Molecular Neurobiology

, Volume 48, Issue 3, pp 669–680

Binding and Repressive Activities of Apolipoprotein E3 and E4 Isoforms on the Human ApoD Promoter

  • Louis-Charles LevrosJr.
  • Marilyne Labrie
  • Cyndia Charfi
  • Eric Rassart


Apolipoprotein D (ApoD) gene expression is increased in several neurological disorders such as Alzheimer’s disease (AD) and multiple sclerosis. We previously showed that transgenic mice that overexpress human ApoD show a better resistance against paraquat or OC43 coronavirus-induced neurodegeneration. Here, we identified several nuclear factors from the cortex of control and OC43-infected mice which bind a fragment of the proximal ApoD promoter in vitro. Of interest, we detected apolipoprotein E (ApoE). Human ApoE consists of three isoforms (E2, E3, and E4) with the E4 and E2 alleles representing a greater and a lower risk for developping AD, respectively. Our results show that ApoE is located in the nucleus and on the ApoD promoter in human hepatic and glioblastoma cells lines. Furthermore, overexpression of ApoE3 and ApoE4 isoforms but not ApoE2 significantly inhibited the ApoD promoter activity in U87 cells (E3/E3 genotype) cultured under normal or different stress conditions while ApoE knock-down by siRNA had a converse effect. Consistent with these results, we also demonstrated by ChIP assay that E3 and E4 isoforms, but not E2, bind the ApoD promoter. Moreover, using the Allen Brain Atlas in situ hybridization database, we observed an inverse correlation between ApoD and ApoE mRNA expression during development and in several regions of the mouse brain, notably in the cortex, hippocampus, plexus choroid, and cerebellum. This negative correlation was also observed for cortex layers IV–VI based on a new Transcriptomic Atlas of the Mouse Neocortical Layers. These findings reveal a new function for ApoE by regulating ApoD gene expression.


Apolipoprotein D Apolipoprotein E OC43 Mass spectrometry ChIP Glioblastoma astrocytic cells 

Supplementary material

12035_2013_8456_MOESM1_ESM.ppt (4.9 mb)
Fig. S1Representative ISH of ApoD and ApoE genes in the mouse cortex during development. These images were obtained from the ABA Website ( with their corresponding relative gene expression intensities. Comparisons were made throughout development, from E.18.5 to 24 months for ApoD and 33 months for ApoE. (PPT 5051 kb)
12035_2013_8456_MOESM2_ESM.ppt (2.1 mb)
Fig. S2Representative in situ hybridations of ApoD and ApoE genes in the mouse brain. These images were obtained from the ABA Website ( with their corresponding relative gene expression intensities in different brain areas of 56-day-old mice. a Total brain. b Hippocampus. Field CA1, CA2, CA3, DG, and dentate gyrus. c Cerebral cortex (isocortex). Layers I–VI; CC corpus collasum. d Plexus choroid. e Cerebellar cortex. ML molecular layer, PL Purkinge layer, GL granular layer. (PPT 2174 kb)


  1. 1.
    Drayna DT, McLean JW, Wion KL, Trent JM, Drabkin HA, Lawn RM (1987) Human apolipoprotein D gene: gene sequence, chromosome localization, and homology to the alpha 2u-globulin superfamily. DNA 6(3):199–204PubMedCrossRefGoogle Scholar
  2. 2.
    Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1–14PubMedGoogle Scholar
  3. 3.
    Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, Milne R (2000) Apolipoprotein D. Biochim Biophys Acta 1482(1–2):185–198PubMedCrossRefGoogle Scholar
  4. 4.
    Terrisse L, Poirier J, Bertrand P, Merched A, Visvikis S, Siest G, Milne R, Rassart E (1998) Increased levels of apolipoprotein D in cerebrospinal fluid and hippocampus of Alzheimer's patients. J Neurochem 71(4):1643–1650PubMedCrossRefGoogle Scholar
  5. 5.
    Ordonez C, Navarro A, Perez C, Astudillo A, Martinez E, Tolivia J (2006) Apolipoprotein D expression in substantia nigra of Parkinson disease. Histol Histopathol 21(4):361–366PubMedGoogle Scholar
  6. 6.
    Yoshida K, Cleaveland ES, Nagle JW, French S, Yaswen L, Ohshima T, Brady RO, Pentchev PG, Kulkarni AB (1996) Molecular cloning of the mouse apolipoprotein D gene and its upregulated expression in Niemann–Pick disease type C mouse model. DNA Cell Biol 15(10):873–882PubMedCrossRefGoogle Scholar
  7. 7.
    Reindl M, Knipping G, Wicher I, Dilitz E, Egg R, Deisenhammer F, Berger T (2001) Increased intrathecal production of apolipoprotein D in multiple sclerosis. J Neuroimmunol 119(2):327–332PubMedCrossRefGoogle Scholar
  8. 8.
    Lambert J, Provost PR, Marcel YL, Rassart E (1993) Structure of the human apolipoprotein D gene promoter region. Biochim Biophys Acta 1172(1–2):190–192PubMedCrossRefGoogle Scholar
  9. 9.
    Levros LC Jr, Do Carmo S, Edouard E, Legault P, Charfi C, Rassart E (2010) Characterization of nuclear factors modulating the apolipoprotein D promoter during growth arrest: implication of PARP-1, APEX-1 and ERK1/2 catalytic activities. Biochim Biophys Acta 1803(9):1062–1071. doi:10.1016/j.bbamcr.2010.04.011 PubMedCrossRefGoogle Scholar
  10. 10.
    Boyles JK, Notterpek LM, Anderson LJ (1990) Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. Identification of apolipoprotein D, apolipoprotein A-IV, apolipoprotein E, and apolipoprotein A-I. J Biol Chem 265(29):17805–17815PubMedGoogle Scholar
  11. 11.
    Terrisse L, Seguin D, Bertrand P, Poirier J, Milne R, Rassart E (1999) Modulation of apolipoprotein D and apolipoprotein E expression in rat hippocampus after entorhinal cortex lesion. Brain Res Mol Brain Res 70(1):26–35PubMedCrossRefGoogle Scholar
  12. 12.
    Shore VG, Shore B (1973) Heterogeneity of human plasma very low density lipoproteins. Separation of species differing in protein components. Biochemistry 12(3):502–507PubMedCrossRefGoogle Scholar
  13. 13.
    Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240(4852):622–630PubMedCrossRefGoogle Scholar
  14. 14.
    Weisgraber KH, Rall SC Jr, Mahley RW (1981) Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the Apo-E isoforms. J Biol Chem 256(17):9077–9083PubMedGoogle Scholar
  15. 15.
    Rall SC Jr, Weisgraber KH, Mahley RW (1982) Human apolipoprotein E. The complete amino acid sequence. J Biol Chem 257(8):4171–4178PubMedGoogle Scholar
  16. 16.
    Corder EH, Saunders AM, Risch NJ, Strittmatter WJ, Schmechel DE, Gaskell PC Jr, Rimmler JB, Locke PA, Conneally PM, Schmader KE et al (1994) Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 7(2):180–184. doi:10.1038/ng0694-180 PubMedCrossRefGoogle Scholar
  17. 17.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science 261(5123):921–923PubMedCrossRefGoogle Scholar
  18. 18.
    Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, Allhorn M, Gonzalez C, Bastiani MJ, Rassart E, Sanchez D (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 7(4):506–515. doi:10.1111/j.1474-9726.2008.00395.x PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Do Carmo S, Jacomy H, Talbot PJ, Rassart E (2008) Neuroprotective effect of apolipoprotein D against human coronavirus OC43-induced encephalitis in mice. J Neurosci 28(41):10330–10338. doi:10.1523/JNEUROSCI.2644-08.2008 PubMedCrossRefGoogle Scholar
  20. 20.
    Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32(9):797–803PubMedCrossRefGoogle Scholar
  21. 21.
    Buchmeier MJ, Lane TE (1999) Viral-induced neurodegenerative disease. Curr Opin Microbiol 2(4):398–402PubMedCrossRefGoogle Scholar
  22. 22.
    Myint S, Johnston S, Sanderson G, Simpson H (1994) Evaluation of nested polymerase chain methods for the detection of human coronaviruses 229E and OC43. Mol Cell Probes 8(5):357–364. doi:10.1006/mcpr.1994.1052 PubMedCrossRefGoogle Scholar
  23. 23.
    Arbour N, Cote G, Lachance C, Tardieu M, Cashman NR, Talbot PJ (1999) Acute and persistent infection of human neural cell lines by human coronavirus OC43. J Virol 73(4):3338–3350PubMedCentralPubMedGoogle Scholar
  24. 24.
    Arbour N, Day R, Newcombe J, Talbot PJ (2000) Neuroinvasion by human respiratory coronaviruses. J Virol 74(19):8913–8921PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Bonavia A, Arbour N, Yong VW, Talbot PJ (1997) Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43. J Virol 71(1):800–806PubMedCentralPubMedGoogle Scholar
  26. 26.
    Boucher A, Desforges M, Duquette P, Talbot PJ (2007) Long-term human coronavirus-myelin cross-reactive T-cell clones derived from multiple sclerosis patients. Clin Immunol 123(3):258–267. doi:10.1016/j.clim.2007.02.002 PubMedCrossRefGoogle Scholar
  27. 27.
    Talbot PJ, Arnold D, Antel JP (2001) Virus-induced autoimmune reactions in the CNS. Curr Top Microbiol Immunol 253:247–271PubMedGoogle Scholar
  28. 28.
    Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H (2004) Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 113(1 Pt 1):e73–e76PubMedGoogle Scholar
  29. 29.
    Jacomy H, Talbot PJ (2003) Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology 315(1):20–33PubMedCrossRefGoogle Scholar
  30. 30.
    Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–176. doi:10.1038/nature05453 PubMedCrossRefGoogle Scholar
  31. 31.
    Heintz N (2004) Gene expression nervous system atlas (GENSAT). Nat Neurosci 7(5):483. doi:10.1038/nn0504-483 PubMedCrossRefGoogle Scholar
  32. 32.
    Belgard TG, Marques AC, Oliver PL, Abaan HO, Sirey TM, Hoerder-Suabedissen A, Garcia-Moreno F, Molnar Z, Margulies EH, Ponting CP (2011) A transcriptomic atlas of mouse neocortical layers. Neuron 71(4):605–616. doi:10.1016/j.neuron.2011.06.039 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Jimenez JS (2010) Protein–DNA interaction at the origin of neurological diseases: a hypothesis. J Alzheimers Dis 22(2):375–391. doi:10.3233/JAD-2010-100189 PubMedGoogle Scholar
  34. 34.
    Quinn CM, Kagedal K, Terman A, Stroikin U, Brunk UT, Jessup W, Garner B (2004) Induction of fibroblast apolipoprotein E expression during apoptosis, starvation-induced growth arrest and mitosis. Biochem J 378(Pt 3):753–761. doi:10.1042/BJ20031352 PubMedCrossRefGoogle Scholar
  35. 35.
    Kim WS, Elliott DA, Kockx M, Kritharides L, Rye KA, Jans DA, Garner B (2008) Analysis of apolipoprotein E nuclear localization using green fluorescent protein and biotinylation approaches. Biochem J 409(3):701–709. doi:10.1042/BJ20071261 PubMedCrossRefGoogle Scholar
  36. 36.
    Chen YC, Pohl G, Wang TL, Morin PJ, Risberg B, Kristensen GB, Yu A, Davidson B, Shih Ie M (2005) Apolipoprotein E is required for cell proliferation and survival in ovarian cancer. Cancer Res 65(1):331–337PubMedGoogle Scholar
  37. 37.
    Panin LE, Russkikh GS, Polyakov LM (2000) Detection of apolipoprotein A-I, B, and E immunoreactivity in the nuclei of various rat tissue cells. Biochemistry (Mosc) 65(12):1419–1423CrossRefGoogle Scholar
  38. 38.
    Panin LE, Polyakov LM, Kolosova NG, Russkikh GS, Poteryaeva ON (1998) Distribution of tocopherol and apolipoprotein A-I immunoreactivity in rat liver chromatin. Membr Cell Biol 11(5):631–640PubMedGoogle Scholar
  39. 39.
    Riddell DR, Zhou H, Atchison K, Warwick HK, Atkinson PJ, Jefferson J, Xu L, Aschmies S, Kirksey Y, Hu Y, Wagner E, Parratt A, Xu J, Li Z, Zaleska MM, Jacobsen JS, Pangalos MN, Reinhart PH (2008) Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci 28(45):11445–11453. doi:10.1523/JNEUROSCI.1972-08.2008 PubMedCrossRefGoogle Scholar
  40. 40.
    Do Carmo S, Levros LC Jr, Rassart E (2007) Modulation of apolipoprotein D expression and translocation under specific stress conditions. Biochim Biophys Acta 1773(6):954–969. doi:10.1016/j.bbamcr.2007.03.007 PubMedCrossRefGoogle Scholar
  41. 41.
    Do Carmo S, Seguin D, Milne R, Rassart E (2002) Modulation of apolipoprotein D and apolipoprotein E mRNA expression by growth arrest and identification of key elements in the promoter. J Biol Chem 277(7):5514–5523. doi:10.1074/jbc.M105057200 PubMedCrossRefGoogle Scholar
  42. 42.
    Kang S, Seo S, Hill J, Kwon B, Lee H, Cho H, Vinay D, Kwon B (2003) Changes in gene expression in latent HSV-1-infected rabbit trigeminal ganglia following epinephrine iontophoresis. Curr Eye Res 26(3–4):225–229PubMedCrossRefGoogle Scholar
  43. 43.
    Johnston C, Jiang W, Chu T, Levine B (2001) Identification of genes involved in the host response to neurovirulent alphavirus infection. J Virol 75(21):10431–10445. doi:10.1128/JVI.75.21.10431-10445.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Saha S, Rangarajan PN (2003) Common host genes are activated in mouse brain by Japanese encephalitis and rabies viruses. J Gen Virol 84(Pt 7):1729–1735PubMedCrossRefGoogle Scholar
  45. 45.
    Prosniak M, Hooper DC, Dietzschold B, Koprowski H (2001) Effect of rabies virus infection on gene expression in mouse brain. Proc Natl Acad Sci U S A 98(5):2758–2763. doi:10.1073/pnas.051630298 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Navarro A, Ordonez C, Martinez E, Perez C, Astudillo A, Tolivia J (2008) Apolipoprotein D expression absence in degenerating neurons of human central nervous system. Histol Histopathol 23(8):995–1001PubMedGoogle Scholar
  47. 47.
    Franz G, Reindl M, Patel SC, Beer R, Unterrichter I, Berger T, Schmutzhard E, Poewe W, Kampfl A (1999) Increased expression of apolipoprotein D following experimental traumatic brain injury. J Neurochem 73(4):1615–1625PubMedCrossRefGoogle Scholar
  48. 48.
    del Valle E, Navarro A, Astudillo A, Tolivia J (2003) Apolipoprotein D expression in human brain reactive astrocytes. J Histochem Cytochem 51(10):1285–1290PubMedCrossRefGoogle Scholar
  49. 49.
    Thomas EA, Dean B, Pavey G, Sutcliffe JG (2001) Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci U S A 98(7):4066–4071. doi:10.1073/pnas.071056198 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Khan MM, Parikh VV, Mahadik SP (2003) Antipsychotic drugs differentially modulate apolipoprotein D in rat brain. J Neurochem 86(5):1089–1100PubMedCrossRefGoogle Scholar
  51. 51.
    Desai PP, Ikonomovic MD, Abrahamson EE, Hamilton RL, Isanski BA, Hope CE, Klunk WE, DeKosky ST, Kamboh MI (2005) Apolipoprotein D is a component of compact but not diffuse amyloid-beta plaques in Alzheimer's disease temporal cortex. Neurobiol Dis 20(2):574–582. doi:10.1016/j.nbd.2005.04.012 PubMedCrossRefGoogle Scholar
  52. 52.
    McConathy WJ, Alaupovic P (1976) Studies on the isolation and partial characterization of apolipoprotein D and lipoprotein D of human plasma. Biochemistry 15(3):515–520PubMedCrossRefGoogle Scholar
  53. 53.
    Ganfornina MD, Do Carmo S, Martinez E, Tolivia J, Navarro A, Rassart E, Sanchez D (2010) ApoD, a glia-derived apolipoprotein, is required for peripheral nerve functional integrity and a timely response to injury. Glia 58(11):1320–1334. doi:10.1002/glia.21010 PubMedGoogle Scholar
  54. 54.
    Provost PR, Marcel YL, Milne RW, Weech PK, Rassart E (1991) Apolipoprotein D transcription occurs specifically in nonproliferating quiescent and senescent fibroblast cultures. FEBS Lett 290(1–2):139–141PubMedCrossRefGoogle Scholar
  55. 55.
    Navarro A, Del Valle E, Astudillo A, Gonzalez del Rey C, Tolivia J (2003) Immunohistochemical study of distribution of apolipoproteins E and D in human cerebral beta amyloid deposits. Exp Neurol 184(2):697–704. doi:10.1016/S0014-4886(03)00315-7 PubMedCrossRefGoogle Scholar
  56. 56.
    Kalman J, McConathy W, Araoz C, Kasa P, Lacko AG (2000) Apolipoprotein D in the aging brain and in Alzheimer's dementia. Neurol Res 22(4):330–336PubMedGoogle Scholar
  57. 57.
    Semenkovich CF, Ostlund RE Jr, Olson MO, Yang JW (1990) A protein partially expressed on the surface of HepG2 cells that binds lipoproteins specifically is nucleolin. Biochemistry 29(41):9708–9713PubMedCrossRefGoogle Scholar
  58. 58.
    Shibata Y, Muramatsu T, Hirai M, Inui T, Kimura T, Saito H, McCormick LM, Bu G, Kadomatsu K (2002) Nuclear targeting by the growth factor midkine. Mol Cell Biol 22(19):6788–6796PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE (1990) Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer's disease and in response to experimental lesions in rat. Neuron 5(6):831–839PubMedCrossRefGoogle Scholar
  60. 60.
    Nuutinen T, Suuronen T, Kauppinen A, Salminen A (2009) Clusterin: a forgotten player in Alzheimer's disease. Brain Res Rev 61(2):89–104. doi:10.1016/j.brainresrev.2009.05.007 PubMedCrossRefGoogle Scholar
  61. 61.
    Yang CR, Leskov K, Hosley-Eberlein K, Criswell T, Pink JJ, Kinsella TJ, Boothman DA (2000) Nuclear clusterin/XIP8, an X-ray-induced Ku70-binding protein that signals cell death. Proc Natl Acad Sci U S A 97(11):5907–5912PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Lambert JC, Amouyel P (2011) Genetics of Alzheimer's disease: new evidences for an old hypothesis? Curr Opin Genet Dev 21(3):295–301. doi:10.1016/j.gde.2011.02.002 PubMedCrossRefGoogle Scholar
  63. 63.
    Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD (2009) AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 11(12):1399–1410. doi:10.1038/ncb1986 PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Hollingworth P, Harold D, Jones L, Owen MJ, Williams J (2011) Alzheimer's disease genetics: current knowledge and future challenges. Int J Geriatr Psychiatry 26(8):793–802. doi:10.1002/gps.2628 PubMedCrossRefGoogle Scholar
  65. 65.
    Zhao Y, Chen X, Yang H, Zhou L, Okoro EU, Guo Z (2011) A novel function of apolipoprotein E: upregulation of ATP-binding cassette transporter A1 expression. PLoS One 6(7):e21453. doi:10.1371/journal.pone.0021453 PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Gafencu AV, Robciuc MR, Fuior E, Zannis VI, Kardassis D, Simionescu M (2007) Inflammatory signaling pathways regulating ApoE gene expression in macrophages. J Biol Chem 282(30):21776–21785. doi:10.1074/jbc.M611422200 PubMedCrossRefGoogle Scholar
  67. 67.
    Elliott DA, Weickert CS, Garner B (2010) Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin Lipidol 51(4):555–573. doi:10.2217/CLP.10.37 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Navarro A, del Valle E, Juarez A, Martinez E, Ordonez C, Astudillo A, Tolivia J (2010) Apolipoprotein D synthesis progressively increases in frontal cortex during human lifespan. Age (Dordr) 32(1):85–96. doi:10.1007/s11357-009-9117-0 CrossRefGoogle Scholar
  69. 69.
    Belloir B, Kovari E, Surini-Demiri M, Savioz A (2001) Altered apolipoprotein D expression in the brain of patients with Alzheimer disease. J Neurosci Res 64(1):61–69PubMedCrossRefGoogle Scholar
  70. 70.
    Kim WS, Wong J, Weickert CS, Webster MJ, Bahn S, Garner B (2009) Apolipoprotein-D expression is increased during development and maturation of the human prefrontal cortex. J Neurochem 109(4):1053–1066. doi:10.1111/j.1471-4159.2009.06031.x PubMedCrossRefGoogle Scholar
  71. 71.
    Leduc V, Domenger D, De Beaumont L, Lalonde D, Belanger-Jasmin S, Poirier J (2011) Function and comorbidities of apolipoprotein e in Alzheimer's disease. Int J Alzheimers Dis 2011:974361. doi:10.4061/2011/974361 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Bertrand P, Poirier J, Oda T, Finch CE, Pasinetti GM (1995) Association of apolipoprotein E genotype with brain levels of apolipoprotein E and apolipoprotein J (clusterin) in Alzheimer disease. Brain Res Mol Brain Res 33(1):174–178PubMedCrossRefGoogle Scholar
  73. 73.
    Jansen PJ, Lutjohann D, Thelen KM, von Bergmann K, van Leuven F, Ramaekers FC, Monique M (2009) Absence of ApoE upregulates murine brain ApoD and ABCA1 levels, but does not affect brain sterol levels, while human ApoE3 and human ApoE4 upregulate brain cholesterol precursor levels. J Alzheimers Dis 18(2):319–329. doi:10.3233/JAD-2009-1150 PubMedGoogle Scholar
  74. 74.
    Perdomo G, Henry Dong H (2009) Apolipoprotein D in lipid metabolism and its functional implication in atherosclerosis and aging. Aging (Albany NY) 1(1):17–27Google Scholar
  75. 75.
    Smith KM, Lawn RM, Wilcox JN (1990) Cellular localization of apolipoprotein D and lecithin:cholesterol acyltransferase mRNA in rhesus monkey tissues by in situ hybridization. J Lipid Res 31(6):995–1004PubMedGoogle Scholar
  76. 76.
    Provost PR, Villeneuve L, Weech PK, Milne RW, Marcel YL, Rassart E (1991) Localization of the major sites of rabbit apolipoprotein D gene transcription by in situ hybridization. J Lipid Res 32(12):1959–1970PubMedGoogle Scholar
  77. 77.
    Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28(1):264–278. doi:10.1523/JNEUROSCI.4178-07.2008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Louis-Charles LevrosJr.
    • 1
  • Marilyne Labrie
    • 1
  • Cyndia Charfi
    • 1
  • Eric Rassart
    • 1
    • 2
  1. 1.Laboratoire de biologie moléculaire, Département des Sciences Biologiques, and BioMed, centre de recherches biomédicalesUniversité du Québec à MontréalMontréalCanada
  2. 2.Département des Sciences BiologiquesUniversité du Québec à MontréalMontréalCanada

Personalised recommendations