Advertisement

Molecular Neurobiology

, Volume 47, Issue 2, pp 552–560 | Cite as

Molecular Chaperones, Alpha-Synuclein, and Neurodegeneration

  • Stephan N. WittEmail author
Article

Abstract

Parkinson’s disease (PD) is a devastating neurological condition that affects about 1 % of people older than 65 years of age. In PD, dopaminergic neurons in the mid-brain slowly accumulate cytoplasmic inclusions (Lewy bodies, LBs) of the protein alpha-synuclein (α-syn) and then gradually lose function and die off. Cell death is thought to be causally linked to the aggregation/fibrillization of α-syn. This review focuses on new findings about the structure of α-syn, about how α-syn cooperates with Hsp70 and Hsp40 chaperones to promote neurotransmitter release, and about cell-to-cell transfer of pathogenic forms of α-syn and how Hsp70 might protect against this disease process.

Keywords

Alpha-synuclein Cysteine string protein Hsp40 Hsp70 Molecular chaperone Neurodegeneration Parkinson’s disease 

Notes

Acknowledgments

This work was supported by the NIH grant NS057656.

References

  1. 1.
    Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87PubMedCrossRefGoogle Scholar
  2. 2.
    Lee VM, Trojanowski JQ (2006) Mechanisms of Parkinson’s disease linked to pathological alpha-synuclein: new targets for drug discovery. Neuron 52:33–38PubMedCrossRefGoogle Scholar
  3. 3.
    Breydo L, Wu JW, Uversky VN (2011) alpha-Synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 1822:261–285PubMedGoogle Scholar
  4. 4.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047PubMedCrossRefGoogle Scholar
  5. 5.
    Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108PubMedCrossRefGoogle Scholar
  6. 6.
    Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55:164–173PubMedCrossRefGoogle Scholar
  7. 7.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu M, Li J, Fink AL (2003) The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J Biol Chem 278:40186–40197PubMedCrossRefGoogle Scholar
  9. 9.
    Ueda K, Fukushima H, Masliah E, Xia Y, Iwai A et al (1993) Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 90:11282–11286PubMedCrossRefGoogle Scholar
  10. 10.
    Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM et al (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71PubMedCrossRefGoogle Scholar
  11. 11.
    Burre J, Sharma M, Tsetsenis T, Buchman V, Etherton MR et al (2010) Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329:1663–1667PubMedCrossRefGoogle Scholar
  12. 12.
    Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P et al (1999) alpha-Synuclein shares physical and functional homology with 14-3-3 proteins. J Neurosci 19:5782–5791PubMedGoogle Scholar
  13. 13.
    Sharon R, Goldberg MS, Bar-Josef I, Betensky RA, Shen J et al (2001) alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc Natl Acad Sci USA 98:9110–9115PubMedCrossRefGoogle Scholar
  14. 14.
    Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35:13709–13715PubMedCrossRefGoogle Scholar
  15. 15.
    Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC (2003) A broken alpha-helix in folded alpha-Synuclein. J Biol Chem 278:15313–15318PubMedCrossRefGoogle Scholar
  16. 16.
    Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744PubMedCrossRefGoogle Scholar
  17. 17.
    Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602PubMedCrossRefGoogle Scholar
  18. 18.
    Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298PubMedCrossRefGoogle Scholar
  19. 19.
    Bartels T, Choi JG, Selkoe DJ (2011) alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110PubMedCrossRefGoogle Scholar
  20. 20.
    Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT et al (2011) A soluble alpha-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci USA 108:17797–17802PubMedCrossRefGoogle Scholar
  21. 21.
    Maroteaux L, Campanelli JT, Scheller RH (1988) Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 8:2804–2815PubMedGoogle Scholar
  22. 22.
    Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328PubMedCrossRefGoogle Scholar
  23. 23.
    Snyder H, Mensah K, Theisler C, Lee J, Matouschek A et al (2003) Aggregated and monomeric alpha-synuclein bind to the S6' proteasomal protein and inhibit proteasomal function. J Biol Chem 278:11753–11759PubMedCrossRefGoogle Scholar
  24. 24.
    Anguiano M, Nowak RJ, Lansbury PT Jr (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343PubMedCrossRefGoogle Scholar
  25. 25.
    Abeliovich A, Schmitz Y, Farinas I, Choi-Lundberg D, Ho WH et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252PubMedCrossRefGoogle Scholar
  26. 26.
    Specht CG, Schoepfer R (2001) Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neurosci 2:11PubMedCrossRefGoogle Scholar
  27. 27.
    Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W et al (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22:8797–8807PubMedGoogle Scholar
  28. 28.
    Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R et al (2002) Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99:14524–14529PubMedCrossRefGoogle Scholar
  29. 29.
    Al-Wandi A, Ninkina N, Millership S, Williamson SJ, Jones PA et al (2010) Absence of alpha-synuclein affects dopamine metabolism and synaptic markers in the striatum of aging mice. Neurobiol Aging 31:796–804PubMedCrossRefGoogle Scholar
  30. 30.
    Gorbatyuk OS, Li S, Nash K, Gorbatyuk M, Lewin AS et al (2010) In vivo RNAi-mediated alpha-synuclein silencing induces nigrostriatal degeneration. Mol Ther 18:1450–1457PubMedCrossRefGoogle Scholar
  31. 31.
    Barbour R, Kling K, Anderson JP, Banducci K, Cole T et al (2008) Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis 5:55–59PubMedCrossRefGoogle Scholar
  32. 32.
    Ulmer TS, Bax A, Cole NB, Nussbaum RL (2005) Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280:9595–9603PubMedCrossRefGoogle Scholar
  33. 33.
    Mtwisha L, Brandt W, McCready S, Lindsey GG (1998) HSP 12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol Biol 37:513–521PubMedCrossRefGoogle Scholar
  34. 34.
    Motshwene P, Karreman R, Kgari G, Brandt W, Lindsey G (2004) LEA (late embryonic abundant)-like protein Hsp 12 (heat-shock protein 12) is present in the cell wall and enhances the barotolerance of the yeast Saccharomyces cerevisiae. Biochem J 377:769–774PubMedCrossRefGoogle Scholar
  35. 35.
    Welker S, Rudolph B, Frenzel E, Hagn F, Liebisch G et al (2010) Hsp12 is an intrinsically unstructured stress protein that folds upon membrane association and modulates membrane function. Mol Cell 39:507–520PubMedCrossRefGoogle Scholar
  36. 36.
    Scherzer CR, Grass JA, Liao Z, Pepivani I, Zheng B et al (2008) GATA transcription factors directly regulate the Parkinson’s disease-linked gene alpha-synuclein. Proc Natl Acad Sci USA 105:10907–10912PubMedCrossRefGoogle Scholar
  37. 37.
    Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA (2003) Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J Neurosci 23:3095–3099PubMedGoogle Scholar
  38. 38.
    Zhu M, Qin ZJ, Hu D, Munishkina LA, Fink AL (2006) Alpha-synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry 45:8135–8142PubMedCrossRefGoogle Scholar
  39. 39.
    Bayir H, Kapralov AA, Jiang J, Huang Z, Tyurina YY et al (2009) Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome C: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J Biol Chem 284:15951–15969PubMedCrossRefGoogle Scholar
  40. 40.
    Perez-Sanchez F, Milan M, Buendia P, Cano-Jaimez M, Ambrosio S et al (2010) Prosurvival effect of human wild-type alpha-synuclein on MPTP-induced toxicity to central but not peripheral catecholaminergic neurons isolated from transgenic mice. Neuroscience 167:261–276PubMedCrossRefGoogle Scholar
  41. 41.
    Cano-Jaimez M, Perez-Sanchez F, Milan M, Buendia P, Ambrosio S et al (2010) Vulnerability of peripheral catecholaminergic neurons to MPTP is not regulated by alpha-synuclein. Neurobiol Dis 38:92–103PubMedCrossRefGoogle Scholar
  42. 42.
    Davies P, Moualla D, Brown DR (2011) Alpha-synuclein is a cellular ferrireductase. PLoS One 6:e15814PubMedCrossRefGoogle Scholar
  43. 43.
    Liu X, Lee YJ, Liou LC, Ren Q, Zhang Z et al (2011) Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast. Hum Mol Genet 20:3401–3414PubMedCrossRefGoogle Scholar
  44. 44.
    Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677PubMedCrossRefGoogle Scholar
  45. 45.
    Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791PubMedCrossRefGoogle Scholar
  46. 46.
    Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451PubMedCrossRefGoogle Scholar
  47. 47.
    Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621PubMedCrossRefGoogle Scholar
  48. 48.
    Selkoe DJ (2011) Alzheimer's disease. Cold Spring Harb. Perspect Biol 3. doi: 10.1101
  49. 49.
    Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7:616–630PubMedCrossRefGoogle Scholar
  50. 50.
    Colby DW, Prusiner SB (2011) Prions. Cold Spring Harb Perspect Biol 3:1–22CrossRefGoogle Scholar
  51. 51.
    McClellan AJ, Tam S, Kaganovich D, Frydman J (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7:736–741PubMedCrossRefGoogle Scholar
  52. 52.
    Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332PubMedCrossRefGoogle Scholar
  53. 53.
    Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9:2–19PubMedCrossRefGoogle Scholar
  54. 54.
    Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:1539–1550PubMedCrossRefGoogle Scholar
  55. 55.
    Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH et al (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144:67–78PubMedCrossRefGoogle Scholar
  56. 56.
    Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556PubMedCrossRefGoogle Scholar
  57. 57.
    Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477PubMedCrossRefGoogle Scholar
  58. 58.
    Witt SN (2010) Hsp70 molecular chaperones and Parkinson’s disease. Biopolymers 93:218–228PubMedCrossRefGoogle Scholar
  59. 59.
    Witt SN (ed) (2011) Protein chaperones and protection from neurodegenerative diseases. Wiley, Hoboken, pp 1–427Google Scholar
  60. 60.
    Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398PubMedCrossRefGoogle Scholar
  61. 61.
    Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868PubMedCrossRefGoogle Scholar
  62. 62.
    Auluck PK, Bonini NM (2002) Pharmacological prevention of Parkinson disease in Drosophila. Nat Med 8:1185–1186PubMedCrossRefGoogle Scholar
  63. 63.
    Bronk P, Wenniger JJ, Dawson-Scully K, Guo X, Hong S et al (2001) Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo. Neuron 30:475–488PubMedCrossRefGoogle Scholar
  64. 64.
    Zhou Y, Gu G, Goodlett DR, Zhang T, Pan C et al (2004) Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J Biol Chem 279:39155–39164PubMedCrossRefGoogle Scholar
  65. 65.
    Klucken J, Shin Y, Masliah E, Hyman BT, McLean PJ (2004) Hsp70 reduces alpha-Synuclein aggregation and toxicity. J Biol Chem 279:25497–25502PubMedCrossRefGoogle Scholar
  66. 66.
    Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN (2005) Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J Mol Biol 351:1081–1100PubMedCrossRefGoogle Scholar
  67. 67.
    Auluck PK, Meulener MC, Bonini NM (2005) Mechanisms of suppression of {alpha}-synuclein neurotoxicity by geldanamycin in Drosophila. J Biol Chem 280:2873–2878PubMedCrossRefGoogle Scholar
  68. 68.
    Dong Z, Wolfer DP, Lipp HP, Bueler H (2005) Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 11:80–88PubMedCrossRefGoogle Scholar
  69. 69.
    Dedmon MM, Christodoulou J, Wilson MR, Dobson CM (2005) Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 280:14733–14740PubMedCrossRefGoogle Scholar
  70. 70.
    Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ (2005) The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J Biol Chem 280:23727–23734PubMedCrossRefGoogle Scholar
  71. 71.
    Huang C, Cheng H, Hao S, Zhou H, Zhang X et al (2006) Heat shock protein 70 inhibits alpha-synuclein fibril formation via interactions with diverse intermediates. J Mol Biol 364:323–336PubMedCrossRefGoogle Scholar
  72. 72.
    Luk KC, Mills IP, Trojanowski JQ, Lee VM (2008) Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 47:12614–12625PubMedCrossRefGoogle Scholar
  73. 73.
    Adachi H, Katsuno M, Minamiyama M, Sang C, Pagoulatos G et al (2003) Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J Neurosci 23:2203–2211PubMedGoogle Scholar
  74. 74.
    Robinson MB, Tidwell JL, Gould T, Taylor AR, Newbern JM et al (2005) Extracellular heat shock protein 70: a critical component for motoneuron survival. J Neurosci 25:9735–9745PubMedCrossRefGoogle Scholar
  75. 75.
    Gundersen CB, Mastrogiacomo A, Faull K, Umbach JA (1994) Extensive lipidation of a Torpedo cysteine string protein. J Biol Chem 269:19197–19199PubMedGoogle Scholar
  76. 76.
    Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570PubMedCrossRefGoogle Scholar
  77. 77.
    Craig EA, Huang P, Aron R, Andrew A (2006) The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 156:1–21PubMedCrossRefGoogle Scholar
  78. 78.
    Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19:176–181PubMedCrossRefGoogle Scholar
  79. 79.
    Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36PubMedCrossRefGoogle Scholar
  80. 80.
    Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571PubMedCrossRefGoogle Scholar
  81. 81.
    Chamberlain LH, Burgoyne RD (2000) Cysteine-string protein: the chaperone at the synapse. J Neurochem 74:1781–1789PubMedCrossRefGoogle Scholar
  82. 82.
    Gibbs SJ, Braun JE (2008) Emerging roles of J proteins in neurodegenerative disorders. Neurobiol Dis 32:196–199PubMedCrossRefGoogle Scholar
  83. 83.
    Zhao X, Braun AP, Braun JE (2008) Biological roles of neural J proteins. Cell Mol Life Sci 65:2385–2396PubMedCrossRefGoogle Scholar
  84. 84.
    Zinsmaier KE, Eberle KK, Buchner E, Walter N, Benzer S (1994) Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263:977–980PubMedCrossRefGoogle Scholar
  85. 85.
    Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC (2005) Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 123:383–396PubMedCrossRefGoogle Scholar
  86. 86.
    Sharma M, Burre J, Sudhof TC (2011) CSPalpha promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 13:30–39PubMedCrossRefGoogle Scholar
  87. 87.
    Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15:658–664PubMedCrossRefGoogle Scholar
  88. 88.
    Outeiro TF, Lindquist S (2003) Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science 302:1772–1775PubMedCrossRefGoogle Scholar
  89. 89.
    Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164PubMedCrossRefGoogle Scholar
  90. 90.
    Hightower LE, Guidon PT Jr (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol 138:257–266PubMedCrossRefGoogle Scholar
  91. 91.
    Alder GM, Austen BM, Bashford CL, Mehlert A, Pasternak CA (1990) Heat shock proteins induce pores in membranes. Biosci Rep 10:509–518PubMedCrossRefGoogle Scholar
  92. 92.
    Arispe N, De Maio A (2000) ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J Biol Chem 275:30839–30843PubMedCrossRefGoogle Scholar
  93. 93.
    Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176PubMedCrossRefGoogle Scholar
  94. 94.
    De Maio A (2011) Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. Cell Stress Chaperones 16:235–249PubMedCrossRefGoogle Scholar
  95. 95.
    Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280:23349–23355PubMedCrossRefGoogle Scholar
  96. 96.
    Srivastava PK (1994) Heat shock proteins in immune response to cancer: the Fourth Paradigm. Experientia 50:1054–1060PubMedCrossRefGoogle Scholar
  97. 97.
    Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442PubMedCrossRefGoogle Scholar
  98. 98.
    Schilling D, Gehrmann M, Steinem C, De Maio A, Pockley AG et al (2009) Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J 23:2467–2477PubMedCrossRefGoogle Scholar
  99. 99.
    Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T et al (2011) Heat-shock protein 70 modulates toxic extracellular alpha-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J 25:326–336PubMedCrossRefGoogle Scholar
  100. 100.
    Furukawa K, Matsuzaki-Kobayashi M, Hasegawa T, Kikuchi A, Sugeno N et al (2006) Plasma membrane ion permeability induced by mutant alpha-synuclein contributes to the degeneration of neural cells. J Neurochem 97:1071–1077PubMedCrossRefGoogle Scholar
  101. 101.
    van Rooijen BD, Claessens MM, Subramaniam V (2010) Membrane permeabilization by oligomeric alpha-synuclein: in search of the mechanism. PLoS One 5:e14292PubMedCrossRefGoogle Scholar
  102. 102.
    Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M et al (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851PubMedCrossRefGoogle Scholar
  103. 103.
    Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL et al (2011) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42:360–367PubMedCrossRefGoogle Scholar
  104. 104.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  105. 105.
    Brundin P, Li JY, Holton JL, Lindvall O, Revesz T (2008) Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci 9:741–745PubMedCrossRefGoogle Scholar
  106. 106.
    Del Tredici K, Braak H (2008) A not entirely benign procedure: progression of Parkinson’s disease. Acta Neuropathol 115:379–384PubMedCrossRefGoogle Scholar
  107. 107.
    Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33:317–325PubMedCrossRefGoogle Scholar
  108. 108.
    Steiner JA, Angot E, Brundin P (2011) A deadly spread: cellular mechanisms of alpha-synuclein transfer. Cell Death Differ 18:1425–1433PubMedCrossRefGoogle Scholar
  109. 109.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506PubMedCrossRefGoogle Scholar
  110. 110.
    Li JY, Englund E, Holton JL, Soulet D, Hagell P et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503PubMedCrossRefGoogle Scholar
  111. 111.
    Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015PubMedCrossRefGoogle Scholar
  112. 112.
    Luk KC, Song C, O’Brien P, Stieber A, Branch JR et al (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci USA 106:20051–20056PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyLouisiana State University Health Sciences Center at ShreveportShreveportUSA

Personalised recommendations