Skip to main content

Advertisement

Log in

Molecular Basis of Etiological Implications in Alzheimer’s Disease: Focus on Neuroinflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Significant bodies of evidences have shown different mechanisms known to be the etiological cause of Alzheimer’s disease (AD) involving amyloid-beta protein accumulation, chronic inflammatory reactions, oxidative stress, proteasome inhibition, and high-cholesterol level, but the presize etiology of AD still remains enigmatic. Recent studies indicate that these mechanisms seem to be interlinked, and neuroinflammation emerges as a major regulatory and commen factor in all these mechanisms. In amyloid-beta protein, induced neurodegenerative hypothesis of AD inflammatory cytokines IFN-γ, TNF-α, interleukin (IL)-1α plays an important role in the progression of the disease. In cholesterol induced hypothesis liver X receptor mediated IL-4 also plays a major role in the progression of neuroinflammation. Notably, Omi and HtrA2 proteases play very important functions in neuronal dysfunction, which may lead to neurodegeneration. Further at genetic level, alterations in the genes occur especially in APP, PSEN1, PSEN2, APO E(ε4), ADAM12, and SH3MD1 which mediate neurodegeneration. Additionaly, The role of SP-1, NF-κB, and BCAE-1 is critical in the regulation of neuroinflammation-associated disease pathogenesis. All together, in this review, we discus the importance of neuroinflammatory mediators and their mechanistic role in the process of AD neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NGF:

Nerve growth factor

GDNF:

Glial cell line-derived neurotrophic factor

MANF:

Mesencephalic astrocyte-derived neurotrophic factor

bFGF:

Basic fibroblast growth factor

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

TNF-α:

Tumor necrosis factor-α

NF-κB:

Nuclear factor kappa-B

COX-2:

Cyclooxygenase-2

GFAP:

Glial fibrillary acidic protein

CHOP:

C/EBP, homologous protein 10

iNOS:

Inducible nitric oxide synthase

MDA:

Malondialdehyde

IL-1α:

Interleukin-1α

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

P-p38 MAPK:

Phosphorylated p38 mitogen-activated protein kinase

NO:

Nitric oxide

References

  1. Breteler MM, Claus JJ, van Duijn CM, Launer LJ, Hofman A (1992) Epidemiology of Alzheimer’s disease. Epidemiol Rev 14:59–82

    CAS  PubMed  Google Scholar 

  2. Newman M, Musgrave IF, Lardelli M (2007) Alzheimer disease: amyloidogenesis, the presenilins and animal models. Biochim Biophys Acta 1772:285–297

    CAS  PubMed  Google Scholar 

  3. Tedeschi G, Cirillo M, Tessitore A, Cirillo S (2008) Alzheimer’s disease and other dementing conditions. Neurol Sci 29(Suppl 3):301–307

    PubMed  Google Scholar 

  4. Schoenberg BS, Kokmen E, Okazaki H (1987) Alzheimer’s disease and other dementing illnesses in a defined United States population: incidence rates and clinical features. Ann Neurol 22:724–729

    CAS  PubMed  Google Scholar 

  5. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevalence of Alzheimer’s disease in a community population of older persons. Higher than previously reported. JAMA 262:2551–2556

    CAS  PubMed  Google Scholar 

  6. Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    CAS  PubMed  Google Scholar 

  7. Chang KA, Kim HJ, Suh YH (2012) The role of S100a9 in the pathogenesis of Alzheimer’s disease: the therapeutic effects of S100a9 knockdown or knockout. Neurodegener Dis 10:27–29

    CAS  PubMed  Google Scholar 

  8. Magrone T, Marzulli G, Jirillo E (2012) Immunopathogenesis of neurodegenerative diseases: current therapeutic models of neuroprotection with special reference to natural products. Curr Pharm Des 18:34–42

    CAS  PubMed  Google Scholar 

  9. Rosales-Corral SA, Acuna-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S, Tan DX, Reiter RJ (2012) Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 52:167–202

    CAS  PubMed  Google Scholar 

  10. Carnevale D, Mascio G, Ajmone-Cat MA, D’Andrea I, Cifelli G, Madonna M, Cocozza G, Frati A, Carullo P, Carnevale L, Alleva E, Branchi I, Lembo G, Minghetti L (2012) Role of neuroinflammation in hypertension-induced brain amyloid pathology. Neurobiol Aging 33(205):e219–e229

    Google Scholar 

  11. Behl C, Davis JB, Klier FG, Schubert D (1994) Amyloid beta peptide induces necrosis rather than apoptosis. Brain Res 645:253–264

    CAS  PubMed  Google Scholar 

  12. Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, Bozner P (1998) Evidence of oxidative stress and in vivo neurotoxicity of beta-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 152:871–877

    CAS  PubMed  Google Scholar 

  13. Rubio-Perez JM, Morillas-Ruiz JM (2012) A review: inflammatory process in Alzheimer’s disease, role of cytokines. Sci World J 2012:756357

    Google Scholar 

  14. Weitz TM, Town T (2012) Microglia in Alzheimer’s disease: it’s all about context. Int J Alzheimers Dis 2012:314185

    PubMed Central  PubMed  Google Scholar 

  15. Lunnon K, Ibrahim Z, Proitsi P, Lourdusamy A, Newhouse S, Sattlecker M, Furney S, Saleem M, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Coppola G, Geschwind D, Simmons A, Lovestone S, Dobson R, Hodges A (2012) Mitochondrial dysfunction and immune activation are detectable in early Alzheimer’s disease blood. JAD 30:685–710

    CAS  PubMed  Google Scholar 

  16. Hoozemans JJ, Rozemuller AJ, van Haastert ES, Eikelenboom P, van Gool WA (2011) Neuroinflammation in Alzheimer’s disease wanes with age. J Neuroinflammation 8:171

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Guillozet AL, Smiley JF, Mash DC, Mesulam MM (1997) Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol 42:909–918

    CAS  PubMed  Google Scholar 

  18. Lipinski MM, Zheng B, Lu T, Yan Z, Py BF, Ng A, Xavier RJ, Li C, Yankner BA, Scherzer CR, Yuan J Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A 107:14164–14169

  19. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    CAS  PubMed  Google Scholar 

  20. Joachim CL, Selkoe DJ (1992) The seminal role of beta-amyloid in the pathogenesis of Alzheimer disease. Alzheimer Dis Assoc Disord 6:7–34

    CAS  PubMed  Google Scholar 

  21. Kihara T, Shimmyo Y, Akaike A, Niidome T, Sugimoto H (2010) Abeta-induced BACE-1 cleaves N-terminal sequence of mPGES-2. Biochem Biophys Res Commun 393:728–733

    CAS  PubMed  Google Scholar 

  22. Li B, Zhong L, Yang X, Andersson T, Huang M, Tang SJ (2011) WNT5A signaling contributes to Abeta-induced neuroinflammation and neurotoxicity. PLoS One 6:e22920

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Maezawa I, Zimin PI, Wulff H, Jin LW (2011) Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity. J Biol Chem 286:3693–3706

    CAS  PubMed  Google Scholar 

  24. Mrak RE (2009) Neuropathology and the neuroinflammation idea. JAD 18:473–481

    PubMed  Google Scholar 

  25. Simmons LK, May PC, Tomaselli KJ, Rydel RE, Fuson KS, Brigham EF, Wright S, Lieberburg I, Becker GW, Brems DN et al (1994) Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 45:373–379

    CAS  PubMed  Google Scholar 

  26. Garcia-Bueno B, Madrigal JL, Lizasoain I, Moro MA, Lorenzo P, Leza JC (2005) Peroxisome proliferator-activated receptor gamma activation decreases neuroinflammation in brain after stress in rats. Biol Psychiatry 57:885–894

    CAS  PubMed  Google Scholar 

  27. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A 90:7951–7955

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Bondy SC, Truong A (1999) Potentiation of beta-folding of beta-amyloid peptide 25-35 by aluminum salts. Neurosci Lett 267:25–28

    CAS  PubMed  Google Scholar 

  29. Ralay Ranaivo H, Craft JM, Hu W, Guo L, Wing LK, Van Eldik LJ, Watterson DM (2006) Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci 26:662–670

    PubMed  Google Scholar 

  30. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827

    CAS  PubMed  Google Scholar 

  31. Ferretti MT, Allard S, Partridge V, Ducatenzeiler A, Cuello AC (2012) Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation 9:62

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Masumura M, Hata R, Uramoto H, Murayama N, Ohno T, Sawada T (2000) Altered expression of amyloid precursors proteins after traumatic brain injury in rats: in situ hybridization and immunohistochemical study. J Neurotrauma 17:123–134

    CAS  PubMed  Google Scholar 

  33. Hoi CP, Ho YP, Baum L, Chow AH Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. PTR 24:1538–1542

  34. Van den Heuvel C, Blumbergs PC, Finnie JW, Manavis J, Jones NR, Reilly PL, Pereira RA (1999) Upregulation of amyloid precursor protein messenger RNA in response to traumatic brain injury: an ovine head impact model. Exp Neurol 159:441–450

    PubMed  Google Scholar 

  35. Lyons A, McQuillan K, Deighan BF, O’Reilly JA, Downer EJ, Murphy AC, Watson M, Piazza A, O’Connell F, Griffin R, Mills KH, Lynch MA (2009) Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behav Immun 23:1020–1027

    CAS  PubMed  Google Scholar 

  36. Panegyres PK, Zafiris-Toufexis K, Kakulas BA (2000) Amyloid precursor protein gene isoforms in Alzheimer’s disease and other neurodegenerative disorders. J Neurol Sci 173:81–92

    CAS  PubMed  Google Scholar 

  37. Ho L, Purohit D, Haroutunian V, Luterman JD, Willis F, Naslund J, Buxbaum JD, Mohs RC, Aisen PS, Pasinetti GM (2001) Neuronal cyclooxygenase 2 expression in the hippocampal formation as a function of the clinical progression of Alzheimer disease. Arch Neurol 58:487–492

    CAS  PubMed  Google Scholar 

  38. Neve RL, Robakis NK (1998) Alzheimer’s disease: a re-examination of the amyloid hypothesis. Trends Neurosci 21:15–19

    CAS  PubMed  Google Scholar 

  39. Small DH, McLean CA (1999) Alzheimer’s disease and the amyloid beta protein: what is the role of amyloid? J Neurochem 73:443–449

    CAS  PubMed  Google Scholar 

  40. Miao J, Vitek MP, Xu F, Previti ML, Davis J, Van Nostrand WE (2005) Reducing cerebral microvascular amyloid-beta protein deposition diminishes regional neuroinflammation in vasculotropic mutant amyloid precursor protein transgenic mice. J Neurosci 25:6271–6277

    CAS  PubMed  Google Scholar 

  41. Miao J, Xu F, Davis J, Otte-Holler I, Verbeek MM, Van Nostrand WE (2005) Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein. Am J Pathol 167:505–515

    CAS  PubMed  Google Scholar 

  42. Tiffany HL, Lavigne MC, Cui YH, Wang JM, Leto TL, Gao JL, Murphy PM (2001) Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem 276:23645–23652

    CAS  PubMed  Google Scholar 

  43. Whitehead SN, Cheng G, Hachinski VC, Cechetto DF (2007) Progressive increase in infarct size, neuroinflammation, and cognitive deficits in the presence of high levels of amyloid. Stroke 38:3245–3250

    CAS  PubMed  Google Scholar 

  44. Zhao J, Fu Y, Yasvoina M, Shao P, Hitt B, O’Connor T, Logan S, Maus E, Citron M, Berry R, Binder L, Vassar R (2007) Beta-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J Neurosci 27:3639–3649

    CAS  PubMed  Google Scholar 

  45. Tiberio M, Chard DT, Altmann DR, Davies G, Griffin CM, Rashid W, Sastre-Garriga J, Thompson AJ, Miller DH (2005) Gray and white matter volume changes in early RRMS: a 2-year longitudinal study. Neurology 64:1001–1007

    CAS  PubMed  Google Scholar 

  46. Yamamoto M, Kiyota T, Horiba M, Buescher JL, Walsh SM, Gendelman HE, Ikezu T (2007) Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. Am J Pathol 170:680–692

    CAS  PubMed  Google Scholar 

  47. Goldgaber D, Harris HW, Hla T, Maciag T, Donnelly RJ, Jacobsen JS, Vitek MP, Gajdusek DC (1989) Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proc Natl Acad Sci U S A 86:7606–7610

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Wilcock DM, Lewis MR, Van Nostrand WE, Davis J, Previti ML, Gharkholonarehe N, Vitek MP, Colton CA (2008) Progression of amyloid pathology to Alzheimer’s disease pathology in an amyloid precursor protein transgenic mouse model by removal of nitric oxide synthase 2. J Neurosci 28:1537–1545

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Padmanabhan J, Levy M, Dickson DW, Potter H (2006) Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer’s disease brain, induces tau phosphorylation in neurons. Brain 129:3020–3034

    PubMed  Google Scholar 

  50. Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC (2006) Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci 26:11111–11119

    CAS  PubMed  Google Scholar 

  51. He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, Staufenbiel M, Li R, Shen Y (2007) Deletion of tumor necrosis factor death receptor inhibits amyloid beta generation and prevents learning and memory deficits in Alzheimer’s mice. J Cell Biol 178:829–841

    CAS  PubMed  Google Scholar 

  52. Koenigsknecht-Talboo J, Landreth GE (2005) Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 25:8240–8249

    CAS  PubMed  Google Scholar 

  53. Liang X, Wang Q, Hand T, Wu L, Breyer RM, Montine TJ, Andreasson K (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci 25:10180–10187

    CAS  PubMed  Google Scholar 

  54. McAlpine FE, Lee JK, Harms AS, Ruhn KA, Blurton-Jones M, Hong J, Das P, Golde TE, LaFerla FM, Oddo S, Blesch A, Tansey MG (2009) Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol Dis 34:163–177

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Heneka MT, Sastre M, Dumitrescu-Ozimek L, Hanke A, Dewachter I, Kuiperi C, O’Banion K, Klockgether T, Van Leuven F, Landreth GE (2005) Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice. Brain 128:1442–1453

    PubMed  Google Scholar 

  56. Lee YJ, Choi DY, Lee YK, Lee YM, Han SB, Kim YH, Kim KH, Nam SY, Lee BJ, Kang JK, Yun YW, Oh KW, Hong JT (2012) 4-O-methylhonokiol prevents memory impairment in the Tg2576 transgenic mice model of Alzheimer’s disease via regulation of beta-secretase activity. JAD 29:677–690

    CAS  PubMed  Google Scholar 

  57. Vekrellis K, Stefanis L (2012) Targeting intracellular and extracellular alpha-synuclein as a therapeutic strategy in Parkinson’s disease and other synucleinopathies. Expert Opin Ther Targets 16:421–432

    CAS  PubMed  Google Scholar 

  58. Garcia-Ruiz C, Mari M, Colell A, Morales A, Caballero F, Montero J, Terrones O, Basanez G, Fernandez-Checa JC (2009) Mitochondrial cholesterol in health and disease. Histol Histopathol 24:117–132

    CAS  PubMed  Google Scholar 

  59. Ayciriex S, Regazzetti A, Gaudin M, Prost E, Dargere D, Massicot F, Auzeil N, Laprevote O (2012) Development of a novel method for quantification of sterols and oxysterols by UPLC-ESI-HRMS: application to a neuroinflammation rat model. Anal Bioanal Chem 404:3049–3059

    CAS  PubMed  Google Scholar 

  60. Refolo LM, Fillit HM (2004) Apolipoprotein E4 as a target for developing new therapeutics for Alzheimer’s disease. J Mol Neurosci 23:151–155

    CAS  PubMed  Google Scholar 

  61. Repa JJ, Li H, Frank-Cannon TC, Valasek MA, Turley SD, Tansey MG, Dietschy JM (2007) Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 27:14470–14480

    CAS  PubMed  Google Scholar 

  62. Simons CT, Sudo S, Sudo M, Carstens E (2004) Mustard oil has differential effects on the response of trigeminal caudalis neurons to heat and acidity. Pain 110:64–71

    CAS  PubMed  Google Scholar 

  63. Boimel M, Grigoriadis N, Lourbopoulos A, Touloumi O, Rosenmann D, Abramsky O, Rosenmann H (2009) Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. J Neuropathol Exp Neurol 68:314–325

    CAS  PubMed  Google Scholar 

  64. Fernandez A, Llacuna L, Fernandez-Checa JC, Colell A (2009) Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci 29:6394–6405

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356:1627–1631

    CAS  PubMed  Google Scholar 

  66. Saiz-Sanchez D, Ubeda-Banon I, de la Rosa-Prieto C, Argandona-Palacios L, Garcia-Munozguren S, Insausti R, Martinez-Marcos A (2009) Somatostatin, tau, and beta-amyloid within the anterior olfactory nucleus in Alzheimer disease. Exp Neurol 223:347–350

    PubMed  Google Scholar 

  67. Acheampong E, Parveen Z, Mengistu A, Ngoubilly N, Wigdahl B, Lossinsky AS, Pomerantz RJ, Mukhtar M (2007) Cholesterol-depleting statin drugs protect postmitotically differentiated human neurons against ethanol- and human immunodeficiency virus type 1-induced oxidative stress in vitro. J Virol 81:1492–1501

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Rao S, Porter DC, Chen X, Herliczek T, Lowe M, Keyomarsi K (1999) Lovastatin-mediated G1 arrest is through inhibition of the proteasome, independent of hydroxymethyl glutaryl-CoA reductase. Proc Natl Acad Sci U S A 96:7797–7802

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ma K, Langenbach R, Rapoport SI, Basselin M (2007) Altered brain lipid composition in cyclooxygenase-2 knockout mouse. J Lipid Res 48:848–854

    CAS  PubMed  Google Scholar 

  70. Adamson P, Greenwood J (2003) How do statins control neuroinflammation? Inflamm Res 52:399–403

    CAS  PubMed  Google Scholar 

  71. Burgess BL, Parkinson PF, Racke MM, Hirsch-Reinshagen V, Fan J, Wong C, Stukas S, Theroux L, Chan JY, Donkin J, Wilkinson A, Balik D, Christie B, Poirier J, Lutjohann D, Demattos RB, Wellington CL (2008) ABCG1 influences the brain cholesterol biosynthetic pathway but does not affect amyloid precursor protein or apolipoprotein E metabolism in vivo. J Lipid Res 49:1254–1267

    CAS  PubMed  Google Scholar 

  72. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, Vinters HV, Tontonoz P (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver X receptors. Proc Natl Acad Sci U S A 104:10601–10606

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Clarke RM, Lyons A, O’Connell F, Deighan BF, Barry CE, Anyakoha NG, Nicolaou A, Lynch MA (2008) A pivotal role for interleukin-4 in atorvastatin-associated neuroprotection in rat brain. J Biol Chem 283:1808–1817

    CAS  PubMed  Google Scholar 

  74. Maingat FG, Polyak MJ, Paul AM, Vivithanaporn P, Noorbakhsh F, Ahboucha S, Baker GB, Pearson K, Power C (2012) Neurosteroid-mediated regulation of brain innate immunity in HIV/AIDS: DHEA-S suppresses neurovirulence. FASEB J 27:725–737

    PubMed  Google Scholar 

  75. Bi W, Jing X, Zhu L, Liang Y, Liu J, Yang L, Xiao S, Xu A, Shi Q, Tao E (2012) Inhibition of 26S protease regulatory subunit 7 (MSS1) suppresses neuroinflammation. PLoS One 7:e36142

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Pintado C, Gavilan MP, Gavilan E, Garcia-Cuervo L, Gutierrez A, Vitorica J, Castano A, Rios RM, Ruano D (2012) Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation 9:87

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Munoz U, Bartolome F, Esteras N, Bermejo-Pareja F, Martin-Requero A (2008) On the mechanism of inhibition of p27 degradation by 15-deoxy-Delta12,14-prostaglandin J2 in lymphoblasts of Alzheimer’s disease patients. Cell Mol Life Sci 65:3507–3519

    CAS  PubMed  Google Scholar 

  78. Arnaud L, Robakis NK, Figueiredo-Pereira ME (2006) It may take inflammation, phosphorylation and ubiquitination to ‘tangle’ in Alzheimer’s disease. Neurodegener Dis 3:313–319

    PubMed  Google Scholar 

  79. van Tijn P, de Vrij FM, Schuurman KG, Dantuma NP, Fischer DF, van Leeuwen FW, Hol EM (2007) Dose-dependent inhibition of proteasome activity by a mutant ubiquitin associated with neurodegenerative disease. J Cell Sci 120:1615–1623

    PubMed  Google Scholar 

  80. Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E, Marambaud P (2000) Role of the proteasome in Alzheimer’s disease. Biochim Biophys Acta 1502:133–138

    CAS  PubMed  Google Scholar 

  81. Rockwell P, Yuan H, Magnusson R, Figueiredo-Pereira ME (2000) Proteasome inhibition in neuronal cells induces a proinflammatory response manifested by upregulation of cyclooxygenase-2, its accumulation as ubiquitin conjugates, and production of the prostaglandin PGE(2). Arch Biochem Biophys 374:325–333

    CAS  PubMed  Google Scholar 

  82. Maldonado MD, Reiter RJ, Perez-San-Gregorio MA (2009) Melatonin as a potential therapeutic agent in psychiatric illness. Hum Psychopharmacol 24:391–400

    CAS  PubMed  Google Scholar 

  83. Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R, Mayer RJ, Layfield R (2000) Inhibition of the ubiquitin-proteasome system in Alzheimer’s disease. Proc Natl Acad Sci U S A 97:9902–9906

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Nahreini P, Andreatta C, Prasad KN (2001) Proteasome activity is critical for the cAMP-induced differentiation of neuroblastoma cells. Cell Mol Neurobiol 21:509–521

    CAS  PubMed  Google Scholar 

  85. Wang Z, Aris VM, Ogburn KD, Soteropoulos P, Figueiredo-Pereira ME (2006) Prostaglandin J2 alters pro-survival and pro-death gene expression patterns and 26 S proteasome assembly in human neuroblastoma cells. J Biol Chem 281:21377–21386

    CAS  PubMed  Google Scholar 

  86. Prasad KN, Hovland AR, La Rosa FG, Hovland PG (1998) Prostaglandins as putative neurotoxins in Alzheimer’s disease. Proc Soc Exp Biol Med 219:120–125

    CAS  PubMed  Google Scholar 

  87. Fernandes AF, Zhou J, Zhang X, Bian Q, Sparrow J, Taylor A, Pereira P, Shang F (2008) Oxidative inactivation of the proteasome in retinal pigment epithelial cells. A potential link between oxidative stress and up-regulation of interleukin-8. J Biol Chem 283:20745–20753

    CAS  PubMed  Google Scholar 

  88. Li K, Liu S, Yao S, Wang B, Dai D, Yao L (2009) Interaction between interleukin-8 and methylenetetrahydrofolate reductase genes modulates Alzheimer’s disease risk. Dement Geriatr Cogn Disord 27:286–291

    CAS  PubMed  Google Scholar 

  89. Gella A, Durany N (2009) Oxidative stress in Alzheimer disease. Cell Adhes Migr 3:88–93

    Google Scholar 

  90. Gibson CJ, Hossain MM, Richardson JR, Aleksunes LM (2012) Inflammatory regulation of ATP binding cassette efflux transporter expression and function in microglia. J Pharmacol Exp Ther 343:650–660

    CAS  PubMed  Google Scholar 

  91. Niranjan R, Nath C, Shukla R (2011) Guggulipid and nimesulide differentially regulated inflammatory genes mRNA expressions via inhibition of NF-κB and CHOP activation in LPS-stimulated rat astrocytoma cells, C6. Cell Mol Neurobiol 31:755–764

    CAS  PubMed  Google Scholar 

  92. Mhatre M, Floyd RA, Hensley K (2004) Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J Alzheimers Dis 6:147–157

    CAS  PubMed  Google Scholar 

  93. Niranjan R, Nath C, Shukla R (2012) Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res 46:1167–1177

    CAS  PubMed  Google Scholar 

  94. Harrison FE, Hosseini AH, McDonald MP, May JM (2009) Vitamin C reduces spatial learning deficits in middle-aged and very old APP/PSEN1 transgenic and wild-type mice. Pharmacol Biochem Behav 93:443–450

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Remington R, Chan A, Paskavitz J, Shea TB (2009) Efficacy of a vitamin/nutriceutical formulation for moderate-stage to later-stage Alzheimer’s disease: a placebo-controlled pilot study. Am J Alzheimers Dis Other Dement 24:27–33

    Google Scholar 

  96. Block ML, Hong JS (2007) Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 35:1127–1132

    CAS  PubMed  Google Scholar 

  97. Mattsson N, Yaong M, Rosengren L, Blennow K, Mansson JE, Andersen O, Zetterberg H, Haghighi S, Zho I, Pratico D (2009) Elevated cerebrospinal fluid levels of prostaglandin E2 and 15-(S)-hydroxyeicosatetraenoic acid in multiple sclerosis. J Intern Med 265:459–464

    CAS  PubMed  Google Scholar 

  98. Quiroz-Baez R, Rojas E, Arias C (2009) Oxidative stress promotes JNK-dependent amyloidogenic processing of normally expressed human app by differential modification of alpha-, beta- and gamma- secretase expression. Neurochem Int 55:662–670

    CAS  PubMed  Google Scholar 

  99. Betti M, Minelli A, Ambrogini P, Ciuffoli S, Viola V, Galli F, Canonico B, Lattanzi D, Colombo E, Sestili P, Cuppini R (2011) Dietary supplementation with alpha-tocopherol reduces neuroinflammation and neuronal degeneration in the rat brain after kainic acid-induced status epilepticus. Free Radic Res 45:1136–1142

    CAS  PubMed  Google Scholar 

  100. Zheng L, Kagedal K, Dehvari N, Benedikz E, Cowburn R, Marcusson J, Terman A (2009) Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis. Free Radic Biol Med 46:422–429

    CAS  PubMed  Google Scholar 

  101. Pulliam L, Sun B, Rempel H, Martinez PM, Hoekman JD, Rao RJ, Frey WH 2nd, Hanson LR (2007) Intranasal tat alters gene expression in the mouse brain. J NeuroImmune Pharmacol 2:87–92

    PubMed  Google Scholar 

  102. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci U S A 101:2070–2075

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Suchy J, Chan A, Shea TB (2009) Dietary supplementation with a combination of alpha-lipoic acid, acetyl-L-carnitine, glycerophosphocoline, docosahexaenoic acid, and phosphatidylserine reduces oxidative damage to murine brain and improves cognitive performance. Nutr Res 29:70–74

    CAS  PubMed  Google Scholar 

  105. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    PubMed  Google Scholar 

  106. Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2009) Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog Neurobiol 87:181–194

    CAS  PubMed  Google Scholar 

  107. Zawia NH, Lahiri DK, Cardozo-Pelaez F (2009) Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med 46:1241–1249

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Piazza A, Lynch MA (2009) Neuroinflammatory changes increase the impact of stressors on neuronal function. Biochem Soc Trans 37:303–307

    CAS  PubMed  Google Scholar 

  109. Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith MA, Zhu X (2008) Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 5:525–532

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Zhang W, Stanimirovic D (2002) Current and future therapeutic strategies to target inflammation in stroke. Curr Drug Targets Inflamm Allergy 1:151–166

    CAS  PubMed  Google Scholar 

  111. Tan L, Schedl P, Song HJ, Garza D, Konsolaki M (2008) The Toll-->NFkappaB signaling pathway mediates the neuropathological effects of the human Alzheimer’s Abeta42 polypeptide in Drosophila. PLoS One 3:e3966

    PubMed Central  PubMed  Google Scholar 

  112. Guglielmotto M, Aragno M, Autelli R, Giliberto L, Novo E, Colombatto S, Danni O, Parola M, Smith MA, Perry G, Tamagno E, Tabaton M (2009) The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1alpha. J Neurochem 108:1045–1056

    CAS  PubMed  Google Scholar 

  113. Appel SH, Engelhardt JI, Henkel JS, Siklos L, Beers DR, Yen AA, Simpson EP, Luo Y, Carrum G, Heslop HE, Brenner MK, Popat U (2008) Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology 71:1326–1334

    CAS  PubMed  Google Scholar 

  114. Chung SY, Han SH (2003) Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition. J Pineal Res 34:95–102

    CAS  PubMed  Google Scholar 

  115. Candelario-Jalil E, de Oliveira AC, Graf S, Bhatia HS, Hull M, Munoz E, Fiebich BL (2007) Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia. J Neuroinflammation 4:25

    PubMed Central  PubMed  Google Scholar 

  116. Candelario-Jalil E, Ajamieh HH, Sam S, Martinez G, Leon Fernandez OS (2000) Nimesulide limits kainate-induced oxidative damage in the rat hippocampus. Eur J Pharmacol 390:295–298

    CAS  PubMed  Google Scholar 

  117. Niranjan R, Kamat PK, Nath C, Shukla R (2010) Evaluation of guggulipid and nimesulide on production of inflammatory mediators and GFAP expression in LPS stimulated rat astrocytoma, cell line (C6). J Ethnopharmacol 127:625–630

    CAS  PubMed  Google Scholar 

  118. Niranjan R, Rajasekar N, Nath C, Shukla R (2012) The effect of guggulipid and nimesulide on MPTP-induced mediators of neuroinflammation in rat astrocytoma cells, C6. Chem Biol Interact 200:73–83

    CAS  PubMed  Google Scholar 

  119. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, Alvarez D, Al-Dalain S, Martinez G, Leon OS, Springer JE (2003) Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J Neurochem 86:545–555

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Candelario-Jalil E, Mhadu NH, Gonzalez-Falcon A, Garcia-Cabrera M, Munoz E, Leon OS, Fiebich BL (2005) Effects of the cyclooxygenase-2 inhibitor nimesulide on cerebral infarction and neurological deficits induced by permanent middle cerebral artery occlusion in the rat. J Neuroinflammation 2:3

    PubMed Central  PubMed  Google Scholar 

  121. Ayasolla K, Khan M, Singh AK, Singh I (2004) Inflammatory mediator and beta-amyloid (25–35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med 37:325–338

    CAS  PubMed  Google Scholar 

  122. Sorbi S, Forleo P, Tedde A, Cellini E, Ciantelli M, Bagnoli S, Nacmias B (2001) Genetic risk factors in familial Alzheimer’s disease. Mech Ageing Dev 122:1951–1960

    CAS  PubMed  Google Scholar 

  123. Harold D, Jehu L, Turic D, Hollingworth P, Moore P, Summerhayes P, Moskvina V, Foy C, Archer N, Hamilton BA, Lovestone S, Powell J, Brayne C, Rubinsztein DC, Jones L, O’Donovan MC, Owen MJ, Williams J (2007) Interaction between the ADAM12 and SH3MD1 genes may confer susceptibility to late-onset Alzheimer’s disease. Am J Med Genet B Neuropsychiatr Genet 144B:448–452

    CAS  PubMed  Google Scholar 

  124. Brickell KL, Steinbart EJ, Rumbaugh M, Payami H, Schellenberg GD, Van Deerlin V, Yuan W, Bird TD (2006) Early-onset Alzheimer disease in families with late-onset Alzheimer disease: a potential important subtype of familial Alzheimer disease. Arch Neurol 63:1307–1311

    PubMed  Google Scholar 

  125. Tanzi RE, McClatchey AI, Lamperti ED, Villa-Komaroff L, Gusella JF, Neve RL (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 331:528–530

    CAS  PubMed  Google Scholar 

  126. Bahmanyar S, Higgins GA, Goldgaber D, Lewis DA, Morrison JH, Wilson MC, Shankar SK, Gajdusek DC (1987) Localization of amyloid beta protein messenger RNA in brains from patients with Alzheimer’s disease. Science 237:77–80

    CAS  PubMed  Google Scholar 

  127. Goedert M (1987) Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer’s disease. EMBO J 6:3627–3632

    CAS  PubMed  Google Scholar 

  128. Zimmermann K, Herget T, Salbaum JM, Schubert W, Hilbich C, Cramer M, Masters CL, Multhaup G, Kang J, Lemaire HG et al (1988) Localization of the putative precursor of Alzheimer’s disease-specific amyloid at nuclear envelopes of adult human muscle. EMBO J 7:367–372

    CAS  PubMed  Google Scholar 

  129. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778

    CAS  PubMed  Google Scholar 

  130. Pennypacker KR, Fuldner R, Xu R, Hernandez H, Dawbarn D, Mehta N, Perez-Tur J, Baker M, Hutton M (1998) Cloning and characterization of the presenilin-2 gene promoter. Brain Res Mol Brain Res 56:57–65

    CAS  PubMed  Google Scholar 

  131. Cribbs DH, Chen LS, Bende SM, LaFerla FM (1996) Widespread neuronal expression of the presenilin-1 early-onset Alzheimer’s disease gene in the murine brain. Am J Pathol 148:1797–1806

    CAS  PubMed  Google Scholar 

  132. Kovacs DM, Fausett HJ, Page KJ, Kim TW, Moir RD, Merriam DE, Hollister RD, Hallmark OG, Mancini R, Felsenstein KM, Hyman BT, Tanzi RE, Wasco W (1996) Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nat Med 2:224–229

    CAS  PubMed  Google Scholar 

  133. Lee MK, Slunt HH, Martin LJ, Thinakaran G, Kim G, Gandy SE, Seeger M, Koo E, Price DL, Sisodia SS (1996) Expression of presenilin 1 and 2 (PS1 and PS2) in human and murine tissues. J Neurosci 16:7513–7525

    CAS  PubMed  Google Scholar 

  134. Surguchov AP (1990) The apolipoprotein gene family: organization of upstream elements and regulation of gene expression. Biomed Sci 1:344–353

    CAS  PubMed  Google Scholar 

  135. Yoshikai S, Sasaki H, Doh-ura K, Furuya H, Sakaki Y (1990) Genomic organization of the human amyloid beta-protein precursor gene. Gene 87:257–263

    CAS  PubMed  Google Scholar 

  136. Mobley WC, Neve RL, Prusiner SB, McKinley MP (1988) Nerve growth factor increases mRNA levels for the prion protein and the beta-amyloid protein precursor in developing hamster brain. Proc Natl Acad Sci U S A 85:9811–9815

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Dewji NN, Do C, Bayney RM (1995) Transcriptional activation of Alzheimer’s beta-amyloid precursor protein gene by stress. Brain Res Mol Brain Res 33:245–253

    CAS  PubMed  Google Scholar 

  138. Siman R, Card JP, Nelson RB, Davis LG (1989) Expression of beta-amyloid precursor protein in reactive astrocytes following neuronal damage. Neuron 3:275–285

    CAS  PubMed  Google Scholar 

  139. Sola C, Garcia-Ladona FJ, Mengod G, Probst A, Frey P, Palacios JM (1993) Increased levels of the Kunitz protease inhibitor-containing beta APP mRNAs in rat brain following neurotoxic damage. Brain Res Mol Brain Res 17:41–52

    CAS  PubMed  Google Scholar 

  140. Wirak DO, Bayney R, Kundel CA, Lee A, Scangos GA, Trapp BD, Unterbeck AJ (1991) Regulatory region of human amyloid precursor protein (APP) gene promotes neuron-specific gene expression in the CNS of transgenic mice. EMBO J 10:289–296

    CAS  PubMed  Google Scholar 

  141. Vitek MP (1989) Increasing amyloid peptide precursor production and its impact on Alzheimer’s disease. Neurobiol Aging 10:471–473, discussion 477–478

    CAS  PubMed  Google Scholar 

  142. Kiyota T, Gendelman HE, Weir RA, Higgins EE, Zhang G, Jain M (2012) CCL2 affects beta-amyloidosis and progressive neurocognitive dysfunction in a mouse model of Alzheimer’s disease. Neurobiol Aging 34(4):1060–1068

    Google Scholar 

  143. Lewis DA, Higgins GA, Young WG, Goldgaber D, Gajdusek DC, Wilson MC, Morrison JH (1988) Distribution of precursor amyloid-beta-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques. Proc Natl Acad Sci U S A 85:1691–1695

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ (2005) Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A 102:13544–13549

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Lemaigre FP, Lafontaine DA, Courtois SJ, Durviaux SM, Rousseau GG (1990) Sp1 can displace GHF-1 from its distal binding site and stimulate transcription from the growth hormone gene promoter. Mol Cell Biol 10:1811–1814

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Saffer JD, Jackson SP, Annarella MB (1991) Developmental expression of Sp1 in the mouse. Mol Cell Biol 11:2189–2199

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Lee J, Kosaras B, Aleyasin H, Han JA, Park DS, Ratan RR, Kowall NW, Ferrante RJ, Lee SW, Ryu H (2006) Role of cyclooxygenase-2 induction by transcription factor Sp1 and Sp3 in neuronal oxidative and DNA damage response. FASEB J 20:2375–2377

    CAS  PubMed  Google Scholar 

  148. Saffer JD, Jackson SP, Thurston SJ (1990) SV40 stimulates expression of the transacting factor Sp1 at the mRNA level. Genes Dev 4:659–666

    CAS  PubMed  Google Scholar 

  149. Jackson SP, MacDonald JJ, Lees-Miller S, Tjian R (1990) GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell 63:155–165

    CAS  PubMed  Google Scholar 

  150. Grilli M, Ribola M, Alberici A, Valerio A, Memo M, Spano P (1995) Identification and characterization of a kappa B/Rel binding site in the regulatory region of the amyloid precursor protein gene. J Biol Chem 270:26774–26777

    CAS  PubMed  Google Scholar 

  151. Kukar T, Prescott S, Eriksen JL, Holloway V, Murphy MP, Koo EH, Golde TE, Nicolle MM (2007) Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci 8:54

    PubMed Central  PubMed  Google Scholar 

  152. Choi SH, Aid S, Caracciolo L, Sakura Minami S, Niikura T, Matsuoka Y, Turner RS, Mattson MP, Bosetti F (2013) Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease. J Neurochem 124:59–68

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Secko D (2005) Can NSAIDs contribute to Alzheimer’s disease? CMAJ 172:1677

    PubMed Central  PubMed  Google Scholar 

  154. Bartlett S (2005) Abeta 42 formation: not all NSAIDs are equal. Lancet Neurol 4:334

    PubMed  Google Scholar 

  155. Imbimbo BP (2009) An update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer’s disease. Expert Opin Investig Drugs 18:1147–1168

    CAS  PubMed  Google Scholar 

  156. Lu Y, Lv Y, Ye Y, Wang Y, Hong Y, Fortini ME, Zhong Y, Xie Z (2007) A role for presenilin in post-stress regulation: effects of presenilin mutations on Ca2+ currents in Drosophila. FASEB J 21:2368–2378

    CAS  PubMed  Google Scholar 

  157. Rumble B, Retallack R, Hilbich C, Simms G, Multhaup G, Martins R, Hockey A, Montgomery P, Beyreuther K, Masters CL (1989) Amyloid A4 protein and its precursor in Down’s syndrome and Alzheimer’s disease. N Engl J Med 320:1446–1452

    CAS  PubMed  Google Scholar 

  158. Takami K, Terai K, Matsuo A, Walker DG, McGeer PL (1997) Expression of presenilin-1 and -2 mRNAs in rat and Alzheimer’s disease brains. Brain Res 748:122–130

    CAS  PubMed  Google Scholar 

  159. McMillan PJ, Leverenz JB, Poorkaj P, Schellenberg GD, Dorsa DM (1996) Neuronal expression of STM2 mRNA in human brain is reduced in Alzheimer’s disease. J Histochem Cytochem 44:1215–1222

    CAS  PubMed  Google Scholar 

  160. Cribbs DH, Chen LS, Cotman CW, LaFerla FM (1996) Injury induces presenilin-1 gene expression in mouse brain. NeuroReport 7:1773–1776

    CAS  PubMed  Google Scholar 

  161. van de Craen M, de Jonghe C, van den Brande I, Declercq W, van Gassen G, van Criekinge W, Vanderhoeven I, Fiers W, van Broeckhoven C, Hendriks L, Vandenabeele P (1999) Identification of caspases that cleave presenilin-1 and presenilin-2. Five presenilin-1 (PS1) mutations do not alter the sensitivity of PS1 to caspases. FEBS Lett 445:149–154

    PubMed  Google Scholar 

  162. Breitner JC, Welsh KA, Helms MJ, Gaskell PC, Gau BA, Roses AD, Pericak-Vance MA, Saunders AM (1995) Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol Aging 16:523–530

    CAS  PubMed  Google Scholar 

  163. McGeer EG, McGeer PL (1998) The importance of inflammatory mechanisms in Alzheimer disease. Exp Gerontol 33:371–378

    CAS  PubMed  Google Scholar 

  164. Giliberto L, Borghi R, Piccini A, Mangerini R, Sorbi S, Cirmena G, Garuti A, Ghetti B, Tagliavini F, Mughal MR, Mattson MP, Zhu X, Wang X, Guglielmotto M, Tamagno E, Tabaton M (2009) Mutant presenilin 1 increases the expression and activity of BACE1. J Biol Chem 284:9027–9038

    CAS  PubMed  Google Scholar 

  165. Agosta F, Vossel KA, Miller BL, Migliaccio R, Bonasera SJ, Filippi M, Boxer AL, Karydas A, Possin KL, Gorno-Tempini ML (2009) Apolipoprotein E epsilon4 is associated with disease-specific effects on brain atrophy in Alzheimer’s disease and frontotemporal dementia. Proc Natl Acad Sci U S A 106:2018–2022

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Nathan BP, Bellosta S, Sanan DA, Weisgraber KH, Mahley RW, Pitas RE (1994) Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 264:850–852

    CAS  PubMed  Google Scholar 

  167. Handelmann GE, Boyles JK, Weisgraber KH, Mahley RW, Pitas RE (1992) Effects of apolipoprotein E, beta-very low density lipoproteins, and cholesterol on the extension of neurites by rabbit dorsal root ganglion neurons in vitro. J Lipid Res 33:1677–1688

    CAS  PubMed  Google Scholar 

  168. Boyles JK, Zoellner CD, Anderson LJ, Kosik LM, Pitas RE, Weisgraber KH, Hui DY, Mahley RW, Gebicke-Haerter PJ, Ignatius MJ et al (1989) A role for apolipoprotein E, apolipoprotein A-I, and low density lipoprotein receptors in cholesterol transport during regeneration and remyelination of the rat sciatic nerve. J Clin Invest 83:1015–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW (1987) Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 917:148–161

    CAS  PubMed  Google Scholar 

  170. Poirier J, Hess M, May PC, Finch CE (1991) Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Brain Res Mol Brain Res 11:97–106

    CAS  PubMed  Google Scholar 

  171. Diedrich JF, Minnigan H, Carp RI, Whitaker JN, Race R, Frey W 2nd, Haase AT (1991) Neuropathological changes in scrapie and Alzheimer’s disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. J Virol 65:4759–4768

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Chen L, Richardson JS, Caldwell JE, Ang LC (1994) Regional brain activity of free radical defense enzymes in autopsy samples from patients with Alzheimer’s disease and from nondemented controls. Int J Neurosci 75:83–90

    CAS  PubMed  Google Scholar 

  174. Harman D (1996) A hypothesis on the pathogenesis of Alzheimer’s disease. Ann N Y Acad Sci 786:152–168

    CAS  PubMed  Google Scholar 

  175. Belbin O, Dunn JL, Ling Y, Morgan L, Chappell S, Beaumont H, Warden D, Smith DA, Kalsheker N, Morgan K (2007) Regulatory region single nucleotide polymorphisms of the apolipoprotein E gene and the rate of cognitive decline in Alzheimer’s disease. Hum Mol Genet 16:2199–2208

    CAS  PubMed  Google Scholar 

  176. Tan MG, Chua WT, Esiri MM, Smith AD, Vinters HV, Lai MK (2010) Genome wide profiling of altered gene expression in the neocortex of Alzheimer’s disease. J Neurosci Res 88:1157–1169

    CAS  PubMed  Google Scholar 

  177. Heun R, Kolsch H, Ibrahim-Verbaas CA, Combarros O, Aulchenko YS, Breteler M, Schuur M, van Duijn CM, Hammond N, Belbin O, Cortina-Borja M, Wilcock GK, Brown K, Barber R, Kehoe PG, Coto E, Alvarez V, Lehmann MG, Deloukas P, Mateo I, Morgan K, Warden DR, Smith AD, Lehmann DJ (2012) Interactions between PPAR-alpha and inflammation-related cytokine genes on the development of Alzheimer’s disease, observed by the Epistasis Project. Int J Mol Epidemiol Genet 3:39–47

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Wang M, Song H, Jia J Interleukin-6 receptor gene polymorphisms were associated with sporadic Alzheimer’s disease in Chinese Han. Brain Res 1327:1–5

  179. Zhong XL, Yu JT, Hou GY, Xing YY, Jiang H, Li Y, Tan L Common variant in GAB2 is associated with late-onset Alzheimer’s disease in Han Chinese. Clin Chim Acta; Int J Clin Chem 412:446–449

  180. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

  182. Fenoglio C, Galimberti D, Piccio L, Scalabrini D, Panina P, Buonsanti C, Venturelli E, Lovati C, Forloni G, Mariani C, Bresolin N, Scarpini E (2007) Absence of TREM2 polymorphisms in patients with Alzheimer’s disease and Frontotemporal Lobar Degeneration. Neurosci Lett 411:133–137

    CAS  PubMed  Google Scholar 

  183. Chouery E, Delague V, Bergougnoux A, Koussa S, Serre JL, Megarbane A (2008) Mutations in TREM2 lead to pure early-onset dementia without bone cysts. Hum Mutat 29:E194–E204

    PubMed  Google Scholar 

  184. Kiialainen A, Hovanes K, Paloneva J, Kopra O, Peltonen L (2005) Dap12 and Trem2, molecules involved in innate immunity and neurodegeneration, are co-expressed in the CNS. Neurobiol Dis 18:314–322

    CAS  PubMed  Google Scholar 

  185. Wiendl H (2012) Neuroinflammation: the world is not enough. Curr Opin Neurol 25:302–305

    PubMed  Google Scholar 

  186. Breitner JC, Gau BA, Welsh KA, Plassman BL, McDonald WM, Helms MJ, Anthony JC (1994) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44:227–232

    CAS  PubMed  Google Scholar 

  187. Myllykangas-Luosujarvi R, Isomaki H (1994) Alzheimer’s disease and rheumatoid arthritis. Br J Rheumatol 33:501–502

    CAS  PubMed  Google Scholar 

  188. Oken RJ, McGeer PL (1996) Schizophrenia, Alzheimer’s disease, and anti-inflammatory agents. Schizophr Bull 22:1–4

    CAS  PubMed  Google Scholar 

  189. Rogers J (1995) Inflammation as a pathogenic mechanism in Alzheimer’s disease. Arzneimittelforschung 45:439–442

    CAS  PubMed  Google Scholar 

  190. Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, Civin WH, Brachova L, Bradt B, Ward P et al (1992) Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 89:10016–10020

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Verbeek MM, Otte-Holler I, Westphal JR, Wesseling P, Ruiter DJ, de Waal RM (1994) Accumulation of intercellular adhesion molecule-1 in senile plaques in brain tissue of patients with Alzheimer’s disease. Am J Pathol 144:104–116

    CAS  PubMed  Google Scholar 

  192. Rozemuller JM, Eikelenboom P, Pals ST, Stam FC (1989) Microglial cells around amyloid plaques in Alzheimer’s disease express leucocyte adhesion molecules of the LFA-1 family. Neurosci Lett 101:288–292

    CAS  PubMed  Google Scholar 

  193. Prasad KN, La Rosa FG, Prasad JE (1998) Prostaglandins act as neurotoxin for differentiated neuroblastoma cells in culture and increase levels of ubiquitin and beta-amyloid. In Vitro Cell Dev Biol Anim 34:265–274

    CAS  PubMed  Google Scholar 

  194. Lee YJ, Han SB, Nam SY, Oh KW, Hong JT (2010) Inflammation and Alzheimer’s disease. Arch Pharm Res 33:1539–1556

    CAS  PubMed  Google Scholar 

  195. Lopez Salon M, Morelli L, Castano EM, Soto EF, Pasquini JM (2000) Defective ubiquitination of cerebral proteins in Alzheimer’s disease. J Neurosci Res 62:302–310

    CAS  PubMed  Google Scholar 

  196. Rich JB, Rasmusson DX, Folstein MF, Carson KA, Kawas C, Brandt J (1995) Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology 45:51–55

    CAS  PubMed  Google Scholar 

  197. McGeer PL, McGeer E, Rogers J, Sibley J (1990) Anti-inflammatory drugs and Alzheimer disease. Lancet 335:1037

    CAS  PubMed  Google Scholar 

  198. Rozemuller AJ, Jansen C, Carrano A, van Haastert ES, Hondius D, van der Vies SM, Hoozemans JJ (2012) Neuroinflammation and common mechanism in Alzheimer’s disease and prion amyloidosis: amyloid-associated proteins, neuroinflammation and neurofibrillary degeneration. Neurodegener Dis 10:301–304

    CAS  PubMed  Google Scholar 

  199. Medeiros R, Laferla FM (2012) Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp Neurol 239C:133–138

    Google Scholar 

  200. Bali J, Gheinani AH, Zurbriggen S, Rajendran L (2012) Role of genes linked to sporadic Alzheimer’s disease risk in the production of beta-amyloid peptides. Proc Natl Acad Sci U S A 109:15307–15311

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Ding X, Patel M, Shen D, Herzlich AA, Cao X, Villasmil R, Klupsch K, Tuo J, Downward J, Chan CC (2009) Enhanced HtrA2/Omi expression in oxidative injury to retinal pigment epithelial cells and murine models of neurodegeneration. Invest Ophthalmol Vis Sci 50:4957–4966

    PubMed Central  PubMed  Google Scholar 

  202. Aloisi F, Columba-Cabezas S, Franciotta D, Rosicarelli B, Magliozzi R, Reynolds R, Ambrosini E, Coccia E, Salvetti M, Serafini B (2008) Lymphoid chemokines in chronic neuroinflammation. J Neuroimmunol 198:106–112

    CAS  PubMed  Google Scholar 

  203. Yu HC, Feng SF, Chao PL, Lin AM (2010) Anti-inflammatory effects of pioglitazone on iron-induced oxidative injury in the nigrostriatal dopaminergic system. Neuropathol Appl Neurobiol 36:612–622

    CAS  PubMed  Google Scholar 

  204. Huttunen HJ, Guenette SY, Peach C, Greco C, Xia W, Kim DY, Barren C, Tanzi RE, Kovacs DM (2007) HtrA2 regulates beta-amyloid precursor protein (APP) metabolism through endoplasmic reticulum-associated degradation. J Biol Chem 282:28285–28295

    CAS  PubMed  Google Scholar 

  205. Kooistra J, Milojevic J, Melacini G, Ortega J (2009) A new function of human HtrA2 as an amyloid-beta oligomerization inhibitor. J Alzheimers Dis 17:281–294

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Xavier S, Niranjan T, Krick S, Zhang T, Ju W, Shaw AS, Schiffer M, Bottinger EP (2009) TbetaRI independently activates Smad- and CD2AP-dependent pathways in podocytes. J Am Soc Nephrol 20:2127–2137

    CAS  PubMed  Google Scholar 

  207. Liu L, Ganz T (1995) The pro region of human neutrophil defensin contains a motif that is essential for normal subcellular sorting. Blood 85:1095–1103

    CAS  PubMed  Google Scholar 

  208. Moisoi N, Klupsch K, Fedele V, East P, Sharma S, Renton A, Plun-Favreau H, Edwards RE, Teismann P, Esposti MD, Morrison AD, Wood NW, Downward J, Martins LM (2009) Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ 16:449–464

    CAS  PubMed  Google Scholar 

  209. Zellner M, Veitinger M, Umlauf E (2009) The role of proteomics in dementia and Alzheimer’s disease. Acta Neuropathol 118:181–195

    CAS  PubMed  Google Scholar 

  210. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH (2004) Modulation of the Omi/HtrA2 signaling pathway after transient focal cerebral ischemia in mouse brains that overexpress SOD1. Brain Res Mol Brain Res 127:89–95

    CAS  PubMed  Google Scholar 

  211. Gray CW, Patel AJ (1993) Induction of beta-amyloid precursor protein isoform mRNAs by bFGF in astrocytes. NeuroReport 4:811–814

    CAS  PubMed  Google Scholar 

  212. Frohman EM, Frohman TC, Gupta S, de Fougerolles A, van den Noort S (1991) Expression of intercellular adhesion molecule 1 (ICAM-1) in Alzheimer’s disease. J Neurol Sci 106:105–111

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The lab space provided by Dr. Anil Mishra, professor in Division of Gastroenterology and Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, USA is greatfully acknowledged.

Competing Interests

There are no conflicts of interest because Dr. Rituraj Niranjan is the sole auther in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituraj Niranjan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niranjan, R. Molecular Basis of Etiological Implications in Alzheimer’s Disease: Focus on Neuroinflammation. Mol Neurobiol 48, 412–428 (2013). https://doi.org/10.1007/s12035-013-8428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8428-4

Keywords

Navigation