine M, Shipley E (2012) Nonspecific low back pain: assessment of available medications. Joint Bone Spine Rev Rhum 79:134–136CrossRefGoogle Scholar
  122. 122.
    Semenov FV, Iakobashvili I (2007) [Usage of platelet-enriched plasma as hemostatic and analgenic medication in tonsillectomy]. Vestnik otorinolaringologii. 48–50Google Scholar
  123. 123.
    El-Sharkawy H, Kantarci A, Deady J, Hasturk H, Liu H, Alshahat M, Van Dyke TE (2007) Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. J Periodontol 78:661–669PubMedCrossRefGoogle Scholar
  124. 124.
    Boswell SG, Cole BJ, Sundman EA, Karas V, Fortier LA (2012) Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy 28:429–439PubMedCrossRefGoogle Scholar
  125. 125.
    Bond M, Fabunmi RP, Baker AH, Newby AC (1998) Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett 435:29–34PubMedCrossRefGoogle Scholar
  126. 126.
    Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601PubMedCrossRefGoogle Scholar
  127. 127.
    Chen X, Thibeault SL (2010) Role of tumor necrosis factor-alpha in wound repair in human vocal fold fibroblasts. Laryngoscope 120:1819–1825PubMedCrossRefGoogle Scholar
  128. 128.
    Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA (2010) Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-kappaB inhibition via HGF. J Cell Physiol 225:757–766PubMedCrossRefGoogle Scholar
  129. 129.
    Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2005) Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J Oral Maxillofac Surg 63:362–369PubMedCrossRefGoogle Scholar
  130. 130.
    Smith PA (2004) Neuropathic pain: drug targets for current and future interventions. Drug News Perspect 17:5–17PubMedCrossRefGoogle Scholar
  131. 131.
    Pullar S, Palmer AM (2003) Pharmacotherapy for neuropathic pain: progress and prospects. Drug News Perspect 16:622–630PubMedGoogle Scholar
  132. 132.
    Hurley RW, Cohen SP, Williams KA, Rowlingson AJ, Wu CL (2006) The analgesic effects of perioperative gabapentin on postoperative pain: a meta-analysis. Reg Anesth Pain Med 31:237–247PubMedGoogle Scholar
  133. 133.
    Obata H, Saito S, Koizuka S, Nishikawa K, Goto F (2005) The monoamine-mediated antiallodynic effects of intrathecally administered milnacipran, a serotonin noradrenaline reuptake inhibitor, in a rat model of neuropathic pain. Anesth Analg 100:1406–1410, table of contentsPubMedCrossRefGoogle Scholar
  134. 134.
    Lee WP, Lin LW, Yeh SH, Liu RH, Tseng CF (2002) Correlations among serum calcium, vitamin D and parathyroid hormone levels in the elderly in southern Taiwan. J Nurs Res JNR 10:65–72CrossRefGoogle Scholar
  135. 135.
    Martinez JA, Kasamatsu M, Rosales-Hernandez A, Hanson LR, Frey WH, Toth CC (2012) Comparison of central versus peripheral delivery of pregabalin in neuropathic pain states. Mol Pain 8:3PubMedCrossRefGoogle Scholar
  136. 136.
    Mirza R, DiPietro LA, Koh TJ (2009) Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol 175:2454–2462PubMedCrossRefGoogle Scholar
  137. 137.
    Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23PubMedCrossRefGoogle Scholar
  138. 138.
    Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78:71–100PubMedGoogle Scholar
  139. 139.
    Li Y, Irwin N, Yin Y, Lanser M, Benowitz LI (2003) Axon regeneration in goldfish and rat retinal ganglion cells: differential responsiveness to carbohydrates and cAMP. J Neurosci 23:7830–7838PubMedGoogle Scholar
  140. 140.
    Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9:843–852PubMedCrossRefGoogle Scholar
  141. 141.
    Kim CF, Moalem-Taylor G (2011) Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J Pain Off J Am Pain Soc 12:370–383CrossRefGoogle Scholar
  142. 142.
    Benninger M, Walner D (2007) Coblation: improving outcomes for children following adenotonsillectomy. Clin Cornerstone 9(Suppl 1):S13–S23PubMedCrossRefGoogle Scholar
  143. 143.
    Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF, Lynch K (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99:11–19PubMedCrossRefGoogle Scholar
  144. 144.
    Yanagidate F, Strichartz GR (2007) Local anesthetics. Handb Exp Pharmacol 95–127Google Scholar
  145. 145.
    Fan N, Donnelly DF, LaMotte RH (2011) Chronic compression of mouse dorsal root ganglion alters voltage-gated sodium and potassium currents in medium-sized dorsal root ganglion neurons. J Neurophysiol 106:3067–3072PubMedCrossRefGoogle Scholar
  146. 146.
    Xie W, Strong JA, Zhang JM (2009) Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience 160:847–857PubMedCrossRefGoogle Scholar
  147. 147.
    Stummann TC, Salvati P, Fariello RG, Faravelli L (2005) The anti-nociceptive agent ralfinamide inhibits tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ currents in dorsal root ganglion neurons. Eur J Pharmacol 510:197–208PubMedCrossRefGoogle Scholar
  148. 148.
    Novak KR, Nardelli P, Cope TC, Filatov G, Glass JD, Khan J, Rich MM (2009) Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats. J Clin Invest 119:1150–1158PubMedCrossRefGoogle Scholar
  149. 149.
    Erdogan C, Yucel M, Akgun H, Kaskc T, Semai Bek V, Gokcil Z (2012) Effects of topiramate on peripheral nerve excitability. J Clin Neurophysiol Off Publ Am Electroencephalographic Soc 29:268–270CrossRefGoogle Scholar
  150. 150.
    Luyster FS, Buysse DJ, Strollo PJ Jr (2010) Comorbid insomnia and obstructive sleep apnea: challenges for clinical practice and research. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 6:196–204Google Scholar
  151. 151.
    de Leon-Casasola OA (2008) Current developments in opioid therapy for management of cancer pain. Clin J Pain 24(Suppl 10):S3–S7PubMedCrossRefGoogle Scholar
  152. 152.
    Hans GH, Robert DN, Van Maldeghem KN (2008) Treatment of an acute severe central neuropathic pain syndrome by topical application of lidocaine 5 % patch: a case report. Spinal Cord 46:311–313PubMedCrossRefGoogle Scholar
  153. 153.
    Hobo S, Hayashida K, Eisenach JC (2012) Oxytocin inhibits the membrane depolarization-induced increase in intracellular calcium in capsaicin sensitive sensory neurons: a peripheral mechanism of analgesic action. Anesth Analg 114:442–449PubMedCrossRefGoogle Scholar
  154. 154.
    Kloth LC (2005) Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds 4:23–44PubMedCrossRefGoogle Scholar
  155. 155.
    Franek A, Kostur R, Polak A, Taradaj J, Szlachta Z, Blaszczak E, Dolibog P, Koczy B, Kucio C (2012) Using high-voltage electrical stimulation in the treatment of recalcitrant pressure ulcers: results of a randomized, controlled clinical study. Ostomy Wound Manage 58:30–44PubMedGoogle Scholar
  156. 156.
    Messerli MA, Graham DM (2011) Extracellular electrical fields direct wound healing and regeneration. Biol Bull 221:79–92PubMedGoogle Scholar
  157. 157.
    Jaffe LF, Vanable JW Jr (1984) Electric fields and wound healing. Clin Dermatol 2:34–44PubMedCrossRefGoogle Scholar
  158. 158.
    Jankovic A, Binic I (2008) Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers. Arch Dermatol Res 300:377–383PubMedCrossRefGoogle Scholar
  159. 159.
    Lefaucheur JP, Ayache SS, Sorel M, Farhat WH, Zouari HG, Ciampi de Andrade D, Ahdab R, Menard-Lefaucheur I, Brugieres P, Goujon C (2012) Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: Influence of theta burst stimulation priming. Eur J Pain 16:1403–1413PubMedCrossRefGoogle Scholar
  160. 160.
    Knotkova H, Cruciani RA (2010) Non-invasive transcranial direct current stimulation for the study and treatment of neuropathic pain. Methods Mol Biol 617:505–515PubMedCrossRefGoogle Scholar
  161. 161.
    Murphy RJ, Carr AJ (2010) Shoulder pain. Clin Evid 2010Google Scholar
  162. 162.
    Morykwas MJ, Simpson J, Punger K, Argenta A, Kremers L, Argenta J (2006) Vacuum-assisted closure: state of basic research and physiologic foundation. Plast Reconstr Surg 117:121S–126SPubMedCrossRefGoogle Scholar
  163. 163.
    Ubbink DT, Westerbos SJ, Nelson EA, Vermeulen H (2008) A systematic review of topical negative pressure therapy for acute and chronic wounds. Br J Surg 95:685–692PubMedCrossRefGoogle Scholar
  164. 164.
    Bishop AJ, Mudge E (2012) A retrospective study of diabetic foot ulcers treated with hyperbaric oxygen therapy. Int Wound J 9–665–676Google Scholar
  165. 165.
    Nazario J, Kuffler DP (2011) Hyperbaric oxygen therapy and promoting neurological recovery following nerve trauma. Undersea Hyperb Med 38:345–366PubMedGoogle Scholar
  166. 166.
    Kuffler DP (2011) The role of hyperbaric oxygen therapy in enhancing the rate of wound healing with a focus on axon regeneration. P R Health Sci J 30:35–42PubMedGoogle Scholar
  167. 167.
    Kranke P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE (2012) Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev 4, CD004123Google Scholar
  168. 168.
    Londahl M (2012) Hyperbaric oxygen therapy as treatment of diabetic foot ulcers. Diabetes Metab Res Rev 28(Suppl 1):78–84PubMedCrossRefGoogle Scholar
  169. 169.
    Savernini A, Savernini N, de Amaral FA, Romero TR, Duarte ID, de Castro MS (2012) Assay of therapeutic ultrasound induced-antinociception in experimental trigeminal neuropathic pain. J Neurosci Res 90:1639–1645PubMedCrossRefGoogle Scholar
  170. 170.
    Doan N, Reher P, Meghji S, Harris M (1999) In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg 57:409–419, discussion 420PubMedCrossRefGoogle Scholar
  171. 171.
    Villas C, Florez B, Alfonso M (2008) Neurectomy versus neurolysis for Morton's neuroma. Foot Ankle Int 29:578–580PubMedCrossRefGoogle Scholar
  172. 172.
    Chen CK, Phui VE, Saman MA (2012) Alcohol neurolysis of lateral femoral cutaneous nerve for recurrent meralgia paresthetica. Agri 24:42–44PubMedCrossRefGoogle Scholar
  173. 173.
    Teixeira MJ, Fonoff ET, Montenegro MC (2007) Dorsal root entry zone lesions for treatment of pain-related to radiation-induced plexopathy. Spine 32:E316–E319PubMedCrossRefGoogle Scholar
  174. 174.
    Nikolajsen L, Black JA, Kroner K, Jensen TS, Waxman SG (2010) Neuroma removal for neuropathic pain: efficacy and predictive value of lidocaine infusion. Clin J Pain 26:788–793PubMedCrossRefGoogle Scholar
  175. 175.
    Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG (2008) Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol 64:644–653PubMedCrossRefGoogle Scholar
  176. 176.
    Guse DM, Moran SL (2013) Outcomes of the surgical treatment of peripheral neuromas of the hand and forearm: a 25-year comparative outcome study. Ann Plast Surg (in press)Google Scholar
  177. 177.
    Williams EH, Williams CG, Rosson GD, Heitmiller RF, Dellon AL (2008) Neurectomy for treatment of intercostal neuralgia. Ann Thorac Surg 85:1766–1770PubMedCrossRefGoogle Scholar
  178. 178.
    Lohrer H, Nauck T, Konerding MA (2012) Nerve entrapment after hamstring injury. Clin J Sport Med 22:443–445PubMedCrossRefGoogle Scholar
  179. 179.
    Tyner TR, Parks N, Faria S, Simons M, Stapp B, Curtis B, Sian K, Yamaguchi KT (2007) Effects of collagen nerve guide on neuroma formation and neuropathic pain in a rat model. Am J Surg 193:e1–e6PubMedCrossRefGoogle Scholar
  180. 180.
    Santiago-Figueroa J, Kuffler DP (2009) Reducing and eliminating neuropathic pain. P R Health Sci J 28:289–300PubMedGoogle Scholar
  181. 181.
    Koch H, Haas F, Hubmer M, Rappl T, Scharnagl E (2003) Treatment of painful neuroma by resection and nerve stump transplantation into a vein. Ann Plast Surg 51:45–50PubMedCrossRefGoogle Scholar
  182. 182.
    Vaienti L, Merle M, Villani F, Gazzola R (2010) Fat grafting according to Coleman for the treatment of radial nerve neuromas. Plast Reconstr Surg 126:676–678PubMedCrossRefGoogle Scholar
  183. 183.
    Vaienti L, Gazzola R, Villani F, Parodi PC (2012) Perineural fat grafting in the treatment of painful neuromas. Tech Hand Up Extrem Surg 16:52–55PubMedCrossRefGoogle Scholar
  184. 184.
    Elliot D, Lloyd M, Hazari A, Sauerland S, Anand P (2010) Relief of the pain of neuromas-in-continuity and scarred median and ulnar nerves in the distal forearm and wrist by neurolysis, wrapping in vascularized forearm fascial flaps and adjunctive procedures. J Hand Surg Eur Vol 35:575–582PubMedCrossRefGoogle Scholar
  185. 185.
    Knoferle J, Ramljak S, Koch JC, Tonges L, Asif AR, Michel U, Wouters FS, Heermann S, Krieglstein K, Zerr I, Bahr M, Lingor P (2010) TGF-beta 1 enhances neurite outgrowth via regulation of proteasome function and EFABP. Neurobiol Dis 38:395–404PubMedCrossRefGoogle Scholar
  186. 186.
    White RE, Yin FQ, Jakeman LB (2008) TGF-alpha increases astrocyte invasion and promotes axonal growth into the lesion following spinal cord injury in mice. Exp Neurol 214:10–24PubMedCrossRefGoogle Scholar
  187. 187.
    Hausott B, Schlick B, Vallant N, Dorn R, Klimaschewski L (2008) Promotion of neurite outgrowth by fibroblast growth factor receptor 1 overexpression and lysosomal inhibition of receptor degradation in pheochromocytoma cells and adult sensory neurons. Neuroscience 153:461–473PubMedCrossRefGoogle Scholar
  188. 188.
    Seki T, Abdel Nazeer A, Sekimoto K, Guao Y, Al-jahdari W, Saito S (2010) Fibroblast growth factor and insulin-like growth factor rescue growth cones of sensory neurites from collapse after tetracaine-induced injury. Anesth Analg 110:1468–1472PubMedCrossRefGoogle Scholar
  189. 189.
    Jungnickel J, Haastert K, Grzybek M, Thau N, Lipokatic-Takacs E, Ratzka A, Nolle A, Claus P, Grothe C (2010) Mice lacking basic fibroblast growth factor showed faster sensory recovery. Exp Neurol 223:166–172PubMedCrossRefGoogle Scholar
  190. 190.
    Joung I, Yoo M, Woo JH, Chang CY, Heo H, Kwon YK (2010) Secretion of EGF-like domain of heregulinbeta promotes axonal growth and functional recovery of injured sciatic nerve. Mol Cells 30:477–484PubMedCrossRefGoogle Scholar
  191. 191.
    Tsai NP, Tsui YC, Pintar JE, Loh HH, Wei LN (2010) Kappa opioid receptor contributes to EGF-stimulated neurite extension in development. Proc Natl Acad Sci U S A 107:3216–3221PubMedCrossRefGoogle Scholar
  192. 192.
    Hermann PM, Nicol JJ, Nagle GT, Bulloch AG, Wildering WC (2005) Epidermal growth factor-dependent enhancement of axonal regeneration in the pond snail Lymnaea stagnalis: role of phagocyte survival. J Comp Neurol 492:383–400PubMedCrossRefGoogle Scholar
  193. 193.
    Hunter RW, Hers I (2009) Insulin/IGF-1 hybrid receptor expression on human platelets: consequences for the effect of insulin on platelet function. J Thromb Haemost JTH 7:2123–2130CrossRefGoogle Scholar
  194. 194.
    Emel E, Ergun SS, Kotan D, Gursoy EB, Parman Y, Zengin A, Nurten A (2011) Effects of insulin-like growth factor-I and platelet-rich plasma on sciatic nerve crush injury in a rat model. J Neurosurg 114:522–528PubMedCrossRefGoogle Scholar
  195. 195.
    Yamazaki T, Sabit H, Oya T, Ishii Y, Hamashima T, Tokunaga A, Ishizawa S, Jie S, Kurashige Y, Matsushima T, Furuta I, Noguchi M, Sasahara M (2009) Activation of MAP kinases, Akt and PDGF receptors in injured peripheral nerves. J Peripher Nerv Syst JPNS 14:165–176CrossRefGoogle Scholar
  196. 196.
    Oya T, Zhao YL, Takagawa K, Kawaguchi M, Shirakawa K, Yamauchi T, Sasahara M (2002) Platelet-derived growth factor-b expression induced after rat peripheral nerve injuries. Glia 38:303–312PubMedCrossRefGoogle Scholar
  197. 197.
    Hermanson M, Olsson T, Westermark B, Funa K (1995) PDGF and its receptors following facial nerve axotomy in rats: expression in neurons and surrounding glia. Exp Brain Res Exp Hirnforsch Experimentation Cerebrale 102:415–422Google Scholar
  198. 198.
    Oudega M, Xu XM, Guenard V, Kleitman N, Bunge MB (1997) A combination of insulin-like growth factor-I and platelet-derived growth factor enhances myelination but diminishes axonal regeneration into Schwann cell grafts in the adult rat spinal cord. Glia 19:247–258PubMedCrossRefGoogle Scholar
  199. 199.
    Ogata T, Yamamoto S, Nakamura K, Tanaka S (2006) Signaling axis in schwann cell proliferation and differentiation. Mol Neurobiol 33:51–62PubMedCrossRefGoogle Scholar
  200. 200.
    Yamashita T, Ishii S, Usui M (1998) Pain relief after nerve resection for post-traumatic neuralgia. J Bone Joint Surg Br Vol 80:499–503CrossRefGoogle Scholar
  201. 201.
    Sanchez M, Guadilla J, Fiz N, Andia I (2012) Ultrasound-guided platelet-rich plasma injections for the treatment of osteoarthritis of the hip. Rheumatology 51:144–150PubMedCrossRefGoogle Scholar
  202. 202.
    Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M (2012) Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med 40:534–541PubMedCrossRefGoogle Scholar
  203. 203.
    Hechtman KS, Uribe JW, Botto-vanDemden A, Kiebzak GM (2011) Platelet-rich plasma injection reduces pain in patients with recalcitrant epicondylitis. Orthopedics 34:92PubMedGoogle Scholar
  204. 204.
    Scudeller L, Del Fante C, Perotti C, Pavesi CF, Coscia D, Scotti V, Tinelli C (2011) N of 1, two contemporary arm, randomised controlled clinical trial for bilateral epicondylitis: a new study design. BMJ 343:d7653PubMedCrossRefGoogle Scholar
  205. 205.
    Li M, Zhang C, Ai Z, Yuan T, Feng Y, Jia W (2011) [Therapeutic effectiveness of intra-knee-articular injection of platelet-rich plasma on knee articular cartilage degeneration]. Zhongguo xiu fu chong jian wai ke za zhi=Zhongguo xiufu chongjian waike zazhi=Chinese J Reparative Reconstr Surg 25:1192–1196Google Scholar
  206. 206.
    Kon E, Mandelbaum B, Buda R, Filardo G, Delcogliano M, Timoncini A, Fornasari PM, Giannini S, Marcacci M (2011) Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 27:1490–1501CrossRefGoogle Scholar
  207. 207.
    Andia I, Sanchez M, Maffulli N (2011) Platelet rich plasma therapies for sports muscle injuries: any evidence behind clinical practice? Expert Opin Biol Ther 11:509–518PubMedCrossRefGoogle Scholar
  208. 208.
    Andia I, Sanchez M, Maffulli N (2012) Joint pathology and platelet-rich plasma therapies. Expert Opin Biol Ther 12:7–22PubMedCrossRefGoogle Scholar
  209. 209.
    Bava ED, Barber FA (2011) Platelet-rich plasma products in sports medicine. Physician Sportsmedicine 39:94–99PubMedCrossRefGoogle Scholar
  210. 210.
    Araki J, Jona M, Eto H, Aoi N, Kato H, Suga H, Doi K, Yatomi Y, Yoshimura K (2012) Optimized preparation method of platelet-concentrated plasma and noncoagulating platelet-derived factor concentrates: maximization of platelet concentration and removal of fibrinogen. Tissue engineering. Part C Methods 18:176–185CrossRefGoogle Scholar
  211. 211.
    Yu W, Wang J, Yin J Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury. Int J Neurosci 121:176–180Google Scholar
  212. 212.
    Maffulli N, Del Buono A (2012) Platelet plasma rich products in musculoskeletal medicine: any evidence? Surgeon 10:148–150PubMedCrossRefGoogle Scholar
  213. 213.
    Elgazzar RF, Mutabagani MA, Abdelaal SE, Sadakah AA (2008) Platelet rich plasma may enhance peripheral nerve regeneration after cyanoacrylate reanastomosis: a controlled blind study on rats. Int J Oral Maxillofac Surg 37:748–755PubMedCrossRefGoogle Scholar
  214. 214.
    Yu W, Wang J, Yin J (2011) Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury. Int J Neurosci 121:176–180PubMedCrossRefGoogle Scholar
  215. 215.
    Wu CC, Wu YN, Ho HO, Chen KC, Sheu MT, Chiang HS (2012) The neuroprotective effect of platelet-rich plasma on erectile function in bilateral cavernous nerve injury rat model. J Sex Med 9:2838PubMedCrossRefGoogle Scholar
  216. 216.
    Cho HH, Jang S, Lee SC, Jeong HS, Park JS, Han JY, Lee KH, Cho YB (2010) Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model. Laryngoscope 120:907–913PubMedCrossRefGoogle Scholar
  217. 217.
    Farrag TY, Lehar M, Verhaegen P, Carson KA, Byrne PJ (2007) Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model. Laryngoscope 117:157–165PubMedCrossRefGoogle Scholar
  218. 218.
    Takeuchi M, Kamei N, Shinomiya R, Sunagawa T, Suzuki O, Kamoda H, Ohtori S, Ochi M (2012) Human platelet-rich plasma promotes axon growth in brain-spinal cord coculture. Neuroreport 23:712–716PubMedCrossRefGoogle Scholar
  219. 219.
    Piskin A, Kaplan S, Aktas A, Ayyildiz M, Raimondo S, Alic T, Bozkurt HH, Geuna S (2009) Platelet gel does not improve peripheral nerve regeneration: an electrophysiological, stereological, and electron microscopic study. Microsurgery 29:144–153PubMedCrossRefGoogle Scholar
  220. 220.
    Duan J, Kuang W, Tan J, Li H, Zhang Y, Hirotaka K, Tadashi K Differential effects of platelet rich plasma and washed platelets on the proliferation of mouse MSC cells. Mol Biol Rep 38:2485–2490Google Scholar
  221. 221.
    Pak J (2012) Autologous adipose tissue-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads. Pain Physician 15:75–85PubMedGoogle Scholar
  222. 222.
    Tischler M (2002) Platelet rich plasma. The use of autologous growth factors to enhance bone and soft tissue grafts. N Y State Dental J 68:22–24Google Scholar
  223. 223.
    Wang X, Luo E, Li Y, Hu J (2011) Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination. Brain Res 1383:71–80PubMedCrossRefGoogle Scholar
  224. 224.
    Ladak A, Olson J, Tredget EE, Gordon T (2011) Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol 228:242–252PubMedCrossRefGoogle Scholar
  225. 225.
    Hernandeza J, Torres-Espina A, Navarro X (2011) Adult stem cell transplants for spinal cord injury repair: current state in preclinical research. Current Stem Cell Res Ther 6:273–287CrossRefGoogle Scholar
  226. 226.
    Nurgali K, Qu Z, Hunne B, Thacker M, Pontell L, Furness JB (2011) Morphological and functional changes in guinea-pig neurons projecting to the ileal mucosa at early stages after inflammatory damage. J Physiol 589:325–339PubMedCrossRefGoogle Scholar
  227. 227.
    Jankowski MP, Lawson JJ, McIlwrath SL, Rau KK, Anderson CE, Albers KM, Koerber HR (2009) Sensitization of cutaneous nociceptors after nerve transection and regeneration: possible role of target-derived neurotrophic factor signaling. J Neurosci 29:1636–1647PubMedCrossRefGoogle Scholar
  228. 228.
    Kuffler DP, Reyes O, Sosa IJ, Santiago-Figueroa J (2011) Neurological recovery across a 12-cm-long ulnar nerve gap repaired 3.25 years post trauma: case report. Neurosurgery 69:E1321–E1326PubMedCrossRefGoogle Scholar
  229. 229.
    Reyes O, Sosa IJ, Santiago J, Kuffler DP (2007) A novel technique leading to complete sensory and motor recovery across a long peripheral nerve gap. P R Health Sci J 26:225–228PubMedGoogle Scholar
  230. 230.
    Giummarra MJ, Moseley GL (2011) Phantom limb pain and bodily awareness: current concepts and future directions. Curr Opin Anaesthesiol 24:524–531PubMedCrossRefGoogle Scholar
  231. 231.
    Everts PA, Brown Mahoney C, Hoffmann JJ, Schonberger JP, Box HA, van Zundert A, Knape JT (2006) Platelet-rich plasma preparation using three devices: implications for platelet activation and platelet growth factor release. Growth Factors 24:165–171PubMedCrossRefGoogle Scholar
  232. 232.
    Ding XG, Li SW, Zheng XM, Hu LQ, Hu WL, Luo Y (2009) The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model. Asian J Androl 11:215–221PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of NeurobiologyUniversity of Puerto RicoSan JuanUSA

Personalised recommendations