Molecular Neurobiology

, Volume 47, Issue 3, pp 938–945 | Cite as

Repairing Neural Injuries Using Human Umbilical Cord Blood

Article

Abstract

Stem cells are promising sources for repairing damaged neurons and glial cells in neural injuries and for replacing dead cells in neurodegenerative diseases. An essential step for stem cell-based therapy is to generate large quantities of stem cells and develop reliable culture conditions to direct efficient differentiation of specific neuronal and glial subtypes. The human umbilical cord and umbilical cord blood (UCB) are rich sources of multiple stem cells, including hematopoietic stem cells, mesenchymal stem cells, unrestricted somatic stem cells, and embryonic-like stem cells. Human UC/UCB-derived cells are able to give rise to multiple cell types of neural lineages. Studies have shown that UCB and UCB-derived cells can survive in injured sites in animal models of ischemic brain damage and spinal cord injuries, and promote survival and prevent cell death of local neurons and glia. Human UCB is easy to harvest and purify. Moreover, unlike embryonic stem cells, the use of human UCB is not limited by ethical quandaries. Therefore, human UCB is an attractive source of stem cells for repairing neural injuries.

Keywords

Human umbilical cord blood Mesenchymal stem cells Neural stem cells Embryonic stem cells Neural injuries Neural repair 

References

  1. 1.
    Harder F, Henschler R, Junghahn I, Lamers MC, Muller AM (2002) Human hematopoiesis in murine embryos after injecting human cord blood-derived hematopoietic stem cells into murine blastocysts. Blood 99(2):719–721PubMedCrossRefGoogle Scholar
  2. 2.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  3. 3.
    Flynn A, Barry F, O’Brien T (2007) UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy 9(8):717–726PubMedCrossRefGoogle Scholar
  4. 4.
    Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438PubMedCrossRefGoogle Scholar
  5. 5.
    Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117PubMedCrossRefGoogle Scholar
  6. 6.
    Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P et al (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321(17):1174–1178PubMedCrossRefGoogle Scholar
  7. 7.
    Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135PubMedCrossRefGoogle Scholar
  8. 8.
    Gluckman E (2009) Ten years of cord blood transplantation: from bench to bedside. Br J Haematol 147(2):192–199PubMedCrossRefGoogle Scholar
  9. 9.
    Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109(1):235–242PubMedCrossRefGoogle Scholar
  10. 10.
    Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25(6):1384–1392PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao Y, Wang H, Mazzone T (2006) Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res 312(13):2454–2464PubMedCrossRefGoogle Scholar
  12. 12.
    McGuckin C, Jurga M, Ali H, Strbad M, Forraz N (2008) Culture of embryonic-like stem cells from human umbilical cord blood and onward differentiation to neural cells in vitro. Nat Protoc 3(6):1046–1055PubMedCrossRefGoogle Scholar
  13. 13.
    Forraz N, McGuckin CP (2011) The umbilical cord: a rich and ethical stem cell source to advance regenerative medicine. Cell Prolif 44(Suppl 1):60–69PubMedCrossRefGoogle Scholar
  14. 14.
    Lee MW, Jang IK, Yoo KH, Sung KW, Koo HH (2010) Stem and progenitor cells in human umbilical cord blood. Int J Hematol 92(1):45–51PubMedCrossRefGoogle Scholar
  15. 15.
    Arien-Zakay H, Lazarovici P, Nagler A (2010) Tissue regeneration potential in human umbilical cord blood. Best Pract Res Clin Haematol 23(2):291–303PubMedCrossRefGoogle Scholar
  16. 16.
    Arien-Zakay H, Lecht S, Nagler A, Lazarovici P (2010) Human umbilical cord blood stem cells: rational for use as a neuroprotectant in ischemic brain disease. Int J Mol Sci 11(9):3513–3528PubMedCrossRefGoogle Scholar
  17. 17.
    Buzanska L, Machaj EK, Zablocka B, Pojda Z, Domanska-Janik K (2002) Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115(Pt 10):2131–2138PubMedGoogle Scholar
  18. 18.
    Buzanska L, Jurga M, Domanska-Janik K (2006) Neuronal differentiation of human umbilical cord blood neural stem-like cell line. Neurodegener Dis 3(1–2):19–26PubMedCrossRefGoogle Scholar
  19. 19.
    Buzanska L, Jurga M, Stachowiak EK, Stachowiak MK, Domanska-Janik K (2006) Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 15(3):391–406PubMedCrossRefGoogle Scholar
  20. 20.
    El-Badri NS, Hakki A, Saporta S, Liang X, Madhusodanan S, Willing AE, Sanberg CD, Sanberg PR (2006) Cord blood mesenchymal stem cells: Potential use in neurological disorders. Stem Cells Dev 15(4):497–506PubMedCrossRefGoogle Scholar
  21. 21.
    Jeong JA, Gang EJ, Hong SH, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H (2004) Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. Neuroreport 15(11):1731–1734PubMedCrossRefGoogle Scholar
  22. 22.
    Zwart I, Hill AJ, Girdlestone J, Manca MF, Navarrete R, Navarrete C, Jen LS (2008) Analysis of neural potential of human umbilical cord blood-derived multipotent mesenchymal stem cells in response to a range of neurogenic stimuli. J Neurosci Res 86(9):1902–1915PubMedCrossRefGoogle Scholar
  23. 23.
    Lim JY, Park SI, Oh JH, Kim SM, Jeong CH, Jun JA, Lee KS, Oh W, Lee JK, Jeun SS (2008) Brain-derived neurotrophic factor stimulates the neural differentiation of human umbilical cord blood-derived mesenchymal stem cells and survival of differentiated cells through MAPK/ERK and PI3K/Akt-dependent signaling pathways. J Neurosci Res 86(10):2168–2178PubMedCrossRefGoogle Scholar
  24. 24.
    Arien-Zakay H, Nagler A, Galski H, Lazarovici P (2007) Neuronal conditioning medium and nerve growth factor induce neuronal differentiation of collagen-adherent progenitors derived from human umbilical cord blood. J Mol Neurosci 32(3):179–191PubMedCrossRefGoogle Scholar
  25. 25.
    Chen N, Kamath S, Newcomb J, Hudson J, Garbuzova-Davis S, Bickford P, Davis-Sanberg C, Sanberg P, Zigova T, Willing A (2007) Trophic factor induction of human umbilical cord blood cells in vitro and in vivo. J Neural Eng 4(2):130–145PubMedCrossRefGoogle Scholar
  26. 26.
    Arien-Zakay H, Lecht S, Bercu MM, Amariglio N, Rechavi G, Galski H, Lazarovici P, Nagler A (2009) Interferon-gamma-induced neuronal differentiation of human umbilical cord blood-derived progenitors. Leukemia 23(10):1790–1800PubMedCrossRefGoogle Scholar
  27. 27.
    Szymczak P, Wojcik-Stanaszek L, Sypecka J, Sokolowska A, Zalewska T (2010) Effect of matrix metalloproteinases inhibition on the proliferation and differentiation of HUCB-NSCs cultured in the presence of adhesive substrates. Acta Neurobiol Exp (Wars) 70(4):325–336Google Scholar
  28. 28.
    Ali H, Forraz N, McGuckin CP, Jurga M, Lindsay S, Ip BK, Trevelyan A, Basford C, Habibollah S, Ahmad S et al (2012) In vitro modelling of cortical neurogenesis by sequential induction of human umbilical cord blood stem cells. Stem Cell Rev 8(1):210–223PubMedCrossRefGoogle Scholar
  29. 29.
    Zigova T, Song S, Willing AE, Hudson JE, Newman MB, Saporta S, Sanchez-Ramos J, Sanberg PR (2002) Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Transplant 11(3):265–274PubMedGoogle Scholar
  30. 30.
    Coenen M, Kogler G, Wernet P, Brustle O (2005) Transplantation of human umbilical cord blood-derived adherent progenitors into the developing rodent brain. J Neuropathol Exp Neurol 64(8):681–688PubMedCrossRefGoogle Scholar
  31. 31.
    Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7(11):581–588PubMedCrossRefGoogle Scholar
  32. 32.
    Jang YK, Park JJ, Lee MC, Yoon BH, Yang YS, Yang SE, Kim SU (2004) Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 75(4):573–584PubMedCrossRefGoogle Scholar
  33. 33.
    Sypecka J, Dragun-Szymczak P, Zalewska T, Domanska-Janik K (2009) Laminin promotes oligogliogenesis and increases MMPs activity in human neural stem cells of HUCB-NSC line. Acta Neurobiol Exp (Wars) 69(1):37–45Google Scholar
  34. 34.
    Tanabe Y, Tajima F, Nakamura Y, Shibasaki E, Wakejima M, Shimomura T, Murai R, Murawaki Y, Hashiguchi K, Kanbe T et al (2004) Analyses to clarify rich fractions in hepatic progenitor cells from human umbilical cord blood and cell fusion. Biochem Biophys Res Commun 324(2):711–718PubMedCrossRefGoogle Scholar
  35. 35.
    Ishikawa F, Shimazu H, Shultz LD, Fukata M, Nakamura R, Lyons B, Shimoda K, Shimoda S, Kanemaru T, Nakamura K et al (2006) Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion. FASEB J 20(7):950–952PubMedCrossRefGoogle Scholar
  36. 36.
    Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, Roh W, Hwang SJ, Ko HJ, Huh YM et al (2008) Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 1229:233–248PubMedCrossRefGoogle Scholar
  37. 37.
    Schira J, Gasis M, Estrada V, Hendricks M, Schmitz C, Trapp T, Kruse F, Kogler G, Wernet P, Hartung HP et al (2012) Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood. Brain 135(Pt 2):431–446PubMedCrossRefGoogle Scholar
  38. 38.
    Ali H, Bahbahani H (2010) Umbilical cord blood stem cells—potential therapeutic tool for neural injuries and disorders. Acta Neurobiol Exp (Wars) 70(3):316–324Google Scholar
  39. 39.
    Rosenkranz K, Meier C (2011) Umbilical cord blood cell transplantation after brain ischemia—from recovery of function to cellular mechanisms. Ann Anat 193(4):371–379PubMedCrossRefGoogle Scholar
  40. 40.
    Trapp T, Kogler G, El-Khattouti A, Sorg RV, Besselmann M, Focking M, Buhrle CP, Trompeter I, Fischer JC, Wernet P (2008) Hepatocyte growth factor/c-MET axis-mediated tropism of cord blood-derived unrestricted somatic stem cells for neuronal injury. J Biol Chem 283(47):32244–32253PubMedCrossRefGoogle Scholar
  41. 41.
    Newman MB, Willing AE, Manresa JJ, Davis-Sanberg C, Sanberg PR (2005) Stroke-induced migration of human umbilical cord blood cells: time course and cytokines. Stem Cells Dev 14(5):576–586PubMedCrossRefGoogle Scholar
  42. 42.
    Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32(11):2682–2688PubMedCrossRefGoogle Scholar
  43. 43.
    Xiao J, Nan Z, Motooka Y, Low WC (2005) Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury. Stem Cells Dev 14(6):722–733PubMedCrossRefGoogle Scholar
  44. 44.
    Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S, Hart C, Sanchez-Ramos J, Sanberg PR (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73(3):296–307PubMedCrossRefGoogle Scholar
  45. 45.
    Borlongan CV, Hadman M, Sanberg CD, Sanberg PR (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35(10):2385–2389PubMedCrossRefGoogle Scholar
  46. 46.
    Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57(6):563–581PubMedCrossRefGoogle Scholar
  47. 47.
    Jiang L, Womble T, Saporta S, Chen N, Sanberg CD, Sanberg PR, Willing AE (2010) Human umbilical cord blood cells decrease microglial survival in vitro. Stem Cells Dev 19(2):221–228PubMedCrossRefGoogle Scholar
  48. 48.
    Pimentel-Coelho PM, Magalhaes ES, Lopes LM, deAzevedo LC, Santiago MF, Mendez-Otero R (2010) Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 19(3):351–358PubMedCrossRefGoogle Scholar
  49. 49.
    Rosenkranz K, Kumbruch S, Tenbusch M, Marcus K, Marschner K, Dermietzel R, Meier C (2012) Transplantation of human umbilical cord blood cells mediated beneficial effects on apoptosis, angiogenesis and neuronal survival after hypoxic-ischemic brain injury in rats. Cell Tissue Res 348(3):429–438PubMedCrossRefGoogle Scholar
  50. 50.
    Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, Masuda T, Yu SJ, Bae EK, Hayashi T et al (2010) Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 14(4):914–921PubMedCrossRefGoogle Scholar
  51. 51.
    Arien-Zakay H, Lecht S, Nagler A, Lazarovici P (2011) Neuroprotection by human umbilical cord blood-derived progenitors in ischemic brain injuries. Arch Ital Biol 149(2):233–245PubMedGoogle Scholar
  52. 52.
    Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE (2005) Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev 14(5):595–604PubMedCrossRefGoogle Scholar
  53. 53.
    Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199(1):191–200PubMedCrossRefGoogle Scholar
  54. 54.
    Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760PubMedCrossRefGoogle Scholar
  55. 55.
    Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, Pompilio G, Bonanno G, Scambia G, Capogrossi MC (2003) Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 93(5):e51–e62PubMedCrossRefGoogle Scholar
  56. 56.
    Au P, Daheron LM, Duda DG, Cohen KS, Tyrrell JA, Lanning RM, Fukumura D, Scadden DT, Jain RK (2008) Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 111(3):1302–1305PubMedCrossRefGoogle Scholar
  57. 57.
    Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, Tsukamoto Y, Iso H, Fujimori Y, Stern DM et al (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114(3):330–338PubMedGoogle Scholar
  58. 58.
    Hu CH, Wu GF, Wang XQ, Yang YH, Du ZM, He XH, Xiang P (2006) Transplanted human umbilical cord blood mononuclear cells improve left ventricular function through angiogenesis in myocardial infarction. Chin Med J (Engl) 119(18):1499–1506Google Scholar
  59. 59.
    Kim BO, Tian H, Prasongsukarn K, Wu J, Angoulvant D, Wnendt S, Muhs A, Spitkovsky D, Li RK (2005) Cell transplantation improves ventricular function after a myocardial infarction: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 112(9 Suppl):I96–I104PubMedGoogle Scholar
  60. 60.
    Arenillas JF, Sobrino T, Castillo J, Davalos A (2007) The role of angiogenesis in damage and recovery from ischemic stroke. Curr Treat Options Cardiovasc Med 9(3):205–212PubMedCrossRefGoogle Scholar
  61. 61.
    Park DH, Borlongan CV, Willing AE, Eve DJ, Cruz LE, Sanberg CD, Chung YG, Sanberg PR (2009) Human umbilical cord blood cell grafts for brain ischemia. Cell Transplant 18(9):985–998PubMedCrossRefGoogle Scholar
  62. 62.
    Zhao ZM, Li HJ, Liu HY, Lu SH, Yang RC, Zhang QJ, Han ZC (2004) Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant 13(2):113–122PubMedGoogle Scholar
  63. 63.
    Kao CH, Chen SH, Chio CC, Lin MT (2008) Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Shock 29(1):49–55PubMedGoogle Scholar
  64. 64.
    Saporta S, Kim JJ, Willing AE, Fu ES, Davis CD, Sanberg PR (2003) Human umbilical cord blood stem cells infusion in spinal cord injury: engraftment and beneficial influence on behavior. J Hematother Stem Cell Res 12(3):271–278PubMedCrossRefGoogle Scholar
  65. 65.
    Park DH, Lee JH, Borlongan CV, Sanberg PR, Chung YG, Cho TH (2011) Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev 7(1):181–194PubMedCrossRefGoogle Scholar
  66. 66.
    Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, Rao JS, Dinh DH (2007) Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 24(2):391–410PubMedCrossRefGoogle Scholar
  67. 67.
    Chen CT, Foo NH, Liu WS, Chen SH (2008) Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms. Pediatr Neonatol 49(3):77–83PubMedCrossRefGoogle Scholar
  68. 68.
    Dasari VR, Spomar DG, Li L, Gujrati M, Rao JS, Dinh DH (2008) Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury. Neurochem Res 33(1):134–149PubMedCrossRefGoogle Scholar
  69. 69.
    Li X, Li H, Bi J, Chen Y, Jain S, Zhao Y (2012) Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons. Biochem Biophys Res Commun 419(1):110–116PubMedCrossRefGoogle Scholar
  70. 70.
    Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24(1):115–124PubMedCrossRefGoogle Scholar
  71. 71.
    Ende N, Chen R, Ende-Harris D (2001) Human umbilical cord blood cells ameliorate Alzheimer’s disease in transgenic mice. J Med 32(3–4):241–247PubMedGoogle Scholar
  72. 72.
    Nikolic WV, Hou H, Town T, Zhu Y, Giunta B, Sanberg CD, Zeng J, Luo D, Ehrhart J, Mori T et al (2008) Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Dev 17(3):423–439PubMedCrossRefGoogle Scholar
  73. 73.
    Lee HJ, Lee JK, Lee H, Shin JW, Carter JE, Sakamoto T, Jin HK, Bae JS (2010) The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer’s disease. Neurosci Lett 481(1):30–35PubMedCrossRefGoogle Scholar
  74. 74.
    Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC, Hudson JE, Chen N, Davis CD, Sanberg PR (2003) Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 12(3):255–270PubMedCrossRefGoogle Scholar
  75. 75.
    Habisch HJ, Janowski M, Binder D, Kuzma-Kozakiewicz M, Widmann A, Habich A, Schwalenstocker B, Hermann A, Brenner R, Lukomska B et al (2007) Intrathecal application of neuroectodermally converted stem cells into a mouse model of ALS: limited intraparenchymal migration and survival narrows therapeutic effects. J Neural Transm 114(11):1395–1406PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Cell and Developmental BiologyWeill Medical College of Cornell UniversityNew YorkUSA
  2. 2.Institute of NeuroscienceSoochow UniversitySuzhouChina

Personalised recommendations