Molecular Neurobiology

, Volume 46, Issue 3, pp 682–692

Nitric Oxide in Myogenesis and Therapeutic Muscle Repair



Nitric oxide is a short-lived intracellular and intercellular messenger. The first realisation that nitric oxide is important in physiology occurred in 1987 when its identity with the endothelium-derived relaxing factor was discovered. Subsequent studies have shown that nitric oxide possesses a number of physiological functions that are essential not only to vascular homeostasis but also to neurotransmission, such as in the processes of learning and memory and endocrine gland regulation, as well as inflammation and immune responses. The discovery in 1995 that a splice variant of the neuronal nitric oxide synthase is localised at the sarcolemma via the dystrophin–glycoprotein complex and of its displacement in Duchenne muscular dystrophy has stimulated a host of studies exploring the role of nitric oxide in skeletal muscle physiology. Recently, nitric oxide has emerged as a relevant messenger also of myogenesis that it regulates at several key steps, especially when the process is stimulated for muscle repair following acute and chronic muscle injuries. Here, we will review briefly the mechanisms and functions of nitric oxide in skeletal muscle and discuss its role in myogenesis, with specific attention to the promising nitric oxide-based approaches now being explored at the pre-clinical and clinical level for the therapy of muscular dystrophy.


Nitric oxide Duchenne muscular dystrophy Myogenesis Muscle repair Therapy 


  1. 1.
    Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526PubMedGoogle Scholar
  2. 2.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376PubMedGoogle Scholar
  3. 3.
    Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357(Pt 3):593–615PubMedGoogle Scholar
  4. 4.
    Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43(2):109–142PubMedGoogle Scholar
  5. 5.
    Kapur S, Bedard S, Marcotte B, Cote CH, Marette A (1997) Expression of nitric oxide synthase in skeletal muscle: a novel role for nitric oxide as a modulator of insulin action. Diabetes 46(11):1691–1700PubMedGoogle Scholar
  6. 6.
    Rubinstein I, Abassi Z, Coleman R, Milman F, Winaver J, Better OS (1998) Involvement of nitric oxide system in experimental muscle crush injury. J Clin Invest 101(6):1325–1333PubMedGoogle Scholar
  7. 7.
    Balon TW, Nadler JL (1997) Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 82(1):359–363PubMedGoogle Scholar
  8. 8.
    Tews DS, Goebel HH (1998) Cell death and oxidative damage in inflammatory myopathies. Clin Immunol Immunopathol 87(3):240–247PubMedGoogle Scholar
  9. 9.
    Kone BC, Kuncewicz T, Zhang W, Yu ZY (2003) Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Am J Physiol 285(2):F178–F190Google Scholar
  10. 10.
    Venema VJ, Ju H, Zou R, Venema RC (1997) Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J Biol Chem 272(45):28187–28190PubMedGoogle Scholar
  11. 11.
    Jaffrey SR, Snyder SH (1996) PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274(5288):774–777PubMedGoogle Scholar
  12. 12.
    Ratovitski EA, Alam MR, Quick RA, McMillan A, Bao C, Kozlovsky C, Hand TA, Johnson RC, Mains RE, Eipper BA, Lowenstein CJ (1999) Kalirin inhibition of inducible nitric-oxide synthase. J Biol Chem 274(2):993–999PubMedGoogle Scholar
  13. 13.
    Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84(5):757–767PubMedGoogle Scholar
  14. 14.
    Fulton D, Fontana J, Sowa G, Gratton JP, Lin M, Li KX, Michell B, Kemp BE, Rodman D, Sessa WC (2002) Localization of endothelial nitric-oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. J Biol Chem 277(6):4277–4284PubMedGoogle Scholar
  15. 15.
    Fulton D, Gratton JP, Sessa WC (2001) Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther 299(3):818–824PubMedGoogle Scholar
  16. 16.
    Felley-Bosco E, Bender FC, Courjault-Gautier F, Bron C, Quest AF (2000) Caveolin-1 down-regulates inducible nitric oxide synthase via the proteasome pathway in human colon carcinoma cells. Proc Natl Acad Sci U S A 97(26):14334–14339PubMedGoogle Scholar
  17. 17.
    Clementi E (1998) Role of nitric oxide and its intracellular signalling pathways in the control of Ca2+ homeostasis. Biochem Pharmacol 55(6):713–718PubMedGoogle Scholar
  18. 18.
    Clementi E, Borgese N, Meldolesi J (2003) Interactions between nitric oxide and sphingolipids and the potential consequences in physiology and pathology. Trends Pharmacol Sci 24(10):518–523PubMedGoogle Scholar
  19. 19.
    Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317PubMedGoogle Scholar
  20. 20.
    Nisoli E, Falcone S, Tonello C, Cozzi V, Palomba L, Fiorani M, Pisconti A, Brunelli S, Cardile A, Francolini M, Cantoni O, Carruba MO, Moncada S, Clementi E (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 101(47):16507–16512PubMedGoogle Scholar
  21. 21.
    Roberts CK, Barnard RJ, Scheck SH, Balon TW (1997) Exercise-stimulated glucose transport in skeletal muscle is nitric oxide dependent. Am J Physiol 273(1 Pt 1):E220–E225PubMedGoogle Scholar
  22. 22.
    Clementi E, Brown GC, Foxwell N, Moncada S (1999) On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proc Natl Acad Sci U S A 96(4):1559–1562PubMedGoogle Scholar
  23. 23.
    Clementi E, Nisoli E (2005) Nitric oxide and mitochondrial biogenesis: a key to long-term regulation of cellular metabolism. Comp Biochem Physiol A Mol Integr Physiol 142(2):102–110PubMedGoogle Scholar
  24. 24.
    Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302(5652):1975–1978PubMedGoogle Scholar
  25. 25.
    Persichini T, Mazzone V, Polticelli F, Moreno S, Venturini G, Clementi E, Colasanti M (2005) Mitochondrial type I nitric oxide synthase physically interacts with cytochrome c oxidase. Neurosci Lett 384(3):254–259PubMedGoogle Scholar
  26. 26.
    Taylor CT, Moncada S (2010) Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol 30(4):643–647PubMedGoogle Scholar
  27. 27.
    Moncada S, Erusalimsky JD (2002) Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3(3):214–220PubMedGoogle Scholar
  28. 28.
    Brunori M (2001) Nitric oxide moves myoglobin centre stage. Trends Biochem Sci 26(4):209–210PubMedGoogle Scholar
  29. 29.
    Garry DJ, Bassel-Duby RS, Richardson JA, Grayson J, Neufer PD, Williams RS (1996) Postnatal development and plasticity of specialized muscle fiber characteristics in the hindlimb. Dev Genet 19(2):146–156PubMedGoogle Scholar
  30. 30.
    Grange RW, Meeson A, Chin E, Lau KS, Stull JT, Shelton JM, Williams RS, Garry DJ (2001) Functional and molecular adaptations in skeletal muscle of myoglobin-mutant mice. Am J Physiol Cell Physiol 281(5):C1487–C1494PubMedGoogle Scholar
  31. 31.
    Mannick JB, Hausladen A, Liu L, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284(5414):651–654PubMedGoogle Scholar
  32. 32.
    Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston B (2001) S-Nitrosylation of mitochondrial caspases. J Cell Biol 154(6):1111–1116PubMedGoogle Scholar
  33. 33.
    Mikkelsen RB, Wardman P (2003) Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22(37):5734–5754PubMedGoogle Scholar
  34. 34.
    Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S (2002) Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4(10):743–749PubMedGoogle Scholar
  35. 35.
    Clementi E, Brown GC, Feelisch M, Moncada S (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A 95(13):7631–7636PubMedGoogle Scholar
  36. 36.
    Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EF, van der Vliet A, Janssen-Heininger YM (2004) Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci U S A 101(24):8945–8950PubMedGoogle Scholar
  37. 37.
    Schonhoff CM, Daou MC, Jones SN, Schiffer CA, Ross AH (2002) Nitric oxide-mediated inhibition of Hdm2-p53 binding. Biochemistry 41(46):13570–13574PubMedGoogle Scholar
  38. 38.
    Wolzt M, MacAllister RJ, Davis D, Feelisch M, Moncada S, Vallance P, Hobbs AJ (1999) Biochemical characterization of S-nitrosohemoglobin. Mechanisms underlying synthesis, no release, and biological activity. J Biol Chem 274(41):28983–28990PubMedGoogle Scholar
  39. 39.
    Colussi C, Mozzetta C, Gurtner A, Illi B, Rosati J, Straino S, Ragone G, Pescatori M, Zaccagnini G, Antonini A, Minetti G, Martelli F, Piaggio G, Gallinari P, Steinkulher C, Clementi E, Dell’aversana C, Altucci L, Mai A, Capogrossi MC, Puri PL, Gaetano C (2008) HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc Natl Acad Sci U S A 105(49):19183–19187PubMedGoogle Scholar
  40. 40.
    Colussi C, Gurtner A, Rosati J, Illi B, Ragone G, Piaggio G, Moggio M, Lamperti C, D’Angelo G, Clementi E, Minetti G, Mozzetta C, Antonini A, Capogrossi MC, Puri PL, Gaetano C (2009) Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy. FASEB J 23(7):2131–2141PubMedGoogle Scholar
  41. 41.
    Paylor B, Natarajan A, Zhang RH, Rossi F (2011) Nonmyogenic cells in skeletal muscle regeneration. Curr Top Dev Biol 96:139–165PubMedGoogle Scholar
  42. 42.
    Kuang S, Gillespie MA, Rudnicki MA (2008) Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2(1):22–31PubMedGoogle Scholar
  43. 43.
    Buckingham M, Bajard L, Daubas P, Esner M, Lagha M, Relaix F, Rocancourt D (2006) Myogenic progenitor cells in the mouse embryo are marked by the expression of Pax3/7 genes that regulate their survival and myogenic potential. Anat Embryol (Berl) 211(Suppl 1):51–56Google Scholar
  44. 44.
    Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459PubMedGoogle Scholar
  45. 45.
    Zammit PS (2008) All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 121(Pt 18):2975–2982PubMedGoogle Scholar
  46. 46.
    Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120(1):11–19PubMedGoogle Scholar
  47. 47.
    Relaix F, Marcelle C (2009) Muscle stem cells. Curr Opin Cell Biol 21(6):748–753PubMedGoogle Scholar
  48. 48.
    Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54(11):1177–1191PubMedGoogle Scholar
  49. 49.
    Buckingham M (2007) Skeletal muscle progenitor cells and the role of Pax genes. C R Biol 330(6–7):530–533PubMedGoogle Scholar
  50. 50.
    Scime A, Rudnicki MA (2006) Anabolic potential and regulation of the skeletal muscle satellite cell populations. Curr Opin Clin Nutr Metab Care 9(3):214–219PubMedGoogle Scholar
  51. 51.
    Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119(Pt 9):1824–1832PubMedGoogle Scholar
  52. 52.
    Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301PubMedGoogle Scholar
  53. 53.
    Perez-Ruiz A, Ono Y, Gnocchi VF, Zammit PS (2008) beta-Catenin promotes self-renewal of skeletal-muscle satellite cells. J Cell Sci 121(Pt 9):1373–1382PubMedGoogle Scholar
  54. 54.
    Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4(6):535–547PubMedGoogle Scholar
  55. 55.
    Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2(1):50–59PubMedGoogle Scholar
  56. 56.
    Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317(5839):807–810PubMedGoogle Scholar
  57. 57.
    Ou CY, Kim JH, Yang CK, Stallcup MR (2009) Requirement of cell cycle and apoptosis regulator 1 for target gene activation by Wnt and beta-catenin and for anchorage-independent growth of human colon carcinoma cells. J Biol Chem 284(31):20629–20637PubMedGoogle Scholar
  58. 58.
    Otto A, Schmidt C, Luke G, Allen S, Valasek P, Muntoni F, Lawrence-Watt D, Patel K (2008) Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J Cell Sci 121(Pt 17):2939–2950PubMedGoogle Scholar
  59. 59.
    Seale P, Polesskaya A, Rudnicki MA (2003) Adult stem cell specification by Wnt signaling in muscle regeneration. Cell Cycle 2(5):418–419PubMedGoogle Scholar
  60. 60.
    Brack AS, Murphy-Seiler F, Hanifi J, Deka J, Eyckerman S, Keller C, Aguet M, Rando TA (2009) BCL9 is an essential component of canonical Wnt signaling that mediates the differentiation of myogenic progenitors during muscle regeneration. Dev Biol 335(1):93–105PubMedGoogle Scholar
  61. 61.
    Buono R, Vantaggiato C, Pisa V, Azzoni E, Bassi MT, Brunelli S, Sciorati C, Clementi E (2012) Nitric oxide sustains long-term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and Cyclic GMP. Stem Cells 30(2):197–209PubMedGoogle Scholar
  62. 62.
    Lincoln TM, Wu X, Sellak H, Dey N, Choi CS (2006) Regulation of vascular smooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependent protein kinase. Front Biosci 11:356–367PubMedGoogle Scholar
  63. 63.
    Pilz RB, Broderick KE (2005) Role of cyclic GMP in gene regulation. Front Biosci 10:1239–1268PubMedGoogle Scholar
  64. 64.
    Sciorati C, Nistico G, Meldolesi J, Clementi E (1997) Nitric oxide effects on cell growth: GMP-dependent stimulation of the AP-1 transcription complex and cyclic GMP-independent slowing of cell cycling. Br J Pharmacol 122(4):687–697PubMedGoogle Scholar
  65. 65.
    Cossu G, Borello U (1999) Wnt signaling and the activation of myogenesis in mammals. EMBO J 18(24):6867–6872PubMedGoogle Scholar
  66. 66.
    Brunelli S, Relaix F, Baesso S, Buckingham M, Cossu G (2007) Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends on Pax3 transcriptional activity. Dev Biol 304(2):604–614PubMedGoogle Scholar
  67. 67.
    Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11(5):1859–1874PubMedGoogle Scholar
  68. 68.
    Filippin LI, Cuevas MJ, Lima E, Marroni NP, Gonzalez-Gallego J, Xavier RM (2011) Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide 24(1):43–49PubMedGoogle Scholar
  69. 69.
    Wozniak AC, Kong J, Bock E, Pilipowicz O, Anderson JE (2005) Signaling satellite-cell activation in skeletal muscle: markers, models, stretch, and potential alternate pathways. Muscle Nerve 31(3):283–300PubMedGoogle Scholar
  70. 70.
    Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, Daugaard JR, Lloberas J, Camps M, Zierath JR, Rabasa-Lhoret R, Wallberg-Henriksson H, Laville M, Palacin M, Vidal H, Rivera F, Brand M, Zorzano A (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278(19):17190–17197PubMedGoogle Scholar
  71. 71.
    De Palma C, Falcone S, Pisoni S, Cipolat S, Panzeri C, Pambianco S, Pisconti A, Allevi R, Bassi MT, Cossu G, Pozzan T, Moncada S, Scorrano L, Brunelli S, Clementi E (2010) Nitric oxide inhibition of Drp1-mediated mitochondrial fission is critical for myogenic differentiation. Cell Death Differ 17(11):1684–1696PubMedGoogle Scholar
  72. 72.
    Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Graber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25(16):3900–3911PubMedGoogle Scholar
  73. 73.
    Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324(5923):102–105PubMedGoogle Scholar
  74. 74.
    Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97(6):1676–1689PubMedGoogle Scholar
  75. 75.
    Thippeswamy T, McKay JS, Quinn JP, Morris R (2006) Nitric oxide, a biological double-faced janus–is this good or bad? Histol Histopathol 21(4):445–458PubMedGoogle Scholar
  76. 76.
    Rambourg A, Segretain D (1980) Three-dimensional electron microscopy of mitochondria and endoplasmic reticulum in the red muscle fiber of the rat diaphragm. Anat Rec 197(1):33–48PubMedGoogle Scholar
  77. 77.
    Rando TA, Disatnik MH, Yu Y, Franco A (1998) Muscle cells from mdx mice have an increased susceptibility to oxidative stress. Neuromuscul Disord 8(1):14–21PubMedGoogle Scholar
  78. 78.
    Even PC, Decrouy A, Chinet A (1994) Defective regulation of energy metabolism in mdx-mouse skeletal muscles. Biochem J 304(Pt 2):649–654PubMedGoogle Scholar
  79. 79.
    Nardin RA, Johns DR (2001) Mitochondrial dysfunction and neuromuscular disease. Muscle Nerve 24(2):170–191PubMedGoogle Scholar
  80. 80.
    Kuznetsov AV, Winkler K, Wiedemann FR, von Bossanyi P, Dietzmann K, Kunz WS (1998) Impaired mitochondrial oxidative phosphorylation in skeletal muscle of the dystrophin-deficient mdx mouse. Mol Cell Biochem 183(1–2):87–96PubMedGoogle Scholar
  81. 81.
    Scholte HR, Luyt-Houwen IE, Busch HF, Jennekens FG (1985) Muscle mitochondria from patients with Duchenne muscular dystrophy have a normal beta oxidation, but an impaired oxidative phosphorylation. Neurology 35(9):1396–1397PubMedGoogle Scholar
  82. 82.
    Lee KH, Baek MY, Moon KY, Song WK, Chung CH, Ha DB, Kang MS (1994) Nitric oxide as a messenger molecule for myoblast fusion. J Biol Chem 269(20):14371–14374PubMedGoogle Scholar
  83. 83.
    Pisconti A, Brunelli S, Di Padova M, De Palma C, Deponti D, Baesso S, Sartorelli V, Cossu G, Clementi E (2006) Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J Cell Biol 172(2):233–244PubMedGoogle Scholar
  84. 84.
    Iezzi S, Di Padova M, Serra C, Caretti G, Simone C, Maklan E, Minetti G, Zhao P, Hoffman EP, Puri PL, Sartorelli V (2004) Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin. Dev Cell 6(5):673–684PubMedGoogle Scholar
  85. 85.
    Fish JE, Matouk CC, Rachlis A, Lin S, Tai SC, D’Abreo C, Marsden PA (2005) The expression of endothelial nitric oxide synthase is controlled by a cell-specific histone code. J Biol Chem 280(26):24824–24838PubMedGoogle Scholar
  86. 86.
    Gan Y, Shen YH, Wang J, Wang X, Utama B, Wang XL (2005) Role of histone deacetylation in cell-specific expression of endothelial nitric-oxide synthase. J Biol Chem 280(16):16467–16475PubMedGoogle Scholar
  87. 87.
    Cacchiarelli D, Martone J, Girardi E, Cesana M, Incitti T, Morlando M, Nicoletti C, Santini T, Sthandier O, Barberi L, Auricchio A, Musaro A, Bozzoni I (2010) MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metabol 12(4):341–351Google Scholar
  88. 88.
    Filippin LI, Cuevas MJ, Lima E, Marroni NP, Gonzalez-Gallego J, Xavier RM (2011) The role of nitric oxide during healing of trauma to the skeletal muscle. Inflamm Res 60(4):347–356PubMedGoogle Scholar
  89. 89.
    Villalta SA, Nguyen HX, Deng B, Gotoh T, Tidball JG (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18(3):482–496PubMedGoogle Scholar
  90. 90.
    Li D, Shin JH, Duan D (2011) iNOS ablation does not improve specific force of the extensor digitorum longus muscle in dystrophin-deficient mdx4cv mice. PLoS One 6(6):e21618PubMedGoogle Scholar
  91. 91.
    Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82(5):743–752PubMedGoogle Scholar
  92. 92.
    Crosbie RH, Barresi R, Campbell KP (2002) Loss of sarcolemma nNOS in sarcoglycan-deficient muscle. FASEB J 16(13):1786–1791PubMedGoogle Scholar
  93. 93.
    Finanger Hedderick EL, Simmers JL, Soleimani A, Andres-Mateos E, Marx R, Files DC, King L, Crawford TO, Corse AM, Cohn RD (2011) Loss of sarcolemmal nNOS is common in acquired and inherited neuromuscular disorders. Neurology 76(11):960–967PubMedGoogle Scholar
  94. 94.
    Suzuki N, Mizuno H, Warita H, Takeda S, Itoyama Y, Aoki M (2010) Neuronal NOS is dislocated during muscle atrophy in amyotrophic lateral sclerosis. J Neurol Sci 294(1–2):95–101PubMedGoogle Scholar
  95. 95.
    Wehling M, Spencer MJ, Tidball JG (2001) A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J Cell Biol 155(1):123–131PubMedGoogle Scholar
  96. 96.
    Percival JM, Anderson KN, Gregorevic P, Chamberlain JS, Froehner SC (2008) Functional deficits in nNOSmu-deficient skeletal muscle: myopathy in nNOS knockout mice. PLoS One 3(10):e3387PubMedGoogle Scholar
  97. 97.
    Church JE, Gehrig SM, Chee A, Naim T, Trieu J, McConell GK, Lynch GS (2011) Early functional muscle regeneration after myotoxic injury in mice is unaffected by nNOS absence. Am J Physiol Regul Integr Comp Physiol 301(5):R1358–R1366PubMedGoogle Scholar
  98. 98.
    Bredt DS (1998) NO skeletal muscle derived relaxing factor in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 95(25):14592–14593PubMedGoogle Scholar
  99. 99.
    Thomas GD, Sander M, Lau KS, Huang PL, Stull JT, Victor RG (1998) Impaired metabolic modulation of alpha-adrenergic vasoconstriction in dystrophin-deficient skeletal muscle. Proc Natl Acad Sci U S A 95(25):15090–15095PubMedGoogle Scholar
  100. 100.
    Kobayashi YM, Rader EP, Crawford RW, Iyengar NK, Thedens DR, Faulkner JA, Parikh SV, Weiss RM, Chamberlain JS, Moore SA, Campbell KP (2008) Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature 456(7221):511–515PubMedGoogle Scholar
  101. 101.
    Dubowitz V (2005) Prednisone for Duchenne muscular dystrophy. Lancet Neurol 4(5):264PubMedGoogle Scholar
  102. 102.
    Pichavant C, Aartsma-Rus A, Clemens PR, Davies KE, Dickson G, Takeda S, Wilton SD, Wolff JA, Wooddell CI, Xiao X, Tremblay JP (2011) Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther 19(5):830–840PubMedGoogle Scholar
  103. 103.
    Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, Holling T, Janson AA, Platenburg GJ, Sipkens JA, Sitsen JM, Aartsma-Rus A, van Ommen GJ, Buyse G, Darin N, Verschuuren JJ, Campion GV, de Kimpe SJ, van Deutekom JC (2011) Systemic administration of PRO051 in Duchenne’s muscular dystrophy. New Engl J Med 364(16):1513–1522PubMedGoogle Scholar
  104. 104.
    Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, Li J, Wang B, Monahan PE, Rabinowitz JE, Grieger JC, Govindasamy L, Agbandje-McKenna M, Xiao X, Samulski RJ (2011) Phase 1 gene therapy for duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 20(2):443–455PubMedGoogle Scholar
  105. 105.
    Cirak S, Feng L, Anthony K, Arechavala-Gomeza V, Torelli S, Sewry C, Morgan JE, Muntoni F (2012) Restoration of the dystrophin-associated glycoprotein complex after exon skipping therapy in Duchenne muscular dystrophy. Mol Ther 20(2):462–467PubMedGoogle Scholar
  106. 106.
    Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81(1):209–237PubMedGoogle Scholar
  107. 107.
    Wehling-Henricks M, Tidball JG (2011) Neuronal nitric oxide synthase-rescue of dystrophin/utrophin double knockout mice does not require nNOS localization to the cell membrane. PLoS One 6(10):e25071PubMedGoogle Scholar
  108. 108.
    Voisin V, Sebrie C, Matecki S, Yu H, Gillet B, Ramonatxo M, Israel M, De la Porte S (2005) L-arginine improves dystrophic phenotype in mdx mice. Neurobiol Dis 20(1):123–130PubMedGoogle Scholar
  109. 109.
    Wang G, Burczynski FJ, Hasinoff BB, Zhang K, Lu Q, Anderson JE (2009) Development of a nitric oxide-releasing analogue of the muscle relaxant guaifenesin for skeletal muscle satellite cell myogenesis. Mol Pharm 6(3):895–904PubMedGoogle Scholar
  110. 110.
    Barton ER, Morris L, Kawana M, Bish LT, Toursel T (2005) Systemic administration of L-arginine benefits mdx skeletal muscle function. Muscle Nerve 32(6):751–760PubMedGoogle Scholar
  111. 111.
    Hnia K, Gayraud J, Hugon G, Ramonatxo M, De La Porte S, Matecki S, Mornet D (2008) L-arginine decreases inflammation and modulates the nuclear factor-kappaB/matrix metalloproteinase cascade in mdx muscle fibers. Am J Pathol 172(6):1509–1519PubMedGoogle Scholar
  112. 112.
    Benabdellah F, Yu H, Brunelle A, Laprevote O, De La Porte S (2009) MALDI reveals membrane lipid profile reversion in MDX mice. Neurobiol Dis 36(2):252–258PubMedGoogle Scholar
  113. 113.
    Marques MJ, Luz MA, Minatel E, Neto HS (2005) Muscle regeneration in dystrophic mdx mice is enhanced by isosorbide dinitrate. Neurosci Lett 382(3):342–345PubMedGoogle Scholar
  114. 114.
    Feelisch M, Ostrowski J, Noack E (1989) On the mechanism of NO release from sydnonimines. J Cardiovasc Pharmacol 14(Suppl 11):S13–S22PubMedGoogle Scholar
  115. 115.
    Bailey SJ, Fulford J, Vanhatalo A, Winyard PG, Blackwell JR, DiMenna FJ, Wilkerson DP, Benjamin N, Jones AM (2010) Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol 109(1):135–148PubMedGoogle Scholar
  116. 116.
    Larsen FJ, Schiffer TA, Borniquel S, Sahlin K, Ekblom B, Lundberg JO, Weitzberg E (2011) Dietary inorganic nitrate improves mitochondrial efficiency in humans. Cell Metabol 13(2):149–159Google Scholar
  117. 117.
    Archer JD, Vargas CC, Anderson JE (2006) Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. FASEB J 20(6):738–740PubMedGoogle Scholar
  118. 118.
    Wallace JL, Viappiani S, Bolla M (2009) Cyclooxygenase-inhibiting nitric oxide donators for osteoarthritis. Trends Pharmacol Sci 30(3):112–117PubMedGoogle Scholar
  119. 119.
    Brunelli S, Sciorati C, D’Antona G, Innocenzi A, Covarello D, Galvez BG, Perrotta C, Monopoli A, Sanvito F, Bottinelli R, Ongini E, Cossu G, Clementi E (2007) Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci U S A 104(1):264–269PubMedGoogle Scholar
  120. 120.
    Sciorati C, Miglietta D, Buono R, Pisa V, Cattaneo D, Azzoni E, Brunelli S, Clementi E (2011) A dual acting compound releasing nitric oxide (NO) and ibuprofen, NCX 320, shows significant therapeutic effects in a mouse model of muscular dystrophy. Pharmacol Res 64:210–217PubMedGoogle Scholar
  121. 121.
    Sciorati C, Buono R, Azzoni E, Casati S, Ciuffreda P, D’Angelo G, Cattaneo D, Brunelli S, Clementi E (2010) Co-administration of ibuprofen and nitric oxide is an effective experimental therapy for muscular dystrophy, with immediate applicability to humans. Br J Pharmacol 160(6):1550–1560PubMedGoogle Scholar
  122. 122.
    Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94(5):2036–2044PubMedGoogle Scholar
  123. 123.
    Schgoer W, Theurl M, Jeschke J, Beer AG, Albrecht K, Gander R, Rong S, Vasiljevic D, Egger M, Wolf AM, Frauscher S, Koller B, Tancevski I, Patsch JR, Schratzberger P, Piza-Katzer H, Ritsch A, Bahlmann FH, Fischer-Colbrie R, Wolf D, Kirchmair R (2009) Gene therapy with the angiogenic cytokine secretoneurin induces therapeutic angiogenesis by a nitric oxide-dependent mechanism. Circ Res 105(10):994–1002PubMedGoogle Scholar
  124. 124.
    Sciorati C, Galvez BG, Brunelli S, Tagliafico E, Ferrari S, Cossu G, Clementi E (2006) Ex vivo treatment with nitric oxide increases mesoangioblast therapeutic efficacy in muscular dystrophy. J Cell Sci 119(Pt 24):5114–5123PubMedGoogle Scholar
  125. 125.
    D’Angelo MG, Gandossini S, Boneschi FM, Sciorati C, Bonato S, Brighina E, Comi GP, Turconi AC, Magri F, Stefanoni G, Brunelli S, Bresolin N, Cattaneo D, Clementi E (2012) Nitric oxide donor and non steroidal anti inflammatory drugs as a therapy for muscular dystrophies: evidence from a safety study with pilot efficacy measures in adult dystrophic patients. Pharmacol Res 65:472–479PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Unit of Clinical Pharmacology, Consiglio Nazionale delle Ricerche Institute of Neuroscience, Department of Biomedical and Clinical Sciences L. Sacco, University Hospital “Luigi Sacco”Università di MilanoMilanItaly
  2. 2.E. Medea Scientific InstituteLeccoItaly

Personalised recommendations