Molecular Neurobiology

, Volume 47, Issue 2, pp 509–524

Alpha-Synuclein Posttranslational Modification and Alternative Splicing as a Trigger for Neurodegeneration

Article

Abstract

Lewy body diseases include Parkinson disease and dementia with Lewy bodies and are characterized by the widespread distribution of Lewy bodies in virtually every brain area. The main component of Lewy bodies is alpha-synuclein (AS). Accumulating evidence suggests that AS oligomerization and aggregation are strongly associated with the pathogenesis of Lewy body diseases. AS is a small soluble protein with aggregation-prone properties under certain conditions. These properties are enhanced by posttranslational modifications such as phosphorylation, ubiquitination, nitration, and truncation. Accordingly, Lewy bodies contain abundant phosphorylated, nitrated, and monoubiquitinated AS. However, alternative splicing of the AS gene is also known to modify AS aggregation propensities. Splicing gives rise to four related forms of the protein, the main transcript and those that lack exon 4, exon 6, or both. Since AS structure and properties have been extensively studied, it is possible to predict the consequences of the splicing out of the two aforesaid exons. The present review discusses the latest insights on the mechanisms of AS posttranslational modifications and intends to depict their role in the pathogenesis of Lewy body diseases. The implications of deregulated alternative splicing are examined as well, and a hypothesis for the development of the pure form of dementia with Lewy bodies is proposed.

Keywords

Alpha-synuclein Lewy body disease Alternative splicing 

References

  1. 1.
    Shults CW (2006) Lewy bodies. Proc Natl Acad Sci USA 103:1661–1668PubMedCrossRefGoogle Scholar
  2. 2.
    Jellinger KA (2008) A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol 116:1–16PubMedCrossRefGoogle Scholar
  3. 3.
    Jellinger KA (2009) A critical evaluation of current staging of alpha-synuclein pathology in Lewy body disorders. Biochim Biophys Acta 1792:730–740PubMedCrossRefGoogle Scholar
  4. 4.
    Ferman TJ, Boeve BF (2007) Dementia with Lewy bodies. Neurol Clin 25:741–760PubMedCrossRefGoogle Scholar
  5. 5.
    Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047PubMedCrossRefGoogle Scholar
  6. 6.
    Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108PubMedCrossRefGoogle Scholar
  7. 7.
    Zarranz JJ, Alegre J, Gómez-Esteban JC et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedCrossRefGoogle Scholar
  8. 8.
    Jellinger KA (2003) Neuropathological spectrum of synucleinopathies. Mov Disord 18(Suppl 6):S2–S12PubMedCrossRefGoogle Scholar
  9. 9.
    Braak H, Braak E (1997) Diagnostic criteria for neuropathological assessment of Alzheimer’s disease. Neurobiol Aging 18:S85–S88PubMedCrossRefGoogle Scholar
  10. 10.
    McKeith I, Mintzer J, Aarsland D et al (2004) Dementia with Lewy bodies. Lancet Neurol 3:19–28PubMedCrossRefGoogle Scholar
  11. 11.
    McKeith IG, Dickson DW, Lowe J et al (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872PubMedCrossRefGoogle Scholar
  12. 12.
    Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-Snuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 95:6469–6473PubMedCrossRefGoogle Scholar
  13. 13.
    Kramer ML, Schulz-Schaeffer WJ (2007) Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 27:1405–1410PubMedCrossRefGoogle Scholar
  14. 14.
    Der-Sarkissian A, Jao CC, Chen J, Langen R (2003) Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. J Biol Chem 278:37530–37535PubMedCrossRefGoogle Scholar
  15. 15.
    George JM, Jin H, Woods WS, Clayton DF (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361–372PubMedCrossRefGoogle Scholar
  16. 16.
    Clayton DF, George JM (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 21:249–254PubMedCrossRefGoogle Scholar
  17. 17.
    Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280:9595–9603PubMedCrossRefGoogle Scholar
  18. 18.
    Ulmer TS, Bax A (2005) Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. J Biol Chem 280:43179–43187PubMedCrossRefGoogle Scholar
  19. 19.
    Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A, Yoshimoto M, Otero DA, Kondo J, Ihara Y, Saitoh T (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci U S A 90:11282–11286PubMedCrossRefGoogle Scholar
  20. 20.
    Han H, Weinreb PH, Lansbury PT Jr (1995) The core Alzheimer’s peptide NAC forms amyloid fibrils which seed and are seeded by beta-amyloid: is NAC a common trigger or target in neurodegenerative disease? Chem Biol 2:163–169PubMedCrossRefGoogle Scholar
  21. 21.
    Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380–1386PubMedCrossRefGoogle Scholar
  22. 22.
    Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103:17–37PubMedGoogle Scholar
  23. 23.
    Levitan K, Chereau D, Cohen SI, Knowles TP, Dobson CM, Fink AL, Anderson JP, Goldstein JM, Millhauser GL (2011) Conserved C-terminal charge exerts a profound influence on the aggregation rate of α-synuclein. J Mol Biol 411:329–333PubMedCrossRefGoogle Scholar
  24. 24.
    Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110PubMedCrossRefGoogle Scholar
  25. 25.
    Okochi M, Walter J, Koyama A, Nakajo S, Baba M, Iwatsubo T, Meijer L, Kahle PJ, Haass C (2000) Constitutive phosphorylation of the Parkinson’s disease associated alpha-synuclein. J Biol Chem 275:390–397PubMedCrossRefGoogle Scholar
  26. 26.
    Kahle PJ, Neumann M, Ozmen L, Haass C (2000) Physiology and pathophysiology of alpha-synuclein. Cell culture and transgenic animal models based on a Parkinson’s disease-associated protein. Ann N Y Acad Sci 920:33–41PubMedCrossRefGoogle Scholar
  27. 27.
    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164PubMedCrossRefGoogle Scholar
  28. 28.
    Takahashi M, Kanuka H, Fujiwara H, Koyama A, Hasegawa M, Miura M, Iwatsubo T (2003) Phosphorylation of alpha-synuclein characteristic of synucleinopathy lesions is recapitulated in alpha-synuclein transgenic Drosophila. Neurosci Lett 336:155–158PubMedCrossRefGoogle Scholar
  29. 29.
    Anderson JP, Walker DE, Goldstein JM et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752PubMedCrossRefGoogle Scholar
  30. 30.
    Chen L, Feany MB (2005) Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci 8:657–663PubMedCrossRefGoogle Scholar
  31. 31.
    Ellis CE, Schwartzberg PL, Grider TL, Fink DW, Nussbaum RL (2001) Alpha-synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases. J Biol Chem 276:3879–3884PubMedCrossRefGoogle Scholar
  32. 32.
    Nakamura T, Yamashita H, Takahashi T, Nakamura S (2001) Activated Fyn phosphorylates alpha-synuclein at tyrosine residue 125. Biochem Biophys Res Commun 280:1085–1092PubMedCrossRefGoogle Scholar
  33. 33.
    Chen L, Periquet M, Wang X, Negro A, McLean PJ, Hyman BT, Feany MB (2009) Tyrosine and serine phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Invest 119:3257–3265PubMedCrossRefGoogle Scholar
  34. 34.
    Pronin AN, Morris AJ, Surguchov A, Benovic JL (2000) Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J Biol Chem 275:26515–26522PubMedCrossRefGoogle Scholar
  35. 35.
    Arawaka S, Wada M, Goto S et al (2006) The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson’s disease. J Neurosci 26:9227–9238PubMedCrossRefGoogle Scholar
  36. 36.
    Inglis KJ, Chereau D, Brigham EF et al (2009) Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. J Biol Chem 284:2598–25602PubMedCrossRefGoogle Scholar
  37. 37.
    Mbefo MK, Paleologou KE, Boucharaba A, Oueslati A, Schell H, Fournier M, Olschewski D, Yin G, Zweckstetter M, Masliah E, Kahle PJ, Hirling H, Lashuel HA (2010) Phosphorylation of synucleins by members of the Polo-like kinase family. J Biol Chem 285:2807–2822PubMedCrossRefGoogle Scholar
  38. 38.
    Waxman EA, Giasson BI (2011) Characterization of kinases involved in the phosphorylation of aggregated α-synuclein. J Neurosci Res 89:231–247PubMedCrossRefGoogle Scholar
  39. 39.
    Paleologou KE, Oueslati A, Shakked G et al (2010) Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. J Neurosci 30:3184–3198PubMedCrossRefGoogle Scholar
  40. 40.
    Ryu MY, Kim DW, Arima K, Mouradian MM, Kim SU, Lee G (2008) Localization of CKII beta subunits in Lewy bodies of Parkinson’s disease. J Neurol Sci 266:9–12PubMedCrossRefGoogle Scholar
  41. 41.
    Zhou J, Broe M, Huang Y, Anderson JP, Gai WP, Milward EA, Porritt M, Howells D, Hughes AJ, Wang X, Halliday GM (2011) Changes in the solubility and phosphorylation of α-synuclein over the course of Parkinson’s disease. Acta Neuropathol 121:695–704PubMedCrossRefGoogle Scholar
  42. 42.
    Saito Y, Kawashima A, Ruberu NN, Fujiwara H, Koyama S, Sawabe M, Arai T, Nagura H, Yamanouchi H, Hasegawa M, Iwatsubo T, Murayama S (2003) Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Exp Neurol 62:644–654PubMedGoogle Scholar
  43. 43.
    Schulz-Schaeffer WJ (2010) The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120:131–143PubMedCrossRefGoogle Scholar
  44. 44.
    Tanji K, Mori F, Mimura J, Itoh K, Kakita A, Takahashi H, Wakabayashi K (2010) Proteinase K-resistant alpha-synuclein is deposited in presynapses in human Lewy body disease and A53T alpha-synuclein transgenic mice. Acta Neuropathol 120:145–154PubMedCrossRefGoogle Scholar
  45. 45.
    Visanji NP, Wislet-Gendebien S, Oschipok LW, Zhang G, Aubert I, Fraser PE, Tandon A (2011) Effect of Ser-129 phosphorylation on interaction of {alpha}-synuclein with synaptic and cellular membranes. J Biol Chem 286:35863–35873PubMedCrossRefGoogle Scholar
  46. 46.
    Kim EJ, Sung JY, Lee HJ, Rhim H, Hasegawa M, Iwatsubo T, Min do S, Kim J, Paik SR, Chung KC (2006) Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion formation. J Biol Chem 281:33250–33257PubMedCrossRefGoogle Scholar
  47. 47.
    Sadowski M, Sarcevic B (2010) Mechanisms of mono- and poly-ubiquitination: ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Cell Div 5:19PubMedCrossRefGoogle Scholar
  48. 48.
    Petroski MD, Deshaies RJ (2003) Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol Cell 11:1435–1444PubMedCrossRefGoogle Scholar
  49. 49.
    Petroski M, Deshaies R (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:8–20CrossRefGoogle Scholar
  50. 50.
    Nemani M, Linares-Cruz G, Bruzzoni-Giovanelli H et al (1996) Activation of the human homologue of the Drosophila sina gene in apoptosis and tumor suppression. Proc Natl Acad Sci USA 93:9039–9042PubMedCrossRefGoogle Scholar
  51. 51.
    Hasegawa M, Fujiwara H, Nonaka T, Wakabayashi K, Takahashi H, Lee VM, Trojanowski JQ, Mann D, Iwatsubo T (2002) Phosphorylated a-synuclein is ubiquitinated in a-synucleinopathy lesions. J Biol Chem 277:49071–49076PubMedCrossRefGoogle Scholar
  52. 52.
    Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG (2003) Ubiquitination of a-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem 278:44405–44411PubMedCrossRefGoogle Scholar
  53. 53.
    Nonaka T, Iwatsubo T, Hasegawa M (2005) Ubiquitination of alpha-synuclein. Biochemistry 44:361–368PubMedCrossRefGoogle Scholar
  54. 54.
    Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson’s disease. Science 293:263–269PubMedCrossRefGoogle Scholar
  55. 55.
    Chung KK, Zhang Y, Lim KL, Tanaka Y, Huang H, Gao J, Ross CA, Dawson VL, Dawson TM (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7:1144–1150PubMedCrossRefGoogle Scholar
  56. 56.
    Wheeler TC, Chin LS, Li Y, Roudabush FL, Li L (2002) Regulation of synaptophysin degradation by mammalian homologues of seven in absentia. J Biol Chem 277:10273–10282PubMedCrossRefGoogle Scholar
  57. 57.
    Liani E, Eyal A, Avraham E, Shemer R, Szargel R, Berg D, Bornemann A, Riess O, Ross CA, Rott R, Engelender S (2004) Ubiquitylation of synphilin-1 and alpha-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson’s disease. Proc Natl Acad Sci USA 101:5500–5505PubMedCrossRefGoogle Scholar
  58. 58.
    Rott R, Szargel R, Haskin J, Shani V, Shainskaya A, Manov I, Liani E, Avraham E, Engelender S (2007) Monoubiquitination of a-synuclein by SIAH promotes its aggregation in dopaminergic cells. J Biol Chem 283:3316–3328PubMedCrossRefGoogle Scholar
  59. 59.
    Lee JT, Wheeler TC, Li L, Chin LS (2008) Ubiquitination of alpha-synuclein by Siah-1 promotes alpha-synuclein aggregation and apoptotic cell death. Hum Mol Genet 17:906–917PubMedCrossRefGoogle Scholar
  60. 60.
    House CM, Hancock NC, Möller A, Cromer BA, Fedorov V, Bowtell DD, Parker MW, Polekhina G (2006) Elucidation of the substrate binding site of Siah ubiquitin ligase. Structure 14:695–701PubMedCrossRefGoogle Scholar
  61. 61.
    Demand J, Alberti S, Patterson C, Hohfeld J (2001) Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr Biol 11:1569–1577PubMedCrossRefGoogle Scholar
  62. 62.
    Murata S, Minami Y, Minami M, Chiba T, Tanaka K (2001) CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2:1133–1138PubMedCrossRefGoogle Scholar
  63. 63.
    Kalia LV, Kalia SK, Chau H, Lozano AM, Hyman BT, McLean PJ (2011) Ubiquitinylation of α-synuclein by carboxyl terminus Hsp70-interacting protein (CHIP) is regulated by Bcl-2-associated athanogene 5 (BAG5). PLoS One 6:e14695PubMedCrossRefGoogle Scholar
  64. 64.
    Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The cochaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280:23727–23734PubMedCrossRefGoogle Scholar
  65. 65.
    Tetzlaff JE, Putcha P, Outeiro TF, Ivanov A, Berezovska O, Hyman BT, McLean PJ (2008) CHIP targets toxic alpha-synuclein oligomers for degradation. J Biol Chem 283:17962–17968PubMedCrossRefGoogle Scholar
  66. 66.
    Kalia SK, Lee S, Smith PD, Liu L, Crocker SJ, Thorarinsdottir TE, Glover JR, Fon EA, Park DS, Lozano AM (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44:931–945PubMedCrossRefGoogle Scholar
  67. 67.
    Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055PubMedCrossRefGoogle Scholar
  68. 68.
    Zhu J, Chu CT (2010) Mitochondrial dysfunction in Parkinson’s disease. J Alzheimers Dis 20(Suppl 2):S325–S334PubMedGoogle Scholar
  69. 69.
    Cookson MR, Bandmann O (2010) Parkinson’s disease: insights from pathways. Hum Mol Genet 19:R21–R27PubMedCrossRefGoogle Scholar
  70. 70.
    Jendrach M, Gispert S, Ricciardi F, Klinkenberg M, Schemm R, Auburger G (2009) The mitochondrial kinase PINK1, stress response and Parkinson’s disease. J Bioenerg Biomembr 41:481–486PubMedCrossRefGoogle Scholar
  71. 71.
    Leong SL, Pham CL, Galatis D, Fodero-Tavoletti MT, Perez K, Hill AF, Masters CL, Ali FE, Barnham KJ, Cappai R (2009) Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation. Free Radic Biol Med 46:1328–1337PubMedCrossRefGoogle Scholar
  72. 72.
    Zhou W, Long C, Reaney SH, Di Monte DA, Fink AL, Uversky VN (2010) Methionine oxidation stabilizes non-toxic oligomers of alpha-synuclein through strengthening the auto-inhibitory intra-molecular long-range interactions. Biochim Biophys Acta 1802:322–330PubMedCrossRefGoogle Scholar
  73. 73.
    Herrera FE, Chesi A, Paleologou KE, Schmid A, Munoz A, Vendruscolo M, Gustincich S, Lashuel HA, Carloni P (2008) Inhibition of alpha-synuclein fibrillization by dopamine is mediated by interactions with five C-terminal residues and with E83 in the NAC region. PLoS One 3:e3394PubMedCrossRefGoogle Scholar
  74. 74.
    Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989PubMedCrossRefGoogle Scholar
  75. 75.
    Liu Y, Qiang M, Wei Y, He R (2011) A novel molecular mechanism for nitrated alpha-synuclein-induced cell death. J Mol Cell Biol 3:239–249PubMedCrossRefGoogle Scholar
  76. 76.
    Danielson SR, Held JM, Schilling B, Oo M, Gibson BW, Andersen JK (2009) Preferentially increased nitration of alpha-synuclein at tyrosine-39 in a cellular oxidative model of Parkinson’s disease. Anal Chem 81:7823–7828PubMedCrossRefGoogle Scholar
  77. 77.
    Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3:e1376PubMedCrossRefGoogle Scholar
  78. 78.
    Yu Z, Xu X, Xiang Z, Zhou J, Zhang Z, Hu C, He C (2010) Nitrated alpha-synuclein induces the loss of dopaminergic neurons in the substantia nigra of rats. PLoS One 5:e9956PubMedCrossRefGoogle Scholar
  79. 79.
    Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VM (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28:7687–7698PubMedCrossRefGoogle Scholar
  80. 80.
    Lee MK, Stirling W, Xu Y, Xu X, Qui D, Mandir AS, Dawson TM, Copeland NG, Jenkins NA, Price DL (2002) Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53 –> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A 99:8968–8973PubMedCrossRefGoogle Scholar
  81. 81.
    Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34:521–533PubMedCrossRefGoogle Scholar
  82. 82.
    Campbell BC, McLean CA, Culvenor JG, Gai WP, Blumbergs PC, Jäkälä P, Beyreuther K, Masters CL, Li QX (2001) The solubility of alpha-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. J Neurochem 76:87–96PubMedCrossRefGoogle Scholar
  83. 83.
    Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152:879–884PubMedGoogle Scholar
  84. 84.
    Li W, West N, Colla E, Pletnikova O, Troncoso JC, Marsh L, Dawson TM, Jäkälä P, Hartmann T, Price DL, Lee MK (2005) Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc Natl Acad Sci U S A 102:2162–2167PubMedCrossRefGoogle Scholar
  85. 85.
    Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci U S A 97:4897–4902PubMedCrossRefGoogle Scholar
  86. 86.
    Murray IV, Giasson BI, Quinn SM, Koppaka V, Axelsen PH, Ischiropoulos H, Trojanowski JQ, Lee VM (2003) Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry 42:8530–8540PubMedCrossRefGoogle Scholar
  87. 87.
    Liu CW, Giasson BI, Lewis KA, Lee VM, Demartino GN, Thomas PJ (2005) A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation: implications for pathogenesis of Parkinson disease. J Biol Chem 280:22670–22678PubMedCrossRefGoogle Scholar
  88. 88.
    Ulusoy A, Febbraro F, Jensen PH, Kirik D, Romero-Ramos M (2010) Co-expression of C-terminal truncated alpha-synuclein enhances full-length alpha-synuclein-induced pathology. Eur J Neurosci 32:409–422PubMedCrossRefGoogle Scholar
  89. 89.
    Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM (1999) Degradation of alphasynuclein by proteasome. J Biol Chem 274:33855–33858PubMedCrossRefGoogle Scholar
  90. 90.
    Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013PubMedCrossRefGoogle Scholar
  91. 91.
    Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alphasynuclein by chaperone-mediated autophagy. Science 305:1292–1295PubMedCrossRefGoogle Scholar
  92. 92.
    Tofaris GK, Layfield R, Spillantini MG (2001) alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett 509:22–26PubMedCrossRefGoogle Scholar
  93. 93.
    Liu CW, Corboy MJ, DeMartino GN, Thomas PJ (2003) Endoproteolytic activity of the proteasome. Science 299:408–411PubMedCrossRefGoogle Scholar
  94. 94.
    Lewis KA, Yaeger A, DeMartino GN, Thomas PJ (2010) Accelerated formation of alpha-synuclein oligomers by concerted action of the 20S proteasome and familial Parkinson mutations. J Bioenerg Biomembr 42:85–95PubMedCrossRefGoogle Scholar
  95. 95.
    Takahashi M, Ko LW, Kulathingal J, Jiang P, Sevlever D, Yen SH (2007) Oxidative stress-induced phosphorylation, degradation and aggregation of alpha-synuclein are linked to upregulated CK2 and cathepsin D. Eur J Neurosci 26:863–874PubMedCrossRefGoogle Scholar
  96. 96.
    Sevlever D, Jiang P, Yen SH (2008) Cathepsin D is the main lysosomal enzyme involved in the degradation of alpha-synuclein and generation of its carboxy-terminally truncated species. Biochemistry 47:9678–9687PubMedCrossRefGoogle Scholar
  97. 97.
    Billger M, Wallin M, Karlsson JO (1988) Proteolysis of tubulin and microtubule-associated proteins 1 and 2 by calpain I and II. Difference in sensitivity of assembled and disassembled microtubules. Cell Calcium 9:33–44PubMedCrossRefGoogle Scholar
  98. 98.
    Bednarski E, Vanderklish P, Gall C, Saido TC, Bahr BA, Lynch G (1995) Translational suppression of calpain I reduces NMDA-induced spectrin proteolysis and pathophysiology in cultured hippocampal slices. Brain Res 694:147–157PubMedCrossRefGoogle Scholar
  99. 99.
    Mercken M, Grynspan F, Nixon RA (1995) Differential sensitivity to proteolysis by brain calpain of adult human tau, fetal human tau and PHF-tau. FEBS Lett 368:10–14PubMedCrossRefGoogle Scholar
  100. 100.
    Mishizen-Eberz AJ, Guttmann RP, Giasson BI, Day GA 3rd, Hodara R, Ischiropoulos H, Lee VM, Trojanowski JQ, Lynch DR (2003) Distinct cleavage patterns of normal and pathologic forms of alpha-synuclein by calpain I in vitro. J Neurochem 86:836–847PubMedCrossRefGoogle Scholar
  101. 101.
    Mishizen-Eberz AJ, Norris EH, Giasson BI, Hodara R, Ischiropoulos H, Lee VM, Trojanowski JQ, Lynch DR (2005) Cleavage of alpha-synuclein by calpain: potential role in degradation of fibrillized and nitrated species of alpha-synuclein. Biochemistry 44:7818–7829PubMedCrossRefGoogle Scholar
  102. 102.
    Dufty BM, Warner LR, Hou ST, Jiang SX, Gomez-Isla T, Leenhouts KM, Oxford JT, Feany MB, Masliah E, Rohn TT (2007) Calpain-cleavage of alpha-synuclein: connecting proteolytic processing to disease-linked aggregation. Am J Pathol 170:1725–1738PubMedCrossRefGoogle Scholar
  103. 103.
    Iwata A, Maruyama M, Akagi T, Hashikawa T, Kanazawa I, Tsuji S, Nukina N (2003) Alpha-synuclein degradation by serine protease neurosin: implication for pathogenesis of synucleinopathies. Hum Mol Genet 12:2625–2635PubMedCrossRefGoogle Scholar
  104. 104.
    Kasai T, Tokuda T, Yamaguchi N, Watanabe Y, Kametani F, Nakagawa M, Mizuno T (2008) Cleavage of normal and pathological forms of alpha-synuclein by neurosin in vitro. Neurosci Lett 436:52–56PubMedCrossRefGoogle Scholar
  105. 105.
    Kim YS, Choi DH, Block ML, Lorenzl S, Yang L, Kim YJ, Sugama S, Cho BP, Hwang O, Browne SE, Kim SY, Hong JS, Beal MF, Joh TH (2007) A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. FASEB J 21:179–187PubMedCrossRefGoogle Scholar
  106. 106.
    Choi DH, Kim EM, Son HJ, Joh TH, Kim YS, Kim D, Flint Beal M, Hwang O (2008) A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J Neurochem 106:405–415PubMedCrossRefGoogle Scholar
  107. 107.
    Choi DH, Hwang O, Lee KH, Lee J, Beal MF, Kim YS (2011) DJ-1 cleavage by matrix metalloproteinase 3 mediates oxidative stress-induced dopaminergic cell death. Antioxid Redox Signal 14:2137–2150PubMedCrossRefGoogle Scholar
  108. 108.
    Choi DH, Kim YJ, Kim YG, Joh TH, Beal MF, Kim YS (2011) Role of matrix metalloproteinase 3-mediated alpha-synuclein cleavage in dopaminergic cell death. J Biol Chem 286:14168–14177PubMedCrossRefGoogle Scholar
  109. 109.
    Uversky VN, Fink AL (2002) Amino acid determinants of alpha-synuclein aggregation: putting together pieces of the puzzle. FEBS Lett 522:9–13PubMedCrossRefGoogle Scholar
  110. 110.
    Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277:11970–11978PubMedCrossRefGoogle Scholar
  111. 111.
    Cho MK, Nodet G, Kim HY, Jensen MR, Bernado P, Fernandez CO, Becker S, Blackledge M, Zweckstetter M (2009) Structural characterization of alpha-synuclein in an aggregation prone state. Protein Sci 18:1840–1846PubMedCrossRefGoogle Scholar
  112. 112.
    Bisaglia M, Trolio A, Bellanda M, Bergantino E, Bubacco L, Mammi S (2006) Structure and topology of the non-amyloid-beta component fragment of human alpha-synuclein bound to micelles: implications for the aggregation process. Protein Sci 15:1408–1416PubMedCrossRefGoogle Scholar
  113. 113.
    Bodner CR, Maltsev AS, Dobson CM, Bax A (2010) Differential phospholipid binding of alpha-synuclein variants implicated in Parkinson’s disease revealed by solution NMR spectroscopy. Biochemistry 49:862–871PubMedCrossRefGoogle Scholar
  114. 114.
    Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Giasson BI (2005) The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 280:7800–7807PubMedCrossRefGoogle Scholar
  115. 115.
    Perrin RJ, Woods WS, Clayton DF, George JM (2001) Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. J Biol Chem 276:41958–41962PubMedCrossRefGoogle Scholar
  116. 116.
    Li J, Uversky VN, Fink AL (2001) Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40:11604–11613PubMedCrossRefGoogle Scholar
  117. 117.
    Ono K, Ikeda T, Takasaki J, Yamada M (2011) Familial Parkinson disease mutations influence α-synuclein assembly. Neurobiol Dis 43:715–724PubMedCrossRefGoogle Scholar
  118. 118.
    Wang W, Perovic I, Chittuluru J et al (2011) A soluble α-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A 108:17797–17802PubMedCrossRefGoogle Scholar
  119. 119.
    McClendon S, Rospigliosi CC, Eliezer D (2009) Charge neutralization and collapse of the C-terminal tail of alpha-synuclein at low pH. Protein Sci 18:1531–1540PubMedCrossRefGoogle Scholar
  120. 120.
    Yin J, Han J, Zhang C, Ma QL, Li X, Cheng F, Liu G, Li Y, Uéda K, Chan P, Yu S (2011) C-terminal part of α-synuclein mediates its activity in promoting proliferation of dopaminergic cells. J Neural Transm 118:1155–1164PubMedCrossRefGoogle Scholar
  121. 121.
    Jao CC, Der-Sarkissian A, Chen J, Langen R (2004) Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci U S A 101:8331–8336PubMedCrossRefGoogle Scholar
  122. 122.
    Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M (2005) Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci U S A 102:15871–15876PubMedCrossRefGoogle Scholar
  123. 123.
    Beyer K, Lao JI, Carrato C, Mate JL, López D, Ferrer I, Ariza A (2004) Differential expression of alpha-synuclein isoforms in dementia with Lewy bodies. Neuropathol Appl Neurobiol 30:601–607PubMedCrossRefGoogle Scholar
  124. 124.
    Beyer K, Domingo-Sàbat M, Humbert J, Carrato C, Ferrer I, Ariza A (2008) Differential expression of alpha-synuclein, parkin, and synphilin-1 isoforms in Lewy body disease. Neurogenetics 9:163–172PubMedCrossRefGoogle Scholar
  125. 125.
    Kalivendi SV, Yedlapudi D, Hillard CJ, Kalyanaraman B (2010) Oxidants induce alternative splicing of alpha-synuclein: implications for Parkinson’s disease. Free Radic Biol Med 48:377–383PubMedCrossRefGoogle Scholar
  126. 126.
    Klegeris A, McGeer PL (2007) Complement activation by islet amyloid polypeptide (IAPP) and alpha-synuclein 112. Biochem Biophys Res Commun 357:1096–1099PubMedCrossRefGoogle Scholar
  127. 127.
    Loeffler DA, Camp DM, Conant SB (2006) Complement activation in the Parkinson’s disease substantia nigra: an immunocytochemical study. J Neuroinflammation 3:29PubMedCrossRefGoogle Scholar
  128. 128.
    McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10(Suppl 1):S3–S7PubMedCrossRefGoogle Scholar
  129. 129.
    McCarthy JJ, Linnertz C, Saucier L, Burke JR, Hulette CM, Welsh-Bohmer KA, Chiba-Falek O (2011) The effect of SNCA 3′ region on the levels of SNCA-112 splicing variant. Neurogenetics 12:59–64PubMedCrossRefGoogle Scholar
  130. 130.
    Mueller JC, Fuchs J, Hofer A, Zimprich A, Lichtner P, Illig T, Berg D, Wüllner U, Meitinger T, Gasser T (2005) Multiple regions of alpha-synuclein are associated with Parkinson’s disease. Ann Neurol 57:535–541PubMedCrossRefGoogle Scholar
  131. 131.
    Pals P, Lincoln S, Manning J, Heckman M, Skipper L, Hulihan M, Van den Broeck M, De Pooter T, Cras P, Crook J, Van Broeckhoven C, Farrer MJ (2004) Alpha-synuclein promoter confers susceptibility to Parkinson’s disease. Ann Neurol 56:591–595PubMedCrossRefGoogle Scholar
  132. 132.
    Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  133. 133.
    Beyer K, Humbert J, Ferrer A, Lao JI, Latorre P, Lopez D, Tolosa E, Ferrer I, Ariza A (2007) A variable poly-T sequence modulates alpha-synuclein isoform expression and is associated with aging. J Neurosci Res 85:1538–1546PubMedCrossRefGoogle Scholar
  134. 134.
    Beyer K, Domingo-Sábat M, Lao JI, Carrato C, Ferrer I, Ariza A (2008) Identification and characterization of a new alpha-synuclein isoform and its role in Lewy body diseases. Neurogenetics 9:15–23PubMedCrossRefGoogle Scholar
  135. 135.
    Ma KL, Yuan YH, Song LK, Han N, Chen NH (2011) Over-expression of α-synuclein 98 triggers intracellular oxidative stress and enhances susceptibility to rotenone. Neurosci Lett 491:148–152PubMedCrossRefGoogle Scholar
  136. 136.
    Beyer K, Domingo-Sàbat M, Santos C, Tolosa E, Ferrer I, Ariza A (2010) The decrease of β-synuclein in cortical brain areas defines a molecular subgroup of dementia with Lewy bodies. Brain 133:3724–3733PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pathology, Hospital Universitari Germans Trias i PujolUniversitat Autònoma de BarcelonaBadalonaSpain

Personalised recommendations