Molecular Neurobiology

, Volume 47, Issue 3, pp 957–966

Exome Sequencing Identified NRG3 as a Novel Susceptible Gene of Hirschsprung’s Disease in a Chinese Population

  • Jun Yang
  • Shengyu Duan
  • Rong Zhong
  • Jieyun Yin
  • Jiarui Pu
  • Juntao Ke
  • Xuzai Lu
  • Li Zou
  • Hongmei Zhang
  • Zhidong Zhu
  • Depeng Wang
  • Huasheng Xiao
  • Anyuan Guo
  • Jiahong Xia
  • Xiaoping Miao
  • Shaotao Tang
  • Guobin Wang
Article

Abstract

Hirschsprung’s disease (HSCR) is a complex developmental defect characterized by the absence of enteric ganglia in the gastrointestinal tract. Although the genetic defect of enteric nervous system (ENS) was identified to play a critical role in the progress of HSCR, the systemic genetic dissection of HSCR still needs to be clarified. In this study, we firstly performed exome sequencing of two HSCR patients from a Han Chinese family, including the affected mother and son. After the initial quality filtering (coverage ≥ 5X and SNP quality score ≥ 40) of the raw data, we identified 13,948 and 13,856 single nucleotide variants (SNVs), respectively. We subsequently compared the SNVs against public databases (dbSNP130, HapMap, and 1000 Genome Project) and obtained a total of 15 novel nonsynonymous SNVs in 15 genes, which were shared between these two patients. Follow-up Sanger sequencing and bioinformatics analysis highlighted variant c.853G>A (p.E285K) in NRG3, a gene involved in the development of ENS. In the validation phase, we sequenced all nine exons of NRG3 in 96 additional sporadic HSCR cases and 110 healthy individuals and identified another nonsynonymous variant c.1329G>A (p.M443I) and two synonymous variants c.828G>A (p.T276T) and c.1365T>A (p.P455P) only in the cases. Our results indicated that NRG3 may be a susceptibility gene for HSCR in a Chinese population.

Keywords

Hirschsprung’s disease (HSCR) Whole exome sequence NRG3 Single nucleotide variants (SNVs) 

Supplementary material

12035_2012_8392_Fig4_ESM.jpg (23 kb)
Supplementary Fig. 1

The pedigree of the affected Han Chinese family. Blue color represents HSCR patients. Patient II:3 is the mother and III:3 is the son (JPEG 23 kb)

12035_2012_8392_MOESM1_ESM.tif (539 kb)
High resolution image (TIFF 539 kb)
12035_2012_8392_Fig5_ESM.jpg (51 kb)
Supplementary Fig. 2

The sequence diagram of the identified false positive variants in UNC5C and C22orf42 (JPEG 50 kb)

12035_2012_8392_MOESM2_ESM.tif (422 kb)
High resolution image (TIFF 422 kb)
12035_2012_8392_Fig6_ESM.jpg (42 kb)
Supplementary Fig. 2b

(JPEG 42 kb)

12035_2012_8392_MOESM3_ESM.tif (327 kb)
High resolution image (TIFF 326 kb)
12035_2012_8392_MOESM4_ESM.doc (30 kb)
ESM 1(DOC 30 kb)
12035_2012_8392_MOESM5_ESM.docx (13 kb)
ESM 2(DOCX 13 kb)
12035_2012_8392_MOESM6_ESM.docx (16 kb)
ESM 3(DOCX 15 kb)
12035_2012_8392_MOESM7_ESM.pdf (128 kb)
ESM 4(PDF 128 kb)
12035_2012_8392_MOESM8_ESM.pdf (103 kb)
ESM 5(PDF 103 kb)
12035_2012_8392_MOESM9_ESM.pdf (135 kb)
ESM 6(PDF 134 kb)
12035_2012_8392_MOESM10_ESM.docx (14 kb)
ESM 7(DOCX 13 kb)
12035_2012_8392_MOESM11_ESM.docx (13 kb)
ESM 8(DOCX 13 kb)

References

  1. 1.
    Iwashita T, Kruger GM, Pardal R, Kiel MJ, Morrison SJ (2003) Hirschsprung disease is linked to defects in neural crest stem cell function. Science 301(5635):972–976PubMedCrossRefGoogle Scholar
  2. 2.
    Kenny SE, Tam PK, Garcia-Barcelo M (2010) Hirschsprung’s disease. Semin Pediatr Surg 19(3):194–200PubMedCrossRefGoogle Scholar
  3. 3.
    Amiel J, Sproat-Emison E, Garcia-Barcelo M, Lantieri F, Burzynski G, Borrego S, Pelet A, Arnold S, Miao X, Griseri P, Brooks AS, Antinolo G, de Pontual L, Clement-Ziza M, Munnich A, Kashuk C, West K, Wong KK, Lyonnet S, Chakravarti A, Tam PK, Ceccherini I, Hofstra RM, Fernandez R (2008) Hirschsprung disease, associated syndromes and genetics: a review. J Med Genet 45(1):1–14PubMedCrossRefGoogle Scholar
  4. 4.
    Garcia-Barcelo MM, Tang CS, Ngan ES, Lui VC, Chen Y, So MT, Leon TY, Miao XP, Shum CK, Liu FQ, Yeung MY, Yuan ZW, Guo WH, Liu L, Sun XB, Huang LM, Tou JF, Song YQ, Chan D, Cheung KM, Wong KK, Cherny SS, Sham PC, Tam PK (2009) Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung’s disease. Proc Natl Acad Sci U S A 106(8):2694–2699PubMedCrossRefGoogle Scholar
  5. 5.
    Tam PK, Garcia-Barcelo M (2009) Genetic basis of Hirschsprung’s disease. Pediatr Surg Int 25(7):543–558PubMedCrossRefGoogle Scholar
  6. 6.
    Amiel J, Laudier B, Attie-Bitach T, Trang H, de Pontual L, Gener B, Trochet D, Etchevers H, Ray P, Simonneau M, Vekemans M, Munnich A, Gaultier C, Lyonnet S (2003) Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet 33(4):459–461PubMedCrossRefGoogle Scholar
  7. 7.
    Wakamatsu N, Yamada Y, Yamada K, Ono T, Nomura N, Taniguchi H, Kitoh H, Mutoh N, Yamanaka T, Mushiake K, Kato K, Sonta S, Nagaya M (2001) Mutations in SIP1, encoding Smad interacting protein-1, cause a form of Hirschsprung disease. Nat Genet 27(4):369–370PubMedCrossRefGoogle Scholar
  8. 8.
    Puffenberger EG, Hosoda K, Washington SS, Nakao K, deWit D, Yanagisawa M, Chakravart A (1994) A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell 79(7):1257–1266PubMedCrossRefGoogle Scholar
  9. 9.
    Hofstra RM, Osinga J, Tan-Sindhunata G, Wu Y, Kamsteeg EJ, Stulp RP, van Ravenswaaij-Arts C, Majoor-Krakauer D, Angrist M, Chakravarti A, Meijers C, Buys CH (1996) A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah–Waardenburg syndrome). Nat Genet 12(4):445–447PubMedCrossRefGoogle Scholar
  10. 10.
    Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, Holder S, Nihoul-Fekete C, Ponder BA, Munnich A (1994) Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 367(6461):378–380PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia-Barcelo MM, Miao X, Lui VC, So MT, Ngan ES, Leon TY, Lau DK, Liu TT, Lao X, Guo W, Holden WT, Moore J, Tam PK (2007) Correlation between genetic variations in Hox clusters and Hirschsprung’s disease. Ann Hum Genet 71(Pt 4):526–536PubMedCrossRefGoogle Scholar
  12. 12.
    Miao X, Garcia-Barcelo MM, So MT, Leon TY, Lau DK, Liu TT, Chan EK, Lan LC, Wong KK, Lui VC, Tam PK (2007) Role of RET and PHOX2B gene polymorphisms in risk of Hirschsprung’s disease in Chinese population. Gut 56(5):736PubMedCrossRefGoogle Scholar
  13. 13.
    Miao X, Leon TY, Ngan ES, So MT, Yuan ZW, Lui VC, Chen Y, Wong KK, Tam PK, Garcia-Barcelo M (2010) Reduced RET expression in gut tissue of individuals carrying risk alleles of Hirschsprung’s disease. Hum Mol Genet 19(8):1461–1467PubMedCrossRefGoogle Scholar
  14. 14.
    Emison ES, McCallion AS, Kashuk CS, Bush RT, Grice E, Lin S, Portnoy ME, Cutler DJ, Green ED, Chakravarti A (2005) A common sex-dependent mutation in a RET enhancer underlies Hirschsprung disease risk. Nature 434(7035):857–863PubMedCrossRefGoogle Scholar
  15. 15.
    Tang CS, Sribudiani Y, Miao XP, de Vries AR, Burzynski G, So MT, Leon YY, Yip BH, Osinga J, Hui KJ, Verheij JB, Cherny SS, Tam PK, Sham PC, Hofstra RM, Garcia-Barcelo MM (2010) Fine mapping of the 9q31 Hirschsprung’s disease locus. Hum Genet 127(6):675–683PubMedCrossRefGoogle Scholar
  16. 16.
    Natarajan D, Marcos-Gutierrez C, Pachnis V, de Graaff E (2002) Requirement of signalling by receptor tyrosine kinase RET for the directed migration of enteric nervous system progenitor cells during mammalian embryogenesis. Development 129(22):5151–5160PubMedGoogle Scholar
  17. 17.
    Emison ES, Garcia-Barcelo M, Grice EA, Lantieri F, Amiel J, Burzynski G, Fernandez RM, Hao L, Kashuk C, West K, Miao X, Tam PK, Griseri P, Ceccherini I, Pelet A, Jannot AS, de Pontual L, Henrion-Caude A, Lyonnet S, Verheij JB, Hofstra RM, Antinolo G, Borrego S, McCallion AS, Chakravarti A (2010) Differential contributions of rare and common, coding and noncoding Ret mutations to multifactorial Hirschsprung disease liability. Am J Hum Genet 87(1):60–74PubMedCrossRefGoogle Scholar
  18. 18.
    Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N (2011) What can exome sequencing do for you? J Med Genet 48(9):580–589PubMedCrossRefGoogle Scholar
  19. 19.
    Ng PC, Kirkness EF (2010) Whole genome sequencing. Methods Mol Biol 628:215–226PubMedCrossRefGoogle Scholar
  20. 20.
    Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42(9):790–793PubMedCrossRefGoogle Scholar
  21. 21.
    Adie EA, Adams RR, Evans KL, Porteous DJ, Pickard BS (2005) Speeding disease gene discovery by sequence based candidate prioritization. BMC Bioinforma 6:55CrossRefGoogle Scholar
  22. 22.
    Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37(Web Server issue):W305–W311PubMedCrossRefGoogle Scholar
  23. 23.
    Aerts S, Lambrechts D, Maity S, Van Loo P, Coessens B, De Smet F, Tranchevent LC, De Moor B, Marynen P, Hassan B, Carmeliet P, Moreau Y (2006) Gene prioritization through genomic data fusion. Nat Biotechnol 24(5):537–544PubMedCrossRefGoogle Scholar
  24. 24.
    Dahlquist KD, Salomonis N, Vranizan K, Lawlor SC, Conklin BR (2002) GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 31(1):19–20PubMedCrossRefGoogle Scholar
  25. 25.
    Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30PubMedCrossRefGoogle Scholar
  26. 26.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249PubMedCrossRefGoogle Scholar
  27. 27.
    Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15(1):66–78PubMedCrossRefGoogle Scholar
  28. 28.
    Crone SA, Negro A, Trumpp A, Giovannini M, Lee KF (2003) Colonic epithelial expression of ErbB2 is required for postnatal maintenance of the enteric nervous system. Neuron 37(1):29–40PubMedCrossRefGoogle Scholar
  29. 29.
    Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322(5903):881–888PubMedCrossRefGoogle Scholar
  30. 30.
    Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454PubMedCrossRefGoogle Scholar
  31. 31.
    Burns AJ, Pachnis V (2009) Development of the enteric nervous system: bringing together cells, signals and genes. Neurogastroenterol Motil 21(2):100–102PubMedCrossRefGoogle Scholar
  32. 32.
    Lemke G (1996) Neuregulins in development. Mol Cell Neurosci 7(4):247–262PubMedCrossRefGoogle Scholar
  33. 33.
    Howard B, Panchal H, McCarthy A, Ashworth A (2005) Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev 19(17):2078–2090PubMedCrossRefGoogle Scholar
  34. 34.
    Howard BA (2008) The role of NRG3 in mammary development. J Mammary Gland Biol Neoplasia 13(2):195–203PubMedCrossRefGoogle Scholar
  35. 35.
    Gizatullin RZ, Muravenko OV, Al-Amin AN, Wang F, Protopopov AI, Kashuba VI, Zelenin AV, Zabarovsky ER (2000) Human NRG3 gene Map position 10q22-q23. Chromosome Res 8(6):560PubMedCrossRefGoogle Scholar
  36. 36.
    Britsch S (2007) The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190:1–65PubMedCrossRefGoogle Scholar
  37. 37.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127–137PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang D, Sliwkowski MX, Mark M, Frantz G, Akita R, Sun Y, Hillan K, Crowley C, Brush J, Godowski PJ (1997) Neuregulin-3 (NRG3): a novel neural tissue-enriched protein that binds and activates ErbB4. Proc Natl Acad Sci U S A 94(18):9562–9567PubMedCrossRefGoogle Scholar
  39. 39.
    Tang CS, Cheng G, So MT, Yip BH, Miao XP, Wong EH, Ngan ES, Lui VC, Song YQ, Chan D, Cheung K, Yuan ZW, Lei L, Chung PH, Liu XL, Wong KK, Marshall CR, Scherer SW, Cherny SS, Sham PC, Tam PK, Garcia-Barcelo MM (2012) Genome-wide copy number analysis uncovers a new HSCR gene: NRG3. PLoS Genet 8(5):e1002687PubMedCrossRefGoogle Scholar
  40. 40.
    Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, Shaag A, Dor T, Hannon GJ, Elpeleg O (2011) Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res 21(5):658–664PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jun Yang
    • 1
    • 6
  • Shengyu Duan
    • 2
  • Rong Zhong
    • 2
  • Jieyun Yin
    • 2
  • Jiarui Pu
    • 1
  • Juntao Ke
    • 2
  • Xuzai Lu
    • 2
  • Li Zou
    • 2
  • Hongmei Zhang
    • 3
  • Zhidong Zhu
    • 4
  • Depeng Wang
    • 5
  • Huasheng Xiao
    • 4
  • Anyuan Guo
    • 3
  • Jiahong Xia
    • 1
  • Xiaoping Miao
    • 1
    • 2
  • Shaotao Tang
    • 1
  • Guobin Wang
    • 1
  1. 1.Department of Pediatric SurgeryUnion Hospital of Huazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Epidemiology and Biostatistics and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  3. 3.Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  4. 4.National Engineering Center for Biochip at ShanghaiShanghaiChina
  5. 5.Nextomics Biosciences Co., Ltd.WuhanChina
  6. 6.Department of Pediatric SurgeryWuhan Children’s HospitalWuhanChina

Personalised recommendations