Advertisement

Molecular Neurobiology

, Volume 45, Issue 1, pp 153–172 | Cite as

Neuroimaging Results Impose New Views on Alzheimer’s Disease—the Role of Amyloid Revised

  • Anders M. FjellEmail author
  • Kristine B. Walhovd
Article

Abstract

Huge progress has been made in unraveling the mysteries of Alzheimer’s disease (AD), but we still do not understand the basic mechanisms that set off the cascade of pathological events. In May 2011, the National Institute on Aging–Alzheimer’s Association published new diagnostic guidelines, expected to have huge impact on AD research and clinical practice. However, the new guidelines are already criticized for being biased in favor of a specific theory of the pathophysiological origins of AD—the amyloid cascade hypothesis. Shortly before publication of the guidelines, a hypothetical model of the dynamic biomarkers of the Alzheimer’s pathological cascade was published, taking as starting point that biomarkers reflecting brain levels of amyloid become deviant long before brain atrophy, cognitive dysfunction, or clinical symptoms are manifest. This model has already attracted substantial interest and arguably represents a dominating view within human research on AD. Here we critically review the evidence for the view of amyloid as an initiating event in the pathological cascade and discuss how central assumptions of this hypothesis affect how results from contemporary human AD research are understood. Interpretations of new results are greatly impacted by researchers’ view on the role of amyloid, and identical observations are sometimes taken to support radically opposing views on the amyloid hypothesis. We argue that the canonical view of the role of amyloid as the main causal factor in AD may not be correct and that evidence from recent neuroimaging studies indicates that amyloid is neither necessary nor sufficient, for the manifestation of AD-like brain atrophy.

Keywords

Alzheimer’s disease Magnetic resonance imaging Amyloid Cerebrospinal fluid Positron emission tomography Atrophy 

Notes

Acknowledgments

This work was supported by grants from the Norwegian Research Council to Kristine B Walhovd (grant nos. 177404, 186092, and 192663) and Anders M Fjell (nos. 175066 and 189507).

References

  1. 1.
    Herrup K (2011) Commentary on “Recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease”. Addressing the challenge of Alzheimer’s disease in the 21st century. Alzheimers Dement 7(3):335–337. doi: 10.1016/j.jalz.2011.04.002 PubMedGoogle Scholar
  2. 2.
    Khachaturian ZS (2011) Revised criteria for diagnosis of Alzheimer’s disease: National Institute on Aging-Alzheimer’s Association diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):253–256. doi: 10.1016/j.jalz.2011.04.003 PubMedGoogle Scholar
  3. 3.
    Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292. doi: 10.1016/j.jalz.2011.03.003 PubMedGoogle Scholar
  4. 4.
    Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128. doi: 10.1016/S1474-4422(09)70299-6 PubMedGoogle Scholar
  5. 5.
    Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890PubMedGoogle Scholar
  6. 6.
    Portelius E, Zetterberg H, Gobom J, Andreasson U, Blennow K (2008) Targeted proteomics in Alzheimer’s disease: focus on amyloid-beta. Expert Rev Proteomics 5(2):225–237. doi: 10.1586/14789450.5.2.225 PubMedGoogle Scholar
  7. 7.
    Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403. doi: 10.1016/S0140-6736(06)69113-7 PubMedGoogle Scholar
  8. 8.
    Strozyk D, Blennow K, White LR, Launer LJ (2003) CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60(4):652–656PubMedGoogle Scholar
  9. 9.
    Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman DM (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59(3):512–519. doi: 10.1002/ana.20730 PubMedGoogle Scholar
  10. 10.
    Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, Ringheim A, Langstrom B, Nordberg A (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29(10):1456–1465. doi: 10.1016/j.neurobiolaging.2007.03.029 PubMedGoogle Scholar
  11. 11.
    Ikonomovic MD, Klunk WE, Abrahamson EE, Mathis CA, Price JC, Tsopelas ND, Lopresti BJ, Ziolko S, Bi W, Paljug WR, Debnath ML, Hope CE, Isanski BA, Hamilton RL, DeKosky ST (2008) Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain 131(Pt 6):1630–1645. doi: 10.1093/brain/awn016 PubMedGoogle Scholar
  12. 12.
    Bacskai BJ, Frosch MP, Freeman SH, Raymond SB, Augustinack JC, Johnson KA, Irizarry MC, Klunk WE, Mathis CA, Dekosky ST, Greenberg SM, Hyman BT, Growdon JH (2007) Molecular imaging with Pittsburgh compound B confirmed at autopsy: a case report. Arch Neurol 64(3):431–434. doi: 10.1001/archneur.64.3.431 PubMedGoogle Scholar
  13. 13.
    Formichi P, Parnetti L, Radi E, Cevenini G, Dotti MT, Federico A (2008) CSF levels of beta-amyloid 1-42, tau and phosphorylated tau protein in CADASIL. Eur J Neurol 15(11):1252–1255. doi: 10.1111/j.1468-1331.2008.02277.x PubMedGoogle Scholar
  14. 14.
    Winblad S, Mansson JE, Blennow K, Jensen C, Samuelsson L, Lindberg C (2008) Cerebrospinal fluid tau and amyloid beta42 protein in patients with myotonic dystrophy type 1. Eur J Neurol 15(9):947–952. doi: 10.1111/j.1468-1331.2008.02217.x PubMedGoogle Scholar
  15. 15.
    Radde R, Duma C, Goedert M, Jucker M (2008) The value of incomplete mouse models of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35(Suppl 1):S70–S74. doi: 10.1007/s00259-007-0704-y PubMedGoogle Scholar
  16. 16.
    Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41(6):1261–1268. doi: 10.1016/j.biocel.2008.12.015 PubMedGoogle Scholar
  17. 17.
    Zetterberg H, Blennow K, Hanse E (2010) Amyloid beta and APP as biomarkers for Alzheimer’s disease. Exp Gerontol 45(1):23–29. doi: 10.1016/j.exger.2009.08.002 PubMedGoogle Scholar
  18. 18.
    Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, Scheltens P, Carrillo MC, Thies W, Bednar MM, Black RS, Brashear HR, Grundman M, Siemers ER, Feldman HH, Schindler RJ (2011) Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement 7(4):367–385. doi: 10.1016/j.jalz.2011.05.2351 PubMedGoogle Scholar
  19. 19.
    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):263–269. doi: 10.1016/j.jalz.2011.03.005 PubMedGoogle Scholar
  20. 20.
    Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, Thies B, Phelps CH (2011) Introduction to the recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):257–262. doi: 10.1016/j.jalz.2011.03.004 PubMedGoogle Scholar
  21. 21.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279. doi: 10.1016/j.jalz.2011.03.008 PubMedGoogle Scholar
  22. 22.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944PubMedGoogle Scholar
  23. 23.
    Petersen RC (2010) Alzheimer’s disease: progress in prediction. Lancet Neurol 9(1):4–5. doi: 10.1016/S1474-4422(09)70330-8 PubMedGoogle Scholar
  24. 24.
    Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C (2003) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 20(3):1894–1898PubMedGoogle Scholar
  25. 25.
    Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12(10):383–388PubMedGoogle Scholar
  26. 26.
    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185PubMedGoogle Scholar
  27. 27.
    Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110(4):1129–1134. doi: 10.1111/j.1471-4159.2009.06181.x PubMedGoogle Scholar
  28. 28.
    Castellani RJ, Lee HG, Siedlak SL, Nunomura A, Hayashi T, Nakamura M, Zhu X, Perry G, Smith MA (2009) Reexamining Alzheimer’s disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta. J Alzheimers Dis 18(2):447–452. doi: 10.3233/JAD-2009-1151 PubMedGoogle Scholar
  29. 29.
    Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Paul Murphy M, Baker M, Yu X, Duff K, Hardy J, Corral A, Lin WL, Yen SH, Dickson DW, Davies P, Hutton M (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25(4):402–405. doi: 10.1038/78078 PubMedGoogle Scholar
  30. 30.
    Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293(5534):1487–1491. doi: 10.1126/science.1058189 PubMedGoogle Scholar
  31. 31.
    Palmer AM (2011) Neuroprotective therapeutics for Alzheimer’s disease: progress and prospects. Trends Pharmacol Sci 32(3):141–147. doi: 10.1016/j.tips.2010.12.007 PubMedGoogle Scholar
  32. 32.
    Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH (2010) Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J Neurosci 30(45):14946–14954. doi: 10.1523/JNEUROSCI.4305-10.2010 PubMedGoogle Scholar
  33. 33.
    Neve RL, Robakis NK (1998) Alzheimer’s disease: a re-examination of the amyloid hypothesis. Trends Neurosci 21(1):15–19PubMedGoogle Scholar
  34. 34.
    Robakis NK (2010) Are Abeta and its derivatives causative agents or innocent bystanders in AD? Neurodegener Dis 7(1–3):32–37. doi: 10.1159/000266476 PubMedGoogle Scholar
  35. 35.
    Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A 96(6):3228–3233PubMedGoogle Scholar
  36. 36.
    Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20(11):4050–4058PubMedGoogle Scholar
  37. 37.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539. doi: 10.1038/416535a PubMedGoogle Scholar
  38. 38.
    Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8(1):79–84. doi: 10.1038/nn1372 PubMedGoogle Scholar
  39. 39.
    Robakis NK, Ramakrishna N, Wolfe G, Wisniewski HM (1987) Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc Natl Acad Sci U S A 84(12):4190–4194PubMedGoogle Scholar
  40. 40.
    Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, Wilson RS (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66(12):1837–1844. doi: 10.1212/01.wnl.0000219668.47116.e6 PubMedGoogle Scholar
  41. 41.
    Galvin JE, Powlishta KK, Wilkins K, McKeel DW Jr, Xiong C, Grant E, Storandt M, Morris JC (2005) Predictors of preclinical Alzheimer disease and dementia: a clinicopathologic study. Arch Neurol 62(5):758–765. doi: 10.1001/archneur.62.5.758 PubMedGoogle Scholar
  42. 42.
    Pike KE, Ellis KA, Villemagne VL, Good N, Chetelat G, Ames D, Szoeke C, Laws SM, Verdile G, Martins RN, Masters CL, Rowe CC (2011) Cognition and beta-amyloid in preclinical Alzheimer’s disease: data from the AIBL study. Neuropsychologia 49(9):2384–2390. doi: 10.1016/j.neuropsychologia.2011.04.012 PubMedGoogle Scholar
  43. 43.
    Price JL, McKeel DW Jr, Buckles VD, Roe CM, Xiong C, Grundman M, Hansen LA, Petersen RC, Parisi JE, Dickson DW, Smith CD, Davis DG, Schmitt FA, Markesbery WR, Kaye J, Kurlan R, Hulette C, Kurland BF, Higdon R, Kukull W, Morris JC (2009) Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging 30(7):1026–1036. doi: 10.1016/j.neurobiolaging.2009.04.002 PubMedGoogle Scholar
  44. 44.
    Crystal H, Dickson D, Fuld P, Masur D, Scott R, Mehler M, Masdeu J, Kawas C, Aronson M, Wolfson L (1988) Clinico-pathologic studies in dementia: nondemented subjects with pathologically confirmed Alzheimer’s disease. Neurology 38(11):1682–1687PubMedGoogle Scholar
  45. 45.
    Davis DG, Schmitt FA, Wekstein DR, Markesbery WR (1999) Alzheimer neuropathologic alterations in aged cognitively normal subjects. J Neuropathol Exp Neurol 58(4):376–388PubMedGoogle Scholar
  46. 46.
    Storandt M, Mintun MA, Head D, Morris JC (2009) Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition. Arch Neurol 66(12):1476–1481. doi: 10.1001/archneurol.2009.272 PubMedGoogle Scholar
  47. 47.
    Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, Hotton G, Cutler D, Fox N, Kennedy A, Rossor M, Brooks DJ (2007) Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology 68(7):501–508. doi: 10.1212/01.wnl.0000244749.20056.d4 PubMedGoogle Scholar
  48. 48.
    Fjell AM, Walhovd KB (2011) New tools for the study of Alzheimer’s disease: what are biomarkers and morphometric markers teaching us? Neuroscientist. doi: 10.1177/1073858410392586
  49. 49.
    Herrup K (2010) Reimagining Alzheimer’s disease—an age-based hypothesis. J Neurosci 30(50):16755–16762. doi: 10.1523/JNEUROSCI.4521-10.2010 PubMedGoogle Scholar
  50. 50.
    Braak H, de Vos RA, Jansen EN, Bratzke H, Braak E (1998) Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases. Prog Brain Res 117:267–285PubMedGoogle Scholar
  51. 51.
    Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20(1):11–21PubMedGoogle Scholar
  52. 52.
    Fyhn M, Molden S, Witter MP, Moser EI, Moser MB (2004) Spatial representation in the entorhinal cortex. Science 305(5688):1258–1264. doi: 10.1126/science.1099901 PubMedGoogle Scholar
  53. 53.
    Mosconi L, Brys M, Glodzik-Sobanska L, De Santi S, Rusinek H, de Leon MJ (2007) Early detection of Alzheimer’s disease using neuroimaging. Exp Gerontol 42(1–2):129–138. doi: 10.1016/j.exger.2006.05.016 PubMedGoogle Scholar
  54. 54.
    Hedden T, Gabrieli JD (2005) Healthy and pathological processes in adult development: new evidence from neuroimaging of the aging brain. Curr Opin Neurol 18(6):740–747PubMedGoogle Scholar
  55. 55.
    Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, Weiner MW (2007) Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130(Pt 4):1159–1166. doi: 10.1093/brain/awm016 PubMedGoogle Scholar
  56. 56.
    Jack CR Jr, Weigand SD, Shiung MM, Przybelski SA, O’Brien PC, Gunter JL, Knopman DS, Boeve BF, Smith GE, Petersen RC (2008) Atrophy rates accelerate in amnestic mild cognitive impairment. Neurology 70(19 Pt 2):1740–1752. doi: 10.1212/01.wnl.0000281688.77598.35 PubMedGoogle Scholar
  57. 57.
    de Leon MJ, DeSanti S, Zinkowski R, Mehta PD, Pratico D, Segal S, Rusinek H, Li J, Tsui W, Saint Louis LA, Clark CM, Tarshish C, Li Y, Lair L, Javier E, Rich K, Lesbre P, Mosconi L, Reisberg B, Sadowski M, DeBernadis JF, Kerkman DJ, Hampel H, Wahlund LO, Davies P (2006) Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiol Aging 27(3):394–401PubMedGoogle Scholar
  58. 58.
    Fennema-Notestine C, Hagler DJ Jr, McEvoy LK, Fleisher AS, Wu EH, Karow DS, Dale AM (2009) Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum Brain Mapp. doi: 10.1002/hbm.20744
  59. 59.
    McEvoy LK, Fennema-Notestine C, Roddey JC, Hagler DJ Jr, Holland D, Karow DS, Pung CJ, Brewer JB, Dale AM (2009) Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment. Radiology 251(1):195–205. doi: 10.1148/radiol.2511080924 PubMedGoogle Scholar
  60. 60.
    McDonald CR, McEvoy LK, Gharapetian L, Fennema-Notestine C, Hagler DJ Jr, Holland D, Koyama A, Brewer JB, Dale AM (2009) Regional rates of neocortical atrophy from normal aging to early Alzheimer disease. Neurology 73(6):457–465. doi: 10.1212/WNL.0b013e3181b16431 PubMedGoogle Scholar
  61. 61.
    Jack CR Jr, Bernstein MA, Borowski BJ, Gunter JL, Fox NC, Thompson PM, Schuff N, Krueger G, Killiany RJ, Decarli CS, Dale AM, Carmichael OW, Tosun D, Weiner MW (2010) Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement 6(3):212–220. doi: 10.1016/j.jalz.2010.03.004 PubMedGoogle Scholar
  62. 62.
    Fennema-Notestine C, Hagler DJ Jr, McEvoy LK, Fleisher AS, Wu EH, Karow DS, Dale AM (2009) Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum Brain Mapp 30(10):3238–3253. doi: 10.1002/hbm.20744 PubMedGoogle Scholar
  63. 63.
    Davatzikos C, Xu F, An Y, Fan Y, Resnick SM (2009) Longitudinal progression of Alzheimer’s-like patterns of atrophy in normal older adults: the SPARE-AD index. Brain. doi: 10.1093/brain/awp091
  64. 64.
    Driscoll I, Davatzikos C, An Y, Wu X, Shen D, Kraut M, Resnick SM (2009) Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology 72(22):1906–1913. doi: 10.1212/WNL.0b013e3181a82634 PubMedGoogle Scholar
  65. 65.
    Buckner RL, Wheeler ME (2001) The cognitive neuroscience of remembering. Nat Rev Neurosci 2(9):624–634. doi: 10.1038/35090048 35090048 PubMedGoogle Scholar
  66. 66.
    Thompson PM, Hayashi KM, Dutton RA, Chiang MC, Leow AD, Sowell ER, De Zubicaray G, Becker JT, Lopez OL, Aizenstein HJ, Toga AW (2007) Tracking Alzheimer’s disease. Ann N Y Acad Sci 1097:183–214PubMedGoogle Scholar
  67. 67.
    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355PubMedGoogle Scholar
  68. 68.
    de Leon MJ, George AE, Stylopoulos LA, Smith G, Miller DC (1989) Early marker for Alzheimer’s disease: the atrophic hippocampus. Lancet 2(8664):672–673PubMedGoogle Scholar
  69. 69.
    Jack CR Jr, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42(1):183–188PubMedGoogle Scholar
  70. 70.
    Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, Grodstein F, Wright CI, Blacker D, Rosas HD, Sperling RA, Atri A, Growdon JH, Hyman BT, Morris JC, Fischl B, Buckner RL (2008) The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild ad dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 16(3):497–510. doi: 10.1093/cercor/bhn113 Google Scholar
  71. 71.
    Dickerson BC, Feczko E, Augustinack JC, Pacheco J, Morris JC, Fischl B, Buckner RL (2007) Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiol Aging 30:432–440PubMedGoogle Scholar
  72. 72.
    Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ (2006) Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer’s disease. Brain 129(Pt 11):2885–2893PubMedGoogle Scholar
  73. 73.
    deToledo-Morrell L, Stoub TR, Bulgakova M, Wilson RS, Bennett DA, Leurgans S, Wuu J, Turner DA (2004) MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiol Aging 25(9):1197–1203. doi: 10.1016/j.neurobiolaging.2003.12.007 PubMedGoogle Scholar
  74. 74.
    Fjell AM, Walhovd KB, Amlien I, Bjørnerud A, Reinvang I, Gjerstad L, Cappelen T, Willoch F, Due-Tønnessen P, Grambaite R, Skinningsrud A, Stenset V, Fladby T (2008) Morphometric changes in the episodic memory network and tau pathologic features correlate with memory performance in patients with mild cognitive impairment. Am J Neuroradiol 29:1–7Google Scholar
  75. 75.
    Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2010) CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. J Neurosci 30(6):2088–2101. doi: 10.1523/JNEUROSCI.3785-09.2010 PubMedGoogle Scholar
  76. 76.
    Walhovd KB, Fjell AM, Brewer J, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr, Jennings RG, Karow D, Dale AM (2010) Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR Am J Neuroradiol 31(2):347–354. doi: 10.3174/ajnr.A1809 PubMedGoogle Scholar
  77. 77.
    Bakkour A, Morris JC, Dickerson BC (2009) The cortical signature of prodromal AD: regional thinning predicts mild AD dementia. Neurology 72(12):1048–1055. doi: 10.1212/01.wnl.0000340981.97664.2f PubMedGoogle Scholar
  78. 78.
    Sluimer JD, Bouwman FH, Vrenken H, Blankenstein MA, Barkhof F, van der Flier WM, Scheltens P (2010) Whole-brain atrophy rate and CSF biomarker levels in MCI and AD: a longitudinal study. Neurobiol Aging 31(5):758–764. doi: 10.1016/j.neurobiolaging.2008.06.016 PubMedGoogle Scholar
  79. 79.
    Kohannim O, Hua X, Hibar DP, Lee S, Chou YY, Toga AW, Jack CR Jr, Weiner MW, Thompson PM (2010) Boosting power for clinical trials using classifiers based on multiple biomarkers. Neurobiol Aging 31(8):1429–1442. doi: 10.1016/j.neurobiolaging.2010.04.022 PubMedGoogle Scholar
  80. 80.
    Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR Jr (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 73(4):287–293. doi: 10.1212/WNL.0b013e3181af79e5 PubMedGoogle Scholar
  81. 81.
    Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, Knopman DS, Petersen RC, Jack CR Jr (2009) MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology 73(4):294–301. doi: 10.1212/WNL.0b013e3181af79fb PubMedGoogle Scholar
  82. 82.
    Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314(5800):777–781. doi: 10.1126/science.1132814 PubMedGoogle Scholar
  83. 83.
    Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45(3):358–368PubMedGoogle Scholar
  84. 84.
    Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42(9):1681–1688PubMedGoogle Scholar
  85. 85.
    Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283(12):1571–1577PubMedGoogle Scholar
  86. 86.
    Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800PubMedGoogle Scholar
  87. 87.
    Heister D, Brewer JB, Magda S, Blennow K, McEvoy LK (2011) Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology 77(17):1619–1628. doi: 10.1212/WNL.0b013e3182343314 PubMedGoogle Scholar
  88. 88.
    Chetelat G, Villemagne VL, Pike KE, Ellis KA, Bourgeat P, Jones G, O’Keefe GJ, Salvado O, Szoeke C, Martins RN, Ames D, Masters CL, Rowe CC (2011) Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer’s disease. Brain 134(Pt 3):798–807. doi: 10.1093/brain/awq383 PubMedGoogle Scholar
  89. 89.
    Jack CR Jr, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, Knopman DS, Boeve BF, Klunk WE, Mathis CA, Petersen RC (2008) 11C PiB and structural MRI provide complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive impairment. Brain 131(Pt 3):665–680. doi: 10.1093/brain/awm336 PubMedGoogle Scholar
  90. 90.
    Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, Shiung MM, Gunter JL, Boeve BF, Kemp BJ, Weiner M, Petersen RC (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain 132(Pt 5):1355–1365. doi: 10.1093/brain/awp062 PubMedGoogle Scholar
  91. 91.
    Desikan RS, McEvoy LK, Thompson WK, Holland D, Roddey JC, Blennow K, Aisen PS, Brewer JB, Hyman BT, Dale AM (2011) Amyloid-beta associated volume loss occurs only in the presence of phospho-tau. Ann Neurol 70(4):657–661. doi: 10.1002/ana.22509 PubMedGoogle Scholar
  92. 92.
    Scheinin NM, Aalto S, Kaprio J, Koskenvuo M, Raiha I, Rokka J, Hinkka-Yli-Salomaki S, Rinne JO (2011) Early detection of Alzheimer disease: (1)(1)C-PiB PET in twins discordant for cognitive impairment. Neurology 77(5):453–460. doi: 10.1212/WNL.0b013e318225118e PubMedGoogle Scholar
  93. 93.
    Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Blennow K, Brewer JB, Dale AM (2010) Brain atrophy in healthy aging is related to CSF levels of Abeta1-42. Cereb Cortex 20(9):2069–2079. doi: 10.1093/cercor/bhp279 PubMedGoogle Scholar
  94. 94.
    Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM, Trojanowski JQ (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65(4):403–413. doi: 10.1002/ana.21610 PubMedGoogle Scholar
  95. 95.
    Fortea J, Sala-Llonch R, Bartres-Faz D, Llado A, Sole-Padulles C, Bosch B, Antonell A, Olives J, Sanchez-Valle R, Molinuevo JL, Rami L (2011) Cognitively preserved subjects with transitional cerebrospinal fluid ss-amyloid 1-42 values have thicker cortex in Alzheimer’s disease vulnerable areas. Biol Psychiatry 70(2):183–190. doi: 10.1016/j.biopsych.2011.02.017 PubMedGoogle Scholar
  96. 96.
    Becker JA, Hedden T, Carmasin J, Maye J, Rentz DM, Putcha D, Fischl B, Greve DN, Marshall GA, Salloway S, Marks D, Buckner RL, Sperling RA, Johnson KA (2011) Amyloid-beta associated cortical thinning in clinically normal elderly. Ann Neurol 69(6):1032–1042. doi: 10.1002/ana.22333 PubMedGoogle Scholar
  97. 97.
    Shim YS, Morris JC (2011) Biomarkers predicting Alzheimer’s disease in cognitively normal aging. J Clin Neurol 7(2):60–68. doi: 10.3988/jcn.2011.7.2.60 PubMedGoogle Scholar
  98. 98.
    Tosun D, Schuff N, Truran-Sacrey D, Shaw LM, Trojanowski JQ, Aisen P, Peterson R, Weiner MW (2010) Relations between brain tissue loss, CSF biomarkers, and the ApoE genetic profile: a longitudinal MRI study. Neurobiol Aging 31(8):1340–1354. doi: 10.1016/j.neurobiolaging.2010.04.030 PubMedGoogle Scholar
  99. 99.
    Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2009) One-year brain atrophy evident in healthy aging. J Neurosci 29(48):15223–15231. doi: 10.1523/JNEUROSCI.3252-09.2009 PubMedGoogle Scholar
  100. 100.
    Chetelat G, Villemagne VL, Pike KE, Baron JC, Bourgeat P, Jones G, Faux NG, Ellis KA, Salvado O, Szoeke C, Martins RN, Ames D, Masters CL, Rowe CC (2010) Larger temporal volume in elderly with high versus low beta-amyloid deposition. Brain 133(11):3349–3358. doi: 10.1093/brain/awq187 PubMedGoogle Scholar
  101. 101.
    Bourgeat P, Chetelat G, Villemagne VL, Fripp J, Raniga P, Pike K, Acosta O, Szoeke C, Ourselin S, Ames D, Ellis KA, Martins RN, Masters CL, Rowe CC, Salvado O (2010) beta-Amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia. Neurology 74(2):121–127. doi: 10.1212/WNL.0b013e3181c918b5 PubMedGoogle Scholar
  102. 102.
    Chetelat G, Villemagne VL, Bourgeat P, Pike KE, Jones G, Ames D, Ellis KA, Szoeke C, Martins RN, O’Keefe GJ, Salvado O, Masters CL, Rowe CC (2010) Relationship between atrophy and beta-amyloid deposition in Alzheimer disease. Ann Neurol 67(3):317–324. doi: 10.1002/ana.21955 PubMedGoogle Scholar
  103. 103.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774. doi: 10.1126/science.1197623 PubMedGoogle Scholar
  104. 104.
    DeMattos RB, Cirrito JR, Parsadanian M, May PC, O’Dell MA, Taylor JW, Harmony JA, Aronow BJ, Bales KR, Paul SM, Holtzman DM (2004) ApoE and clusterin cooperatively suppress Abeta levels and deposition: evidence that ApoE regulates extracellular Abeta metabolism in vivo. Neuron 41(2):193–202PubMedGoogle Scholar
  105. 105.
    Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870PubMedGoogle Scholar
  106. 106.
    Lee HG, Castellani RJ, Zhu X, Perry G, Smith MA (2005) Amyloid-beta in Alzheimer’s disease: the horse or the cart? Pathogenic or protective? Int J Exp Pathol 86(3):133–138. doi: 10.1111/j.0959-9673.2005.00429.x PubMedGoogle Scholar
  107. 107.
    Neve RL (2008) Alzheimer’s disease sends the wrong signals—a perspective. Amyloid 15(1):1–4. doi: 10.1080/13506120701814608 PubMedGoogle Scholar
  108. 108.
    Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Shankaranarayana Rao BS, Chattarji S, Kelleher RJ 3rd, Kandel ER, Duff K, Kirkwood A, Shen J (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42(1):23–36PubMedGoogle Scholar
  109. 109.
    Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26(27):7212–7221. doi: 10.1523/JNEUROSCI.1450-06.2006 PubMedGoogle Scholar
  110. 110.
    Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M (2009) APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457(7232):981–989. doi: 10.1038/nature07767 PubMedGoogle Scholar
  111. 111.
    Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41(4):479–486PubMedGoogle Scholar
  112. 112.
    The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. Neurobiol Aging 18(4 Suppl):S1–S2Google Scholar
  113. 113.
    Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44(1):195–208. doi: 10.1016/j.neuron.2004.09.006 PubMedGoogle Scholar
  114. 114.
    Fjell AM, Amlien IK, Westlye LT, Stenset V, Fladby T, Skinningsrud A, Eilsertsen DE, Bjornerud A, Walhovd KB (2010) CSF biomarker pathology correlates with a medial temporo-parietal network affected by very mild to moderate Alzheimer’s disease but not a fronto-striatal network affected by healthy aging. Neuroimage 49(2):1820–1830. doi: 10.1016/j.neuroimage.2009.09.029 PubMedGoogle Scholar
  115. 115.
    Karow DS, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr, Jennings RG, Brewer JB, Hoh CK, Dale AM (2010) Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology 256:932–942Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for the Study of Human Cognition, Department of PsychologyUniversity of OsloOsloNorway
  2. 2.Unit of Neuropsychology, Department of Physical Medicine and RehabilitationOslo University HospitalOsloNorway

Personalised recommendations