Molecular Neurobiology

, Volume 45, Issue 3, pp 586–595 | Cite as

The Path from Skin to Brain: Generation of Functional Neurons from Fibroblasts

  • Aisha Iman Abdullah
  • Andrew Pollock
  • Tao SunEmail author


Cell fate reprogramming makes possible the generation of new cell types from healthy adult cells to replace those lost or damaged in disease. Additionally, reprogramming patient cells into specific cell types allows for drug screening and the development of new therapeutic tools. Generation of new neurons is of particular interest because of the potential to treat diseases of the nervous system, such as neurodegenerative disorders and spinal cord injuries, with cell replacement therapy. Recent advances in cell fate reprogramming have led to the development of novel methods for the direct conversion of fibroblasts into neurons and neural stem cells. This review will highlight the advantages of these new methods over neuronal induction from embryonic stem cells and induced pluripotent stem cells, as well as outline the limitations and the potential for future applications.


Cell fate reprogramming Neurogenesis Fibroblasts Embryonic stem cells (ESCs) Induced pluripotent stem cells (iPSCs) Induced neurons (iNs) Induced neural stem cells (iNSCs) 



This work was supported by New York State Department of Health, C026878 (A. P.), the Ellison Medical Foundation (T. S.), an award from the Hirschl/Weill-Caulier Trust (T. S.), and an R01-MH083680 grant from the NIH/NIMH (T. S.).


  1. 1.
    Kawasaki H et al (2000) Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28(1):31–40PubMedCrossRefGoogle Scholar
  2. 2.
    Lee SH et al (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18(6):675–679PubMedCrossRefGoogle Scholar
  3. 3.
    Okabe S et al (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59(1):89–102PubMedCrossRefGoogle Scholar
  4. 4.
    Reubinoff BE et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18(4):399–404PubMedCrossRefGoogle Scholar
  5. 5.
    Thomson JA, Marshall VS, Trojanowski JQ (1998) Neural differentiation of rhesus embryonic stem cells. APMIS 106(1):149–156, discussion 156–7PubMedCrossRefGoogle Scholar
  6. 6.
    Cohen CB (2009) Ethical and policy issues surrounding the donation of cryopreserved and fresh embryos for human embryonic stem cell research. Stem Cell Rev 5(2):116–122PubMedCrossRefGoogle Scholar
  7. 7.
    Jung JU et al (2009) The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 41(12):935–945PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  9. 9.
    Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  10. 10.
    Dimos JT et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221PubMedCrossRefGoogle Scholar
  11. 11.
    Jin J et al (2011) Analysis of differential proteomes of induced pluripotent stem cells by protein-based reprogramming of fibroblasts. J Proteome Res 10(3):977–989PubMedCrossRefGoogle Scholar
  12. 12.
    Park IH et al (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886PubMedCrossRefGoogle Scholar
  13. 13.
    Qiang L et al (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons. Cell 146(3):359–371PubMedCrossRefGoogle Scholar
  14. 14.
    Marro S et al (2011) Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9(4):374–382PubMedCrossRefGoogle Scholar
  15. 15.
    Tursun B et al (2011) Direct conversion of C. elegans germ cells into specific neuron types. Science 331(6015):304–308PubMedCrossRefGoogle Scholar
  16. 16.
    Bayreuther K et al (1988) Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc Natl Acad Sci U S A 85(14):5112–5116PubMedCrossRefGoogle Scholar
  17. 17.
    Hochedlinger K et al (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121(3):465–477PubMedCrossRefGoogle Scholar
  18. 18.
    Lengner CJ et al (2007) Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1(4):403–415PubMedCrossRefGoogle Scholar
  19. 19.
    Lengner CJ, Welstead GG, Jaenisch R (2008) The pluripotency regulator Oct4: a role in somatic stem cells? Cell Cycle 7(6):725–728PubMedCrossRefGoogle Scholar
  20. 20.
    Looijenga LH et al (2003) POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 63(9):2244–2250PubMedGoogle Scholar
  21. 21.
    Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24(4):372–376PubMedCrossRefGoogle Scholar
  22. 22.
    Zangrossi S et al (2007) Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells 25(7):1675–1680PubMedCrossRefGoogle Scholar
  23. 23.
    Avilion AA et al (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140PubMedCrossRefGoogle Scholar
  24. 24.
    Boyer LA et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956PubMedCrossRefGoogle Scholar
  25. 25.
    Chew JL et al (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25(14):6031–6046PubMedCrossRefGoogle Scholar
  26. 26.
    Masui S et al (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9(6):625–635PubMedCrossRefGoogle Scholar
  27. 27.
    Loh YH et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4):431–440PubMedCrossRefGoogle Scholar
  28. 28.
    Rodda DJ et al (2005) Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 280(26):24731–24737PubMedCrossRefGoogle Scholar
  29. 29.
    Chen X et al (2003) Transcriptional profiling of Kruppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation. J Mol Biol 326(3):665–677PubMedCrossRefGoogle Scholar
  30. 30.
    Rowland BD, Bernards R, Peeper DS (2005) The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 7(11):1074–1082PubMedCrossRefGoogle Scholar
  31. 31.
    Wei D et al (2008) Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 68(12):4631–4639PubMedCrossRefGoogle Scholar
  32. 32.
    Yang W-T, Zheng P-S (2011) Krüppel-like factor 4 function as a tumor suppressor in cervical carcinoma. Cancer. doi: 10.1002/cncr.26698
  33. 33.
    Yoon HS, Chen X, Yang VW (2003) Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem 278(4):2101–2105PubMedCrossRefGoogle Scholar
  34. 34.
    Bouchard C, Staller P, Eilers M (1998) Control of cell proliferation by Myc. Trends Cell Biol 8(5):202–206PubMedCrossRefGoogle Scholar
  35. 35.
    Facchini LM, Penn LZ (1998) The molecular role of Myc in growth and transformation: recent discoveries lead to new insights. FASEB J 12(9):633–651PubMedGoogle Scholar
  36. 36.
    Leone G et al (1997) Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387(6631):422–426PubMedCrossRefGoogle Scholar
  37. 37.
    Marcu KB, Bossone SA, Patel AJ (1992) myc function and regulation. Annu Rev Biochem 61:809–860PubMedCrossRefGoogle Scholar
  38. 38.
    Urbach A et al (2010) Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6(5):407–411PubMedCrossRefGoogle Scholar
  39. 39.
    Marchetto MC et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539PubMedCrossRefGoogle Scholar
  40. 40.
    Cheung AY et al (2011) Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 20(11):2103–2115PubMedCrossRefGoogle Scholar
  41. 41.
    Devine MJ et al (2011) Parkinson’s disease induced pluripotent stem cells with triplication of the alpha-synuclein locus. Nat Commun 2:440PubMedCrossRefGoogle Scholar
  42. 42.
    Gore A et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67PubMedCrossRefGoogle Scholar
  43. 43.
    Hussein SM, Nagy K, Nagy A (2011) Human induced pluripotent stem cells: the past, present, and future. Clin Pharmacol Ther 89(5):741–745PubMedCrossRefGoogle Scholar
  44. 44.
    Bock C et al (2011) Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144(3):439–452PubMedCrossRefGoogle Scholar
  45. 45.
    Boulting GL et al (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 29(3):279–286PubMedCrossRefGoogle Scholar
  46. 46.
    Chen S et al (2006) Self-renewal of embryonic stem cells by a small molecule. Proc Natl Acad Sci U S A 103(46):17266–17271PubMedCrossRefGoogle Scholar
  47. 47.
    Chen S et al (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126(2):410–411PubMedCrossRefGoogle Scholar
  48. 48.
    Li W et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4(1):16–19PubMedCrossRefGoogle Scholar
  49. 49.
    Xu Y et al (2010) Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A 107(18):8129–8134PubMedCrossRefGoogle Scholar
  50. 50.
    Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRefGoogle Scholar
  51. 51.
    Maherali N, Hochedlinger K (2008) Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3(6):595–605PubMedCrossRefGoogle Scholar
  52. 52.
    Marson A et al (2008) Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3(2):132–135PubMedCrossRefGoogle Scholar
  53. 53.
    Ying QL et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523PubMedCrossRefGoogle Scholar
  54. 54.
    Huangfu D et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26(7):795–797PubMedCrossRefGoogle Scholar
  55. 55.
    Shi Y et al (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2(6):525–528PubMedCrossRefGoogle Scholar
  56. 56.
    Ambasudhan R et al (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9(2):113–118PubMedCrossRefGoogle Scholar
  57. 57.
    Pang ZP et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476(7359):220–223PubMedGoogle Scholar
  58. 58.
    Pfisterer U et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348PubMedCrossRefGoogle Scholar
  59. 59.
    Son EY et al (2011) Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9(3):205–218PubMedCrossRefGoogle Scholar
  60. 60.
    Yoo AS et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476(7359):228–231PubMedCrossRefGoogle Scholar
  61. 61.
    Vierbuchen T et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041PubMedCrossRefGoogle Scholar
  62. 62.
    Catena R et al (2004) Conserved POU binding DNA sites in the Sox2 upstream enhancer regulate gene expression in embryonic and neural stem cells. J Biol Chem 279(40):41846–41857PubMedCrossRefGoogle Scholar
  63. 63.
    Jin Z et al (2009) Different transcription factors regulate nestin gene expression during P19 cell neural differentiation and central nervous system development. J Biol Chem 284(12):8160–8173PubMedCrossRefGoogle Scholar
  64. 64.
    Sugitani Y et al (2002) Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev 16(14):1760–1765PubMedCrossRefGoogle Scholar
  65. 65.
    Lo L, Sommer L, Anderson DJ (1997) MASH1 maintains competence for BMP2-induced neuronal differentiation in post-migratory neural crest cells. Curr Biol 7(6):440–450PubMedCrossRefGoogle Scholar
  66. 66.
    Parras CM et al (2002) Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev 16(3):324–338PubMedCrossRefGoogle Scholar
  67. 67.
    Kim JG et al (1997) Myelin transcription factor 1 (Myt1) of the oligodendrocyte lineage, along with a closely related CCHC zinc finger, is expressed in developing neurons in the mammalian central nervous system. J Neurosci Res 50(2):272–290PubMedCrossRefGoogle Scholar
  68. 68.
    Nielsen JA et al (2004) Myelin transcription factor 1 (Myt1) modulates the proliferation and differentiation of oligodendrocyte lineage cells. Mol Cell Neurosci 25(1):111–123PubMedCrossRefGoogle Scholar
  69. 69.
    Caiazzo M et al (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–227PubMedCrossRefGoogle Scholar
  70. 70.
    Anokye-Danso F et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388PubMedCrossRefGoogle Scholar
  71. 71.
    Delaloy C et al (2010) MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 6(4):323–335PubMedCrossRefGoogle Scholar
  72. 72.
    Makeyev EV et al (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448PubMedCrossRefGoogle Scholar
  73. 73.
    Miyoshi N et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8(6):633–638PubMedCrossRefGoogle Scholar
  74. 74.
    Subramanyam D et al (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448PubMedCrossRefGoogle Scholar
  75. 75.
    Visvanathan J et al (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749PubMedCrossRefGoogle Scholar
  76. 76.
    Zhao C et al (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16(4):365–371PubMedCrossRefGoogle Scholar
  77. 77.
    Krichevsky AM et al (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864PubMedCrossRefGoogle Scholar
  78. 78.
    Papagiannakopoulos T, Kosik KS (2009) MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4(5):375–376PubMedCrossRefGoogle Scholar
  79. 79.
    Rosahl TW et al (1993) Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75(4):661–670PubMedCrossRefGoogle Scholar
  80. 80.
    Schiavo G et al (1997) Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci U S A 94(3):997–1001PubMedCrossRefGoogle Scholar
  81. 81.
    Zhou Q, Tripathi P (2012) How to remake a fibroblast into a neural stem cell. Cell Stem Cell 10(4):347–348PubMedCrossRefGoogle Scholar
  82. 82.
    Thier M et al (2012) Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10(4):473–479PubMedCrossRefGoogle Scholar
  83. 83.
    Han DW et al (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 10(4):465–472PubMedCrossRefGoogle Scholar
  84. 84.
    Kim J et al (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci 108(19):7838–7843PubMedCrossRefGoogle Scholar
  85. 85.
    Cattoglio C et al (2007) Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 110(6):1770–1778PubMedCrossRefGoogle Scholar
  86. 86.
    Adams JM et al (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318(6046):533–538PubMedCrossRefGoogle Scholar
  87. 87.
    Harris AW et al (1988) The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early. B cells J Exp Med 167(2):353–371CrossRefGoogle Scholar
  88. 88.
    Leder A et al (1986) Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 45(4):485–495PubMedCrossRefGoogle Scholar
  89. 89.
    Morgenbesser SD, DePinho RA (1994) Use of transgenic mice to study myc family gene function in normal mammalian development and in cancer. Semin Cancer Biol 5(1):21–36PubMedGoogle Scholar
  90. 90.
    Montini E et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24(6):687–696PubMedCrossRefGoogle Scholar
  91. 91.
    Lacoste A, Berenshteyn F, Brivanlou AH (2009) An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 5(3):332–342PubMedCrossRefGoogle Scholar
  92. 92.
    Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Aisha Iman Abdullah
    • 1
    • 2
  • Andrew Pollock
    • 1
    • 2
  • Tao Sun
    • 1
    • 2
    Email author
  1. 1.Department of Cell and Developmental BiologyWeill Medical College of Cornell UniversityNew YorkUSA
  2. 2.Weill Cornell Graduate School of Medical SciencesWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations