Molecular Neurobiology

, Volume 46, Issue 1, pp 114–124

Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) and Neurodegenerative Disorders

  • Yu-Chang Chen
  • Jui-Sheng Wu
  • Hsin-Da Tsai
  • Chien-Yu Huang
  • Jin-Jer Chen
  • Grace Y. Sun
  • Teng-Nan Lin


As the growth of the aging population continues to accelerate globally, increased prevalence of neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease (PD), and stroke, has generated substantial public concern. Unfortunately, despite of discoveries of common factors underlying these diseases, few drugs are available to effectively treat these diseases. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. PPAR-γ has been shown to influence the expression or activity of a large number of genes in a variety of signaling networks, including regulation of insulin sensitivity, glucose homeostasis, fatty acid oxidation, immune responses, redox balance, cardiovascular integrity, and cell fates. Recent epidemiological, preclinical animal, and clinical studies also show that PPAR-γ agonists can lower the incidence of a number of neurological disorders, despite of multiple etiological factors involved in the development of these disorders. In this manuscript, we review current knowledge on mechanisms underlying the beneficial effect of PPAR-γ in different neurodegenerative diseases, in particular, AD, PD, and stroke, and attempt to analyze common and overlapping features among these diseases. Our investigation unveiled information suggesting the ability for PPAR-γ to inhibit NF-κB-mediated inflammatory signaling at multiple sites, and conclude that PPAR-γ agonists represent a novel class of drugs for treating neuroinflammatory diseases.


Transcription factor Stroke Alzheimer’s disease Parkinson’s disease Inflammation 


  1. 1.
    Jacobsen LA, Kent M, Lee M, Mather M (2011) American's aging population. Popul Bull 66:2–18Google Scholar
  2. 2.
    Sonntag KC (2010) MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Res 1338:48–57PubMedCrossRefGoogle Scholar
  3. 3.
    Byrne SC, Rowland LP, Vonsattel JP, Welzel AT, Walsh DM, Hardiman O (2011) Common themes in the pathogenesis of neurodegeneration. In: Hardiman O, Doherty CP (eds) Neurodegenerative disorders [electronic resource]: a clinical guide. Springer-Verlag London Limited, London, pp 1–15Google Scholar
  4. 4.
    Haass C (2010) Initiation and propagation of neurodegeneration. Nat Med 16:1201–1204PubMedCrossRefGoogle Scholar
  5. 5.
    Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14:457–487PubMedCrossRefGoogle Scholar
  6. 6.
    Jellinger KA (2012) Interaction between pathogenic proteins in neurodegenerative disorders. J Cell Mol Med. doi:10.1111/j.1582-4934.2011.01507.x
  7. 7.
    Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645–650PubMedCrossRefGoogle Scholar
  8. 8.
    Collino M, Patel NS, Thiemermann C (2008) PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Ther Adv Cardiovasc Dis 2:179–197PubMedCrossRefGoogle Scholar
  9. 9.
    Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879–887PubMedCrossRefGoogle Scholar
  10. 10.
    Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Structure of the intact PPAR-γ-RXR-α nuclear receptor complex on DNA. Nature 456:350–356PubMedCrossRefGoogle Scholar
  11. 11.
    Willson TM, Lambert MH, Kliewer SA (2001) Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem 70:341–367PubMedCrossRefGoogle Scholar
  12. 12.
    Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435PubMedCrossRefGoogle Scholar
  13. 13.
    Wymann MP, Schneiter R (2008) Lipid signalling in disease. Nat Rev Mol Cell Biol 9:162–176PubMedCrossRefGoogle Scholar
  14. 14.
    Biscetti F, Straface G, Pitocco D, Zaccardi F, Ghirlanda G, Flex A (2009) Peroxisome proliferator-activated receptors and angiogenesis. Nutr Metab Cardiovasc Dis 19:751–759PubMedCrossRefGoogle Scholar
  15. 15.
    Bright JJ, Kanakasabai S, Chearwae W, Chakraborty S (2008) PPAR regulation of inflammatory signaling in CNS diseases. PPAR Res 2008:658520PubMedCrossRefGoogle Scholar
  16. 16.
    Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM (2001) PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52PubMedCrossRefGoogle Scholar
  17. 17.
    Duan SZ, Usher MG, Mortensen RM (2009) PPARs: the vasculature, inflammation and hypertension. Curr Opin Nephrol Hypertens 18:128–133PubMedCrossRefGoogle Scholar
  18. 18.
    Hamblin M, Chang L, Fan Y, Zhang J, Chen YE (2009) PPARs and the cardiovascular system. Antioxid Redox Sig 11:1415–1452CrossRefGoogle Scholar
  19. 19.
    Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82–86PubMedCrossRefGoogle Scholar
  20. 20.
    Lin TN, Cheung WM, Wu JS, Chen JJ, Lin H, Chen JJ, Liou JY, Shyue SK, Wu KK (2006) 15d-Prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 26:481–487PubMedCrossRefGoogle Scholar
  21. 21.
    Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391:79–82PubMedCrossRefGoogle Scholar
  22. 22.
    Tsai YS, Kim HJ, Takahashi N, Kim HS, Hagaman JR, Kim JK, Maeda N (2004) Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARgamma. J Clin Invest 114:240–249PubMedGoogle Scholar
  23. 23.
    Varga T, Czimmerer Z, Nagy L (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta 1812:1007–1022PubMedCrossRefGoogle Scholar
  24. 24.
    Wu JS, Cheung WM, Tsai YS, Chen YT, Fong WH, Tsai HD, Chen YC, Liou JY, Shyue SK, Chen JJ, Chen YE, Maeda N, Wu KK, Lin TN (2009) Ligand-activated peroxisome proliferator-activated receptor-gamma protects against ischemic cerebral infarction and neuronal apoptosis by 14-3-3 epsilon upregulation. Circulation 119:1124–1134PubMedCrossRefGoogle Scholar
  25. 25.
    Pialat JB, Cho TH, Beuf O, Joye E, Moucharrafie S, Langlois JB, Nemoz C, Janier M, Berthezene Y, Nighoghossian N, Desvergne B, Wiart M (2007) MRI monitoring of focal cerebral ischemia in peroxisome proliferator-activated receptor (PPAR)-deficient mice. NMR Biomed 20:335–342PubMedCrossRefGoogle Scholar
  26. 26.
    Wu JS, Lin TN, Wu KK (2009) Rosiglitazone and PPAR-gamma overexpression protect mitochondrial membrane potential and prevent apoptosis by upregulating anti-apoptotic Bcl-2 family proteins. J Cell Physiol 220:58–71PubMedCrossRefGoogle Scholar
  27. 27.
    Semple RK, Chatterjee VK, O'Rahilly S (2006) PPAR gamma and human metabolic disease. J Clin Invest 116:581–589PubMedCrossRefGoogle Scholar
  28. 28.
    Heneka MT, Landreth GE (2007) PPARs in the brain. Biochim Biophys Acta 1771:1031–1045PubMedCrossRefGoogle Scholar
  29. 29.
    Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS, Reddy JK (1995) Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci USA 92:7921–7925PubMedCrossRefGoogle Scholar
  30. 30.
    Ershov AV, Bazan NG (2000) Photoreceptor phagocytosis selectively activates PPARgamma expression in retinal pigment epithelial cells. J Neurosci Res 60:328–337PubMedCrossRefGoogle Scholar
  31. 31.
    Guardiola-Diaz HM, Rehnmark S, Usuda N, Albrektsen T, Feltkamp D, Gustafsson JA, Alexson SE (1999) Rat peroxisome proliferator-activated receptors and brown adipose tissue function during cold acclimatization. J Biol Chem 274:23368–23377PubMedCrossRefGoogle Scholar
  32. 32.
    Zhou J, Wilson KM, Medh JD (2002) Genetic analysis of four novel peroxisome proliferator activated receptor-gamma splice variants in monkey macrophages. Biochem Biophys Res Commun 293:274–283PubMedCrossRefGoogle Scholar
  33. 33.
    Chen Y, Jimenez AR, Medh JD (2006) Identification and regulation of novel PPAR-gamma splice variants in human THP-1 macrophages. Biochim Biophys Acta 1759:32–43PubMedCrossRefGoogle Scholar
  34. 34.
    Fong WH, Tsai HD, Chen YC, Wu JS, Lin TN (2010) Anti-apoptotic actions of PPAR-gamma against ischemic stroke. Mol Neurobiol 41:180–186PubMedCrossRefGoogle Scholar
  35. 35.
    Villacorta L, Schopfer FJ, Zhang J, Freeman BA, Chen YE (2009) PPARgamma and its ligands: therapeutic implications in cardiovascular disease. Clin Sci (Lond) 116:205–218CrossRefGoogle Scholar
  36. 36.
    Zhao X, Zhang Y, Strong R, Grotta JC, Aronowski J (2006) 15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma, promotes expression of catalase, and reduces inflammation, behavioral dysfunction, and neuronal loss after intracerebral hemorrhage in rats. J Cereb Blood Flow Metab 26:811–820PubMedCrossRefGoogle Scholar
  37. 37.
    Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953–12956PubMedCrossRefGoogle Scholar
  38. 38.
    Rubenstrunk A, Hanf R, Hum DW, Fruchart JC, Staels B (2007) Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta 1771:1065–1081PubMedCrossRefGoogle Scholar
  39. 39.
    Winterstein AG (2011) Rosiglitazone and the risk of adverse cardiovascular outcomes. Clin Pharmacol Ther 89:776–778PubMedCrossRefGoogle Scholar
  40. 40.
    Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V, Dello Russo C (2005) Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol 70:177–188PubMedCrossRefGoogle Scholar
  41. 41.
    Scher JU, Pillinger MH (2005) 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol 114:100–109PubMedCrossRefGoogle Scholar
  42. 42.
    Tsukada J, Yoshida Y, Kominato Y, Auron PE (2011) The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine 54:6–19PubMedCrossRefGoogle Scholar
  43. 43.
    Clarke SL, Robinson CE, Gimble JM (1997) CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma 2 promoter. Biochem Biophys Res Commun 240:99–103PubMedCrossRefGoogle Scholar
  44. 44.
    Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A et al (2008) PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22:2941–2952PubMedCrossRefGoogle Scholar
  45. 45.
    Wang YL, Frauwirth KA, Rangwala SM, Lazar MA, Thompson CB (2002) Thiazolidinedione activation of peroxisome proliferator-activated receptor gamma can enhance mitochondrial potential and promote cell survival. J Biol Chem 277:31781–31788PubMedCrossRefGoogle Scholar
  46. 46.
    Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362PubMedCrossRefGoogle Scholar
  47. 47.
    Jacobs MD, Harrison SC (1998) Structure of an IκBalpha/NF-κB complex. Cell 95:749–758PubMedCrossRefGoogle Scholar
  48. 48.
    Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708PubMedCrossRefGoogle Scholar
  49. 49.
    Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716PubMedCrossRefGoogle Scholar
  50. 50.
    Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693–733PubMedCrossRefGoogle Scholar
  51. 51.
    Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169PubMedCrossRefGoogle Scholar
  52. 52.
    Bordet R, Ouk T, Petrault O, Gelé P, Gautier S, Laprais M, Deplanque D, Duriez P, Staels B, Fruchart JC, Bastide M (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem Soc Trans 34:1341–1346PubMedCrossRefGoogle Scholar
  53. 53.
    Culman J, Zhao Y, Gohlke P, Herdegen T (2007) PPAR-gamma: therapeutic target for ischemic stroke. Trends Pharmacol Sci 28:244–249PubMedCrossRefGoogle Scholar
  54. 54.
    Giaginis C, Tsourouflis G, Theocharis S (2008) Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands: novel pharmacological agents in the treatment of ischemia reperfusion injury. Curr Mol Med 8:562–579PubMedCrossRefGoogle Scholar
  55. 55.
    Kapadia R, Yi JH, Vemuganti R (2008) Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 13:1813–1826PubMedCrossRefGoogle Scholar
  56. 56.
    Heneka MT, Kummer MP, Weggen S, Bulic B, Multhaup G, Münter L, Hüll M, Pflanzner T, Pietrzik CU (2011) Molecular mechanisms and therapeutic application of NSAIDs and derived compounds in Alzheimer's disease. Curr Alzheimer Res 8:115–311PubMedCrossRefGoogle Scholar
  57. 57.
    Heneka MT, Landreth GE, Hüll M (2007) Drug insight: effects mediated by peroxisome proliferator-activated receptor-gamma in CNS disorders. Nat Clin Pract Neurol 3:496–504PubMedCrossRefGoogle Scholar
  58. 58.
    Landreth G, Jiang Q, Mandrekar S, Heneka M (2008) PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease. Neurotherapeutics 5:481–489PubMedCrossRefGoogle Scholar
  59. 59.
    Lee YJ, Han SB, Nam SY, Oh KW, Hong JT (2010) Inflammation and Alzheimer's disease. Arch Pharm Res 33:1539–1556PubMedCrossRefGoogle Scholar
  60. 60.
    Lleo A, Galea E, Sastre M (2007) Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell Mol Life Sci 64:1403–1418PubMedCrossRefGoogle Scholar
  61. 61.
    Shie FS, Nivison M, Hsu PC, Montine TJ (2009) Modulation of microglial innate immunity in Alzheimer's disease by activation of peroxisome proliferator-activated receptor gamma. Curr Med Chem 16:643–651PubMedCrossRefGoogle Scholar
  62. 62.
    Asanuma M, Miyazaki I (2008) Nonsteroidal anti-inflammatory drugs in experimental parkinsonian models and Parkinson's disease. Curr Pharm Des 14:1428–1434PubMedCrossRefGoogle Scholar
  63. 63.
    Carta AR, Pisanu A, Carboni E (2011) Do PPAR-gamma agonists have a future in parkinson's disease therapy? Park Dis 2011:689181Google Scholar
  64. 64.
    Chaturvedi RK, Beal MF (2008) PPAR: a therapeutic target in Parkinson's disease. J Neurochem 106:506–518PubMedCrossRefGoogle Scholar
  65. 65.
    Clark J, Simon DK (2009) Transcribe to survive: transcriptional control of antioxidant defense programs for neuroprotection in Parkinson's disease. Antioxid Redox Signal 11:509–528PubMedCrossRefGoogle Scholar
  66. 66.
    Randy LH, Guoying B (2007) Agonism of peroxisome proliferator receptor-gamma may have therapeutic potential for neuroinflammation and Parkinson's disease. Curr Neuropharmacol 5:35–46PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yu-Chang Chen
    • 1
  • Jui-Sheng Wu
    • 1
  • Hsin-Da Tsai
    • 1
  • Chien-Yu Huang
    • 1
  • Jin-Jer Chen
    • 1
  • Grace Y. Sun
    • 2
  • Teng-Nan Lin
    • 1
  1. 1.Neuroscience Division, Institute of Biomedical SciencesAcademia SinicaTaipeiRepublic of China
  2. 2.Department of BiochemistryUniversity of MissouriColumbiaUSA

Personalised recommendations