Skip to main content

Advertisement

Log in

The Histone Deacetylase Inhibitor Sodium Butyrate Promotes Cell Death and Differentiation and Reduces Neurosphere Formation in Human Medulloblastoma Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that alterations in epigenetic mechanisms regulating chromatin state play a role in the pathogenesis of medulloblastoma (MB), the most common malignant brain tumor of childhood. Histone deacetylase (HDAC) inhibitors, which increase chromatin relaxation, have been shown to display anticancer activities. Here we show that the HDAC inhibitor sodium butyrate (NaB) markedly increases cell death and reduces colony formation in human MB cell lines. In addition, NaB increased the mRNA expression of Gria2, a neuronal differentiation marker, in D283 and DAOY cells and reduced the number of neurospheres in D283 cell cultures. Finally, NaB reduced the viability of D283 cells when combined with etoposide. These data show that NaB displays pronounced inhibitory effects on the survival of human MB cells and suggest that NaB might potentiate the effects of etoposide. In addition, our study suggests that HDAC inhibition might promote the neuronal differentiation of MB cells and provides the first evidence that an HDAC inhibitor might suppress the expansion or survival of MB cancer stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Crawford JR, MacDonald TJ, Packer RJ (2007) Medulloblastoma in childhood: New biological advances. Lancet Neurol 6:1073–1085

    Article  CAS  PubMed  Google Scholar 

  2. Polkinghorn WR, Tarbell NJ (2007) Medulloblastoma: Tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat Clin Pract Oncol 4:295–304

    Article  CAS  PubMed  Google Scholar 

  3. Rossi A, Caracciolo V, Russo G, Reiss K, Giordano A (2008) Medulloblastoma: From molecular pathology to therapy. Clin Cancer Res 14:971–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sutter R, Shakhova O, Bhagat H, Behesti H, Sutter C, Penkar S, Santuccione A, Bernays R, Heppner FL, Schüller U, Grotzer M, Moch H, Schraml P, Marino S (2010) Cerebellar stem cells act as medulloblastoma-initiating cells in a mouse model and a neural stem cell signature characterizes a subset of human medulloblastomas. Oncogene 29:1845–1856

    Article  CAS  PubMed  Google Scholar 

  5. Northcott PA, Jones DT, Kool M, Robinson GW, Gilbertson RJ, Cho YJ, Pomeroy SL, Korshunov A, Lichter P, Taylor MD, Pfister SM (2012) Medulloblastomics: The end of the beginning. Nat Rev Cancer 12:818–834

    Article  CAS  PubMed  Google Scholar 

  6. Wang J, Wechsler-Reya RJ (2013) The role of stem cells and progenitors in the genesis of medulloblastoma. Exp Neurol. doi:10.1016/j.expneurol.2012.11.014

    Google Scholar 

  7. Fan X, Eberhart CG (2008) Medulloblastoma stem cells. J Clin Oncol 26:2821–2827

    Article  CAS  PubMed  Google Scholar 

  8. Flores DG, Ledur PF, Abujamra AL, Brunetto AL, Schwartsmann G, Lenz G, Roesler R (2009) Cancer stem cells and the biology of brain tumors. Curr Stem Cell Res Ther 4:306–313

    Article  CAS  PubMed  Google Scholar 

  9. Hadjipanayis CG, Van Meir EG (2009) Brain cancer propagating cells: Biology, genetics and targeted therapies. Trends Mol Med 15:519–530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  11. Jones DT, Jäger N, Kool M, Zichner T, Hutter B, Sultan M, Cho YJ, Pugh TJ, Hovestadt V, Stütz AM, Rausch T, Warnatz HJ, Ryzhova M, Bender S, Sturm D, Pleier S, Cin H, Pfaff E, Sieber L, Wittmann A, Remke M, Witt H, Hutter S, Tzaridis T, Weischenfeldt J, Raeder B, Avci M, Amstislavskiy V, Zapatka M, Weber UD, Wang Q, Lasitschka B, Bartholomae CC, Schmidt M, von Kalle C, Ast V, Lawerenz C, Eils J, Kabbe R, Benes V, van Sluis P, Koster J, Volckmann R, Shih D, Betts MJ, Russell RB, Coco S, Tonini GP, Schüller U, Hans V, Graf N, Kim YJ, Monoranu C, Roggendorf W, Unterberg A, Herold-Mende C, Milde T, Kulozik AE, von Deimling A, Witt O, Maass E, Rössler J, Ebinger M, Schuhmann MU, Frühwald MC, Hasselblatt M, Jabado N, Rutkowski S, von Bueren AO, Williamson D, Clifford SC, McCabe MG, Collins VP, Wolf S, Wiemann S, Lehrach H, Brors B, Scheurlen W, Felsberg J, Reifenberger G, Northcott PA, Taylor MD, Meyerson M, Pomeroy SL, Yaspo ML, Korbel JO, Korshunov A, Eils R, Pfister SM, Lichter P (2012) Dissecting the genomic complexity underlying medulloblastoma. Nature 488:100–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Northcott PA, Nakahara Y, Wu X, Feuk L, Ellison DW, Croul S, Mack S, Kongkham PN, Peacock J, Dubuc A, Ra YS, Zilberberg K, McLeod J, Scherer SW, Sunil Rao J, Eberhart CG, Grajkowska W, Gillespie Y, Lach B, Grundy R, Pollack IF, Hamilton RL, Van Meter T, Carlotti CG, Boop F, Bigner D, Gilbertson RJ, Rutka JT, Taylor MD (2009) Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat Genet 41:465–472

    Article  CAS  PubMed  Google Scholar 

  13. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  CAS  PubMed  Google Scholar 

  14. Leder A, Orkin S, Leder P (1975) Differentiation of erythroleukemic cells in the presence of inhibitors of DNA synthesis. Science 190:893–894

    Article  CAS  PubMed  Google Scholar 

  15. Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268:462–464

    Article  CAS  PubMed  Google Scholar 

  16. Candido EP, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14:105–113

    Article  CAS  PubMed  Google Scholar 

  17. Bhalla KN (2005) Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23:3971–3993

    Article  CAS  PubMed  Google Scholar 

  18. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  CAS  PubMed  Google Scholar 

  19. Sonnemann J, Kumar KS, Heesch S, Müller C, Hartwig C, Maass M, Bader P, Beck JF (2006) Histone deacetylase inhibitors induce cell death and enhance the susceptibility to ionizing radiation, etoposide, and TRAIL in medulloblastoma cells. Int J Oncol 28:755–766

    CAS  PubMed  Google Scholar 

  20. Furchert SE, Lanvers-Kaminsky C, Juürgens H, Jung M, Loidl A, Frühwald MC (2007) Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood. Int J Cancer 120:1787–1794

    Article  CAS  PubMed  Google Scholar 

  21. Kumar KS, Sonnemann J, le Hong TT, Buurman C, Adler F, Maass M, Völker U, Beck JF (2007) Histone deacetylase inhibitors, but not vincristine, cooperate with radiotherapy to induce cell death in medulloblastoma. Anticancer Res 27:465–470

    CAS  PubMed  Google Scholar 

  22. Häcker S, Karl S, Mader I, Cristofanon S, Schweitzer T, Krauss J, Rutkowski S, Debatin KM, Fulda S (2011) Histone deacetylase inhibitors prime medulloblastoma cells for chemotherapy-induced apoptosis by enhancing p53-dependent Bax activation. Oncogene 30:2275–2281

    Article  PubMed  Google Scholar 

  23. Sonnemann J, Trommer N, Becker S, Wittig S, Grauel D, Palani CD, Beck JF (2012) Histone deacetylase inhibitor-mediated sensitization to TRAIL-induced apoptosis in childhood malignancies is not associated with upregulation of TRAIL receptor expression, but with potentiated caspase-8 activation. Cancer Biol Ther 13:417–424

    Article  CAS  PubMed  Google Scholar 

  24. Tang Y, Yacoub A, Hamed HA, Poklepovic A, Tye G, Grant S, Dent P (2012) Sorafenib and HDAC inhibitors synergize to kill CNS tumor cells. Cancer Biol Ther 13:567–574

    Article  CAS  PubMed  Google Scholar 

  25. Li XN, Shu Q, Su JM, Perlaky L, Blaney SM, Lau CC (2005) Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 4:1912–1922

    Article  CAS  PubMed  Google Scholar 

  26. Nör C, de Farias CB, Abujamra AL, Schwartsmann G, Brunetto AL, Roesler R (2011) The histone deacetylase inhibitor sodium butyrate in combination with brain-derived neurotrophic factor reduces the viability of DAOY human medulloblastoma cells. Childs Nerv Syst 27:897–901

    Article  PubMed  Google Scholar 

  27. Milde T, Kleber S, Korshunov A, Witt H, Hielscher T, Koch P, Kopp HG, Jugold M, Deubzer HE, Oehme I, Lodrini M, Gröne HJ, Benner A, Brüstle O, Gilbertson RJ, von Deimling A, Kulozik AE, Pfister SM, Martin-Villalba A, Witt O (2011) A novel human high-risk ependymoma stem cell model reveals the differentiation-inducing potential of the histone deacetylase inhibitor Vorinostat. Acta Neuropathol 122:637–650

    Article  CAS  PubMed  Google Scholar 

  28. Asklund T, Kvarnbrink S, Holmlund C, Wibom C, Bergenheim T, Henriksson R, Hedman H (2012) Synergistic killing of glioblastoma stem-like cells by bortezomib and HDAC inhibitors. Anticancer Res 32:2407–2413

    CAS  PubMed  Google Scholar 

  29. Sassi FA, Brunetto AL, Schwartsmann G, Roesler R, Abujamra AL (2012) Glioma revisited: From neurogenesis and cancer stem cells to the epigenetic regulation of the niche. J Oncol 2012:537861

    Google Scholar 

  30. Schmidt AL, de Farias CB, Abujamra AL, Kapczinski F, Schwartsmann G, Brunetto AL, Roesler R (2010) BDNF and PDE4, but not the GRPR, regulate viability of human medulloblastoma cells. J Mol Neurosci 40:303–310

    Article  CAS  PubMed  Google Scholar 

  31. Franken NAP, Rodermond HM, Stap J, Jaap Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protocols 1:2315–2319

    Article  CAS  Google Scholar 

  32. Pastrana E, Silva-Vargas V, Doetsch F (2011) Eyes wide open: A critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8:486–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  34. Annabi B, Rojas-Sutterlin S, Laflamme C, Lachambre MP, Rolland Y, Sartelet H, Béliveau R (2008) Tumor environment dictates medulloblastoma cancer stem cell expression and invasive phenotype. Mol Cancer Res 6:907–916

    Article  CAS  PubMed  Google Scholar 

  35. Sanchez-Diaz PC, Burton TL, Burns SC, Hung JY, Penalva LO (2008) Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy. BMC Cancer 8:280

    Article  PubMed Central  PubMed  Google Scholar 

  36. Korur S, Huber RM, Sivasankaran B, Petrich M, Morin P Jr, Hemmings BA, Merlo A, Lino MM (2009) GSK3beta regulates differentiation and growth arrest in glioblastoma. PLoS One 4:7443

    Article  Google Scholar 

  37. Huang X, Ketova T, Litingtung Y, Chiang C (2010) Isolation, enrichment, and maintenance of medulloblastoma stem cells. J Vis Exp (43): doi:10.3791/2086

  38. Bai RY, Staedtke V, Lidov HG, Eberhart CG, Riggins GJ (2012) OTX2 represses myogenic and neuronal differentiation in medulloblastoma cells. Cancer Res 72:5988–6001

    Article  CAS  PubMed  Google Scholar 

  39. Rogers HA, Sousa S, Salto C, Arenas E, Coyle B, Grundy RG (2012) WNT/β-catenin pathway activation in Myc immortalised cerebellar progenitor cells inhibits neuronal differentiation and generates tumours resembling medulloblastoma. Br J Cancer 107:1144–1152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li XN, Parikh S, Shu Q, Jung HL, Chow CW, Perlaky L, Leung HC, Su J, Blaney S, Lau CC (2004) Phenylbutyrate and phenylacetate induce differentiation and inhibit proliferation of human medulloblastoma cells. Clin Cancer Res 10:1150–1159

    Article  CAS  PubMed  Google Scholar 

  41. Hagihara H, Ohira K, Toyama K, Miyakawa T (2011) Expression of the AMPA receptor subunits GluR1 and GluR2 is associated with granule cell maturation in the dentate gyrus. Front Neurosci 5:100

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Canettieri G, Di Marcotullio L, Greco A, Coni S, Antonucci L, Infante P, Pietrosanti L, De Smaele E, Ferretti E, Miele E, Pelloni M, De Simone G, Pedone EM, Gallinari P, Giorgi A, Steinkühler C, Vitagliano L, Pedone C, Schinin ME, Screpanti I, Gulino A (2010) Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol 12:132–142

    Article  CAS  PubMed  Google Scholar 

  43. Canettieri G, Di Marcotullio L, Coni S, Greco A, Gulino A (2010) Turning off the switch in medulloblastoma: The inhibitory acetylation of an oncogene. Cell Cycle 9:2047–2048

    Article  CAS  PubMed  Google Scholar 

  44. Di Marcotullio L, Ferretti E, De Smaele E, Screpanti I, Gulino A (2006) Suppressors of hedgehog signaling: Linking aberrant development of neural progenitors and tumorigenesis. Mol Neurobiol 34:193–204

    Article  PubMed  Google Scholar 

  45. Schmidt AL, Brunetto AL, Schwartsmann G, Roesler R, Abujamra AL (2010) Recent therapeutic advances for treating medulloblastoma: Focus on new molecular targets. CNS Neurol Disord Drug Targets 9:335–348

    Article  CAS  PubMed  Google Scholar 

  46. Di Marcotullio L, Ferretti E, De Smaele E, Argenti B, Mincione C, Zazzeroni F, Gallo R, Masuelli L, Napolitano M, Maroder M, Modesti A, Giangaspero F, Screpanti I, Alesse E, Gulino A (2004) REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc Natl Acad Sci U S A 101:10833–10838

    Article  PubMed Central  PubMed  Google Scholar 

  47. De Smaele E, Di Marcotullio L, Moretti M, Pelloni M, Occhione MA, Infante P, Cucchi D, Greco A, Pietrosanti L, Todorovic J, Coni S, Canettieri G, Ferretti E, Bei R, Maroder M, Screpanti I, Gulino A (2011) Identification and characterization of KCASH2 and KCASH3, 2 novel Cullin3 adaptors suppressing histone deacetylase and Hedgehog activity in medulloblastoma. Neoplasia 13:374–385

    PubMed Central  PubMed  Google Scholar 

  48. He XM, Skapek SX, Wikstrand CJ, Friedman HS, Trojanowski JQ, Kemshead JT, Coakham HB, Bigner SH, Bigner DD (1989) Phenotypic analysis of four human medulloblastoma cell lines and transplantable xenografts. J Neuropathol Exp Neurol 48:48–68

    Article  CAS  PubMed  Google Scholar 

  49. Barrett LE, Granot Z, Coker C, Iavarone A, Hambardzumyan D, Holland EC, Nam HS, Benezra R (2012) Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma. Cancer Cell 21:11–24

    Article  CAS  PubMed  Google Scholar 

  50. Read TA, Wechsler-Reya RJ (2012) Spheres without influence: Dissociating in vitro self-renewal from tumorigenic potential in glioma. Cancer Cell 21:1–3

    Article  CAS  PubMed  Google Scholar 

  51. Rodini CO, Suzuki DE, Saba-Silva N, Cappellano A, de Souza JE, Cavalheiro S, Toledo SR, Okamoto OK (2012) Expression analysis of stem cell-related genes reveal OCT4 as a predictor of poor clinical outcome in medulloblastoma. J Neurooncol 106:71–79

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Ge J, Wang K, Qian J, Zou Y (2006) Evaluation of MTT assay for measurement of emodin-induced cytotoxicity. Assay Drug Dev Technol 4:203–237

    Article  CAS  PubMed  Google Scholar 

  53. van Meerloo J, Kaspers GJ, Cloos J (2011) Cell sensitivity assays: The MTT assay. Methods Mol Biol 731:237–245

    Article  PubMed  Google Scholar 

  54. dos Santos MP, Schwartsmann G, Roesler R, Brunetto AL, Abujamra AL (2009) Sodium butyrate enhances the cytotoxic effect of antineoplastic drugs in human lymphoblastic T-cells. Leuk Res 33:218–221

    Article  PubMed  Google Scholar 

  55. Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D, Seto E (2000) Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet 26:349–353

    Article  CAS  PubMed  Google Scholar 

  56. Hande KR (1998) Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521

    Article  CAS  PubMed  Google Scholar 

  57. Geyer JR, Sposto R, Jennings M, Boyett JM, Axtell RA, Breiger D, Broxson E, Donahue B, Finlay JL, Goldwein JW, Heier LA, Johnson D, Mazewski C, Miller DC, Packer R, Puccetti D, Radcliffe J, Tao ML, Shiminski-Maher T; Children’s Cancer Group (2005) Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: A report from the Children’s Cancer Group. J Clin Oncol 23:7621–7631

    Article  Google Scholar 

  58. Ruggiero A, Rizzo D, Attinà G, Lazzareschi I, Mastrangelo S, Maurizi P, Migliorati R, Bertolini P, Pastore M, Colosimo C, Riccardi R (2010) Phase I study of temozolomide combined with oral etoposide in children with recurrent or progressive medulloblastoma. Eur J Cancer 46:2943–2949

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Council for Scientific and Technological Development (CNPq; grant numbers 303703/2009-1 and 484185/2012-8 to R.R); the Rafael Koff Acordi Research Fund, Children’s Cancer Institute (ICI-RS); the National Institute for Translational Medicine (INCT-TM); and the South American Office for Anticancer Drug Development. C.N. and F.A.S are supported by CNPq graduate fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Roesler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nör, C., Sassi, F.A., de Farias, C.B. et al. The Histone Deacetylase Inhibitor Sodium Butyrate Promotes Cell Death and Differentiation and Reduces Neurosphere Formation in Human Medulloblastoma Cells. Mol Neurobiol 48, 533–543 (2013). https://doi.org/10.1007/s12035-013-8441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8441-7

Keywords

Navigation