Molecular Neurobiology

, Volume 46, Issue 1, pp 221–226 | Cite as

Neuroinflammation and Proteostasis are Modulated by Endogenously Biosynthesized Neuroprotectin D1

Article

Abstract

Neurodegenerative diseases encompass complex cell signaling disturbances that initially damage neuronal circuits and synapses. Due to multiple protective mechanisms enacted to counteract the onset of neurodegenerative diseases, there is often a prolonged period without noticeable impairments during their initiation. Since severe cognitive deficit or vision loss takes place after that period there is an opportunity to harness endogenous protective mechanisms as potential therapeutic approaches. The activation of the biosynthesis of the docosanoid mediator neuroprotectin D1 (NPD1) is an early response to the upsurge of protein misfolding and other neuroinflammatory events. This overview discusses the potent neuroprotective and inflammation-modulating bioactivity of NPD1. This lipid mediator represents an early response to neurodegenerations, aiming to restore homeostasis.

Keywords

Misfolding Retinal degenerations Alzheimer’s disease Huntington’s disease Epilepsy Docosahexaenoic acid Ataxin-1 Huntingtin CAG repeats APP Bcl-2 proteins 

References

  1. 1.
    Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222PubMedCrossRefGoogle Scholar
  2. 2.
    Kim D, Tsai LH (2009) Bridging physiology and pathology in AD. Cell 137(6):997–1000PubMedCrossRefGoogle Scholar
  3. 3.
    Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer’s disease. Neuron 63(3):287–303PubMedCrossRefGoogle Scholar
  4. 4.
    Perrin RJ, Fagan AM, Holtzman DM (2009) Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature 461(7266):916–922PubMedCrossRefGoogle Scholar
  5. 5.
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegenration. Cell 140(6):918–934PubMedCrossRefGoogle Scholar
  6. 6.
    Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262PubMedCrossRefGoogle Scholar
  7. 7.
    Saxena S, Caroni P (2011) Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 71(1):35–48PubMedCrossRefGoogle Scholar
  8. 8.
    Bazan NG, Musto AE, Knott EJ (2011) Endogenous signaling by omega-3 docosahexaenoic acid-derived mediators sustains homeostatic synaptic and circuitry integrity. Mol Neurobiol 44(2):216–222PubMedCrossRefGoogle Scholar
  9. 9.
    Kim HY, Spector AA, Xiong ZM (2011) A synaptogenic amide N- docosahexaenoylethanolamide promotes hippocampal development. Prostglandins Other Lipid Mediat 96(1–4):114–120CrossRefGoogle Scholar
  10. 10.
    Rapoport SI, Ramadan E, Basselin M (2011) Docosahexaenoic acid (DHA) incorporation into the brain from plasma, as an invivo biomarker of brain DHA metabolism and neurotransmission. Prostglandins Other Lipid Mediat 96(1–4):109–113CrossRefGoogle Scholar
  11. 11.
    Hashimoto M, Hossain S (2011) Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: beneficial effect of docosahexaenoic acid on cognitive decline in Alzheimer’s disease. J Pharmacol Sci 116(2):150–162PubMedCrossRefGoogle Scholar
  12. 12.
    Calon F (2011) Omega-3 polyunsaturated fatty acid in Alzheimer’s disease: key questions and partial answers. Curr Alzheimer Res 8(5):470–478PubMedCrossRefGoogle Scholar
  13. 13.
    Astarita G, Piomelli D (2011) Towards a whole-body systems [multi-organ] lipidomics in Alzheimer’s disease. Prostaglandins Leukot Essent Fatty Acids 85(5):197–203PubMedCrossRefGoogle Scholar
  14. 14.
    Simopoulos AP (2011) Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol 44(2):203–215PubMedCrossRefGoogle Scholar
  15. 15.
    Cole GM, Ma QL, Frautschy SA (2010) Dietary fatty acids and the aging brain. Nutr Rev 68(suppl2):102–111CrossRefGoogle Scholar
  16. 16.
    Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278(44):43807–43817PubMedCrossRefGoogle Scholar
  17. 17.
    Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 101:8491–8496PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS One 6(1):e15816PubMedCrossRefGoogle Scholar
  19. 19.
    Calandria JM, Mukherjee PK, de Rivero Vaccari JC, Zhu M, Petasis NA, Bazan NG (2012) Ataxin-1 Poly(Q)-induced Proteotoxic Stress and Apoptosis are Attenuated in Neural Cells by Docosahexaenoic Acid-derived Neuroprotectin D1. J Biol Chem 287(28):23726–23739PubMedCrossRefGoogle Scholar
  20. 20.
    Musto AE, Gjorstrup P, Bazan NG (2011) The omega-3 fatty acid-derived neuroprotectin D1 limits hippocampal hyperexcitability and seizure susceptibility in kindling epileptogenesis. Epilepsia 52(9):1601–1608PubMedCrossRefGoogle Scholar
  21. 21.
    Belayev L, Eady TN, Khotorova L, Atkins KD, Obenaus A, Cordoba M, Vaquero JJ, Alvarez-Builla J, Bazan NG (2011) Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke. Transl Stroke Res 3(1):154–163PubMedCrossRefGoogle Scholar
  22. 22.
    Mukherjee PK, Marcheselli VL, de Rivero Vaccari JC, Gordon WC, Jackson FE, Bazan NG (2007) Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis. Proc Natl Acad Sci USA 104(32):13158–13163PubMedCrossRefGoogle Scholar
  23. 23.
    Bazan NG, Molina MF, Gordon WC (2011) Docosahexaenoic acid signalolipidomics in nutrition: significance in aging, neuroinflammation, macular degeneration, Alzheimer’s, and other neurodegenerative diseases. Annu Rev Nutr 31:321–351PubMedCrossRefGoogle Scholar
  24. 24.
    Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4(3)Google Scholar
  25. 25.
    Zoghbi HY, Orr HT (2009) Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type-1. J Biol Chem 284(12):7425–7429PubMedCrossRefGoogle Scholar
  26. 26.
    Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115(10):2774–2783PubMedCrossRefGoogle Scholar
  27. 27.
    Astarita G, Jung KM, Berchtold NC, Nguyen VQ, Gillen VQ, Gillen DL, Head E, Cotman CW, Piomelli D (2010) Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS One 5(9):e12538PubMedCrossRefGoogle Scholar
  28. 28.
    Calandria JM, Bazan NG (2010) Neuroprotectin D1 modulates the induction of pro-inflammatory signaling and promotes retinal pigment epithelial cell survival during oxidative stress. Adv Exp Med Biol 664:663–670PubMedCrossRefGoogle Scholar
  29. 29.
    Antony R, Lukiw WJ, Bazan NG (2010) Neuroprotectin D1 induces dephosphorylation of Bcl-xL in a PP2A-dependent manner during oxidative stress and promotes retinal pigment epithelial cell survival. J Biol Chem 285(24):18301–18308PubMedCrossRefGoogle Scholar
  30. 30.
    Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464(7288):529–535PubMedCrossRefGoogle Scholar
  31. 31.
    Sheets KG, Zhou Y, Ertel MK, Knott EJ, Regan CE Jr, Elison JR, Gordon WC, Gjorstrup P, Bazan NG (2010) Neuroprotectin D1 attenuates laser-induced choroidal neovascularization in mouse. Mol Vis 2(16):320–329Google Scholar
  32. 32.
    Samuel VT, Shulman GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871PubMedCrossRefGoogle Scholar
  33. 33.
    Belayev L et al (2011) Docosahexaenoic acid therapy of experimental ischemic stroke. Translational Stroke Research 2:33–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Neuroscience Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansUSA

Personalised recommendations