Molecular Neurobiology

, Volume 44, Issue 1, pp 122–133

The Power and Richness of Modelling Tauopathies in Drosophila

  • Katerina Papanikolopoulou
  • Efthimios M. C. Skoulakis
Article

Abstract

Tauopathies are a group of neurodegenerative disorders characterised by altered levels of phosphorylation or mutations in the neuronal microtubule protein Tau. The heterogeneous pathology of tauopathies suggests differential susceptibility of different neuronal types to wild-type and mutant Tau. The genetic power and facility of the Drosophila model has been instrumental in exploring the molecular aetiologies of tauopathies, identifying additional proteins likely contributing to neuronal dysfunction and toxicity and novel Tau phosphorylations mediating them. Importantly, recent results indicate tissue- and temporal-specific effects on dysfunction and toxicity coupled with differential effects of distinct Tau isoforms within them. Therefore, they reveal an unexpected richness of the Drosophila model that, coupled with its molecular genetic power, will likely play a significant role in our understanding of multiple tauopathies potentially leading to their differential treatment.

Keywords

Tau Alzheimer’s Frontotemporal dementia Tauopathies Drosophila 

References

  1. 1.
    Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegenerative disease. Annu Rev Genet 39:153–171PubMedCrossRefGoogle Scholar
  2. 2.
    Marsh JL, Thompson LM (2006) Drosophila in the study of neurodegenerative disease. Neuron 52:169–178PubMedCrossRefGoogle Scholar
  3. 3.
    Kretzschmar D, Hasan G, Sharma S, Heisenberg M, Benzer S (1997) The Swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J Neurosci 17(19):7425–7432PubMedGoogle Scholar
  4. 4.
    Rogina B, Benzer S, Helfand SL (1997) Drosophila drop-dead mutations accelerate the time course of age-related markers. Proc Natl Acad Sci USA 94(12):6303–6306PubMedCrossRefGoogle Scholar
  5. 5.
    Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404(6776):394–398PubMedCrossRefGoogle Scholar
  6. 6.
    Jackson GR, Salecker I, Dong X, Yao X, Arnheim N, Faber PW, MacDonald ME, Zipursky SL (1998) Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21(3):633–642PubMedCrossRefGoogle Scholar
  7. 7.
    Warrick JM, Paulson HL, Gray-Board GL, Bui QT, Fischbeck KH, Pittman RN, Bonini NM (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93(6):939–949PubMedCrossRefGoogle Scholar
  8. 8.
    Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 100(7):4078–4083PubMedCrossRefGoogle Scholar
  9. 9.
    Pesah Y, Pham T, Burgess H, Middlebrooks B, Verstreken P, Zhou Y, Harding M, Bellen H, Mardon G (2004) Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131(9):2183–2194PubMedCrossRefGoogle Scholar
  10. 10.
    Rong YS, Golic KG (2000) Gene targeting by homologous recombination in Drosophila. Science 288(5473):2013–2018PubMedCrossRefGoogle Scholar
  11. 11.
    Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B (2003) Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37(6):911–924PubMedCrossRefGoogle Scholar
  12. 12.
    Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z, O’Donnell JM (2007) Interaction of genetic and environmental factors in a Drosophila parkinsonism model. J Neurosci 27(10):2457–2467PubMedCrossRefGoogle Scholar
  13. 13.
    Coulom H, Birman S (2004) Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24(48):10993–10998PubMedCrossRefGoogle Scholar
  14. 14.
    Chen HK, Fernandez-Funez P, Acevedo SF, Lam YC, Kaytor MD, Fernandez MH, Aitken A, Skoulakis EM, Orr HT, Botas J, Zoghbi HY (2003) Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113(4):457–468PubMedCrossRefGoogle Scholar
  15. 15.
    Iijima-Ando K, Iijima K (2009) Transgenic Drosophila models of Alzheimer’s disease and tauopathies. Brain Struct Funct 214:245–262. doi:10.1007/s00429-009-0234-4 PubMedCrossRefGoogle Scholar
  16. 16.
    Khurana V (2008) Modeling tauopathy in the fruit fly Drosophila melanogaster. J Alzheimers Dis 15(4):541–553PubMedGoogle Scholar
  17. 17.
    Newman T, Sinadinos C, Johnston A, Sealey M, Mudher A (2011) Using Drosophila models of neurodegenerative diseases for drug discovery. Expert Opin Drug Discov 6(2):129–140CrossRefGoogle Scholar
  18. 18.
    Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4(4):266–275PubMedCrossRefGoogle Scholar
  19. 19.
    Pitman JL, DasGupta S, Krashes MJ, Leung B, Perrat PN, Waddell S (2009) There are many ways to train a fly. Fly 3(1):3–9PubMedCrossRefGoogle Scholar
  20. 20.
    Yukovic A, Wang O, Basu AC, Kraviz EA (2006) Learning and memory associated with aggression in Drosophila melanogaster. Proc Natl Acad Sci 103:17519–17524CrossRefGoogle Scholar
  21. 21.
    Skoulakis EM, Grammenoudi S (2006) Dunces and da Vincis: the genetics of learning and memory in Drosophila. Cell Mol Life Sci 63(9):975–988PubMedCrossRefGoogle Scholar
  22. 22.
    Davis RL (2011) Traces of Drosophila memory. Neuron 70:8–19PubMedCrossRefGoogle Scholar
  23. 23.
    Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of Tau protein in both physiological and pathological conditions. Physiol Rev 84(2):361–384PubMedCrossRefGoogle Scholar
  24. 24.
    Delacourte A (2005) Tauopathies: recent insights into old diseases. Folia Neuropathol 43(4):244–257PubMedGoogle Scholar
  25. 25.
    Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664PubMedCrossRefGoogle Scholar
  26. 26.
    Lee VM-Y, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159PubMedCrossRefGoogle Scholar
  27. 27.
    Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified Tau factor and the role of Tau in microtubule assembly. J Mol Biol 116(2):227–247PubMedCrossRefGoogle Scholar
  28. 28.
    Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72(5):1858–1862PubMedCrossRefGoogle Scholar
  29. 29.
    Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human Tau gene. Biochemistry 31(43):10626–10633PubMedCrossRefGoogle Scholar
  30. 30.
    Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein Tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3(4):519–526PubMedCrossRefGoogle Scholar
  31. 31.
    Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein Tau containing four tandem repeats: differential expression of Tau protein mRNAs in human brain. EMBO J 8(2):393–399PubMedGoogle Scholar
  32. 32.
    Goedert M, Jakes R (1990) Expression of separate isoforms of human Tau protein: correlation with the Tau pattern in brain and effects on tubulin polymerization. EMBO J 9(13):4225–4230PubMedGoogle Scholar
  33. 33.
    Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989) Developmentally regulated expression of specific Tau sequences. Neuron 2(4):1389–1397PubMedCrossRefGoogle Scholar
  34. 34.
    Butner KA, Kirschner MW (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol 115(3):717–730PubMedCrossRefGoogle Scholar
  35. 35.
    Lu M, Kosik KS (2001) Competition for microtubule-binding with dual expression of Tau missense and splice isoforms. Mol Biol Cell 12(1):171–184PubMedGoogle Scholar
  36. 36.
    Black MM, Slaughter T, Moshiach S, Obrocka M, Fischer I (1996) Tau is enriched on dynamic microtubules in the distal region of growing axons. J Neurosci 16(11):3601–3619PubMedGoogle Scholar
  37. 37.
    Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16(18):5583–5592PubMedGoogle Scholar
  38. 38.
    Baas PW, Qiang L (2005) Neuronal microtubules: when the MAP is the roadblock. Trends Cell Biol 15(4):183–187PubMedCrossRefGoogle Scholar
  39. 39.
    Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by Tau. Science 319(5866):1086–1089PubMedCrossRefGoogle Scholar
  40. 40.
    Tatebayashi Y, Haque N, Tung YC, Iqbal K, Grundke-Iqbal I (2004) Role of Tau phosphorylation by glycogen synthase kinase-3beta in the regulation of organelle transport. J Cell Sci 117(Pt 9):1653–1663PubMedCrossRefGoogle Scholar
  41. 41.
    Henriquez JP, Cross D, Vial C, Maccioni RB (1995) Subpopulations of Tau interact with microtubules and actin filaments in various cell types. Cell Biochem Funct 13(4):239–250PubMedCrossRefGoogle Scholar
  42. 42.
    Brandt R, Leger J, Lee G (1995) Interaction of Tau with the neural plasma membrane mediated by Tau’s amino-terminal projection domain. J Cell Biol 131(5):1327–1340PubMedCrossRefGoogle Scholar
  43. 43.
    Maas T, Eidenmuller J, Brandt R (2000) Interaction of Tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments. J Biol Chem 275(21):15733–15740PubMedCrossRefGoogle Scholar
  44. 44.
    Liu CW, Lee G, Jay DG (1999) Tau is required for neurite outgrowth and growth cone motility of chick sensory neurons. Cell Motil Cytoskeleton 43(3):232–242PubMedCrossRefGoogle Scholar
  45. 45.
    Wang JZ, Liu F (2008) Microtubule-associated protein Tau in development, degeneration and protection of neurons. Prog Neurobiol 85(2):148–175PubMedCrossRefGoogle Scholar
  46. 46.
    Fuster-Matanzo A, de Barreda EG, Dawson HN, Vitek MP, Avila J, Hernandez F (2009) Function of Tau protein in adult newborn neurons. FEBS Lett 583(18):3063–3068PubMedCrossRefGoogle Scholar
  47. 47.
    Sergeant N, Bretteville A, Hamdane M, Caillet-Boudin ML, Grognet P, Bombois S, Blum D, Delacourte A, Pasquier F, Vanmechelen E, Schraen-Maschke S, Buée L (2008) Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Rev Proteomics 5(2):207–224PubMedCrossRefGoogle Scholar
  48. 48.
    Alonso AD, Diclerico J, Li B, Corbo CP, Alaniz ME, Grundke-Iqbal I, Iqbal K (2010) Phosphorylation of Tau at Thr212, Thr231 and Ser262 combined and not individually causes neurodegeneration. J Biol Chem 285:30851–30860PubMedCrossRefGoogle Scholar
  49. 49.
    Qian W, Yin X, Hu W, Shi J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX, Liu F (2011) Activation of protein phosphatase 2B and hyperphosphorylation of Tau in Alzheimer’s disease. J Alzheimers Dis 23(4):617–627PubMedGoogle Scholar
  50. 50.
    Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and Tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25(1):59–68PubMedCrossRefGoogle Scholar
  51. 51.
    Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2005) Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of Tau phosphorylation. Eur J Neurosci 22(8):1942–1950PubMedCrossRefGoogle Scholar
  52. 52.
    Kosmidis S, Grammenoudi S, Papanikolopoulou K, Skoulakis EMC (2010) Differential effects of Tau on the integrity and function of neurons essential for learning in Drosophila. J Neurosci 30:464–477PubMedCrossRefGoogle Scholar
  53. 53.
    Nishimura I, Yang Y, Lu B (2004) PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers Tau toxicity in Drosophila. Cell 116(5):671–682PubMedCrossRefGoogle Scholar
  54. 54.
    Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of Tau protein in Alzheimer’s disease. J Neural Transm 112(6):813–838PubMedCrossRefGoogle Scholar
  55. 55.
    Hong M, Lee VM (1997) Insulin and insulin-like growth factor-1 regulate Tau phosphorylation in cultured human neurons. J Biol Chem 272(31):19547–19553PubMedCrossRefGoogle Scholar
  56. 56.
    Hosoi T, Uchiyama M, Okumura E, Saito T, Ishiguro K, Uchida T, Okuyama A, Kishimoto T, Hisanaga S (1995) Evidence for cdk5 as a major activity phosphorylating Tau protein in porcine brain extract. J Biochem 117(4):741–749PubMedGoogle Scholar
  57. 57.
    Zheng-Fischhofer Q, Biernat J, Mandelkow EM, Illenberger S, Godemann R, Mandelkow E (1998) Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur J Biochem 252(3):542–552PubMedCrossRefGoogle Scholar
  58. 58.
    Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein Tau. A component of Alzheimer paired helical filaments. J Biol Chem 261(13):6084–6089PubMedGoogle Scholar
  59. 59.
    Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein Tau (Tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA 83(11):4044–4048PubMedCrossRefGoogle Scholar
  60. 60.
    Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33(1):95–130PubMedCrossRefGoogle Scholar
  61. 61.
    Buee L, Delacourte A (1999) Comparative biochemistry of Tau in progressive supranuclear palsy, corticobasal degeneration, FTDP-17 and Pick’s disease. Brain Pathol 9(4):681–693PubMedCrossRefGoogle Scholar
  62. 62.
    Trojanowski JQ, Lee VM (2005) Pathological Tau: a loss of normal function or a gain in toxicity? Nat Neurosci 8(9):1136–1137PubMedCrossRefGoogle Scholar
  63. 63.
    Sergeant N, Delacourte A, Buee L (2005) Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta 1739(2–3):179–197PubMedGoogle Scholar
  64. 64.
    Sahara N, Maeda S, Takashima A (2008) Tau oligomerization: a role for Tau aggregation intermediates linked to neurodegeneration. Curr Alzheimer Res 5(6):591–598PubMedCrossRefGoogle Scholar
  65. 65.
    Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A (2007) Granular Tau oligomers as intermediates of Tau filaments. Biochemistry 47(28):7393–7404Google Scholar
  66. 66.
    Wang YP, Biernat J, Pickhardt M, Mandelkow E, Mandelkow EM (2007) Stepwise proteolysis liberates Tau fragments that nucleate the Alzheimer-like aggregation of full-length Tau in a neuronal cell model. Proc Natl Acad Sci USA 104(24):10252–10257PubMedCrossRefGoogle Scholar
  67. 67.
    Delacourte A (2001) The molecular parameters of Tau pathology. Tau as a killer and a witness. Adv Exp Med Biol 487:5–19PubMedCrossRefGoogle Scholar
  68. 68.
    Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of Tau-induced neurodegeneration. Acta Neuropathol 118(1):53–69PubMedCrossRefGoogle Scholar
  69. 69.
    Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by Tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24(8):1079–1085PubMedCrossRefGoogle Scholar
  70. 70.
    Gendron TF, Petrucelli L (2009) The role of Tau in neurodegeneration. Mol Neurodegener 4:13PubMedCrossRefGoogle Scholar
  71. 71.
    Brand AH, Dormand EL (1995) The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system. Curr Opin Neurobiol 5(5):572–578PubMedCrossRefGoogle Scholar
  72. 72.
    Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15PubMedCrossRefGoogle Scholar
  73. 73.
    Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, Feany MB (2001) Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293(5530):711–714PubMedCrossRefGoogle Scholar
  74. 74.
    Robinow S, White K (1988) The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Dev Biol 126(2):294–303PubMedCrossRefGoogle Scholar
  75. 75.
    Dias-Santagata D, Fulga TA, Duttaroy A, Feany MB (2007) Oxidative stress mediates Tau-induced neurodegeneration in Drosophila. J Clin Invest 117(1):236–245PubMedCrossRefGoogle Scholar
  76. 76.
    Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302PubMedCrossRefGoogle Scholar
  77. 77.
    Papanikolopoulou K, Kosmidis S, Grammenoudi S, Skoulakis EM (2010) Phosphorylation differentiates Tau-dependent neuronal toxicity and dysfunction. Biochem Soc Trans 38(4):981–987PubMedCrossRefGoogle Scholar
  78. 78.
    Thompson A, Boekhoorn K, Van Dam AM, Lucassen PJ (2008) Changes in adult neurogenesis in neurodegenerative diseases: cause or consequence? Genes Brain Behav Suppl 1:28–42Google Scholar
  79. 79.
    Berry RW, Quinn B, Johnson N, Cochran EJ, Ghoshal N, Binder LI (2001) Pathological glial Tau accumulations in neurodegenerative disease: review and case report. Neurochem Int 39(5–6):469–479PubMedCrossRefGoogle Scholar
  80. 80.
    Ikeda K, Akiyama H, Kondo H, Haga C, Tanno E, Tokuda T, Ikeda S (1995) Thorn-shaped astrocytes: possibly secondarily induced Tau-positive glial fibrillary tangles. Acta Neuropathol 90(6):620–625PubMedCrossRefGoogle Scholar
  81. 81.
    Freeman MR, Doherty J (2006) Glial cell biology in Drosophila and vertebrates. Trends Neurosci 29(2):82–90PubMedCrossRefGoogle Scholar
  82. 82.
    Colodner KJ, Feany MB (2010) Glial fibrillary tangles and JAK/STAT-mediated glial and neuronal cell death in a Drosophila model of glial tauopathy. J Neurosci 30(48):16102–16113PubMedCrossRefGoogle Scholar
  83. 83.
    Ballatore C, Lee VM, Trojanowski JQ (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 9:663–672CrossRefGoogle Scholar
  84. 84.
    Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421PubMedCrossRefGoogle Scholar
  85. 85.
    Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309(5733):476–481PubMedCrossRefGoogle Scholar
  86. 86.
    Tully T, Quinn WG, 2 (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157(2):263–277PubMedCrossRefGoogle Scholar
  87. 87.
    Mershin A, Pavlopoulos E, Fitch O, Braden BC, Nanopoulos DV, Skoulakis EM (2004) Learning and memory deficits upon TAU accumulation in Drosophila mushroom body neurons. Learn Mem 11(3):277–287PubMedCrossRefGoogle Scholar
  88. 88.
    Grammenoudi S, Anezaki M, Kosmidis S, Skoulakis EMC (2008) Modeling cell and isoform type specificity of tauopathies in Drosophila. SEB Exp Biol Ser 60:39–56PubMedGoogle Scholar
  89. 89.
    McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302(5651):1765–1768PubMedCrossRefGoogle Scholar
  90. 90.
    Roman G (2004) The genetics of Drosophila transgenics. Bioessays 26(11):1243–1253PubMedCrossRefGoogle Scholar
  91. 91.
    Wang JW, Imai Y, Lu B (2007) Activation of PAR-1 kinase and stimulation of Tau phosphorylation by diverse signals require the tumor suppressor protein LKB1. J Neurosci 27(3):574–581PubMedCrossRefGoogle Scholar
  92. 92.
    Kimura T, Yamashita S, Fukuda T, Park JM, Murayama M, Mizoroki T, Yoshiike Y, Sahara N, Takashima A (2007) Hyperphosphorylated Tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human Tau. EMBO J 26(24):5143–5152PubMedCrossRefGoogle Scholar
  93. 93.
    Comas D, Petit F, Preat T (2004) Drosophila long-term memory formation involves regulation of cathepsin activity. Nature 430(6998):407–415CrossRefGoogle Scholar
  94. 94.
    Ellis MC, O’Neill EM, Rubin GM (1993) Expression of Drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development 119(3):855–865PubMedGoogle Scholar
  95. 95.
    Moses K, Rubin GM (1991) Glass encodes a site-specific DNA-binding protein that is regulated in response to positional signals in the developing Drosophila eye. Genes Dev 5(4):583–593PubMedCrossRefGoogle Scholar
  96. 96.
    Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type Tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34(4):509–519PubMedCrossRefGoogle Scholar
  97. 97.
    Iijima-Ando K, Zhao L, Gatt A, Shenton C, Iijima KA (2010) DNA damage-activated checkpoint kinase phosphorylates Tau and enhances Tau-induced neurodegeneration. Hum Mol Genet 19(10):1930–1938PubMedCrossRefGoogle Scholar
  98. 98.
    Grammenoudi S, Kosmidis S, Skoulakis EM (2006) Cell type-specific processing of human Tau proteins in Drosophila. FEBS Lett 580(19):4602–4606PubMedCrossRefGoogle Scholar
  99. 99.
    Steinhilb ML, Dias-Santagata D, Fulga TA, Felch DL, Feany MB (2007) Tau phosphorylation sites work in concert to promote neurotoxicity in vivo. Mol Biol Cell 18(12):5060–5068PubMedCrossRefGoogle Scholar
  100. 100.
    Khurana V, Lu Y, Steinhilb ML, Oldham S, Shulman JM, Feany MB (2006) TOR-mediated cell-cycle activation causes neurodegeneration in a Drosophila tauopathy model. Curr Biol 16(3):230–241PubMedCrossRefGoogle Scholar
  101. 101.
    Chatterjee S, Sang TK, Lawless GM, Jackson GR (2009) Dissociation of Tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 18(1):164–177PubMedCrossRefGoogle Scholar
  102. 102.
    Yeh PA, Chien JY, Chou CC, Huang YF, Tang CY, Wang HY, Su MT (2009) Drosophila notal bristle as a novel assessment tool for pathogenic study of Tau toxicity and screening of therapeutic compounds. Biochem Biophys Res Commun 391(1):510–516PubMedCrossRefGoogle Scholar
  103. 103.
    Steinhilb ML, Dias-Santagata D, Mulkearns EE, Shulman JM, Biernat J, Mandelkow EM, Feany MB (2007) S/P and T/P phosphorylation is critical for Tau neurotoxicity in Drosophila. J Neurosci Res 85(6):1271–1278PubMedCrossRefGoogle Scholar
  104. 104.
    Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A, Mears A, Drummond JA, Berg S, MacKay D, Asuni AA, Bhat R, Lovestone S (2004) GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9(5):522–530PubMedCrossRefGoogle Scholar
  105. 105.
    Hirth F (2010) Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets 9:504–523PubMedGoogle Scholar
  106. 106.
    Chee FC, Mudher A, Cuttle MF, Newman TA, MacKay D, Lovestone S, Shepherd D (2005) Over-expression of Tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiol Dis 20(3):918–928PubMedCrossRefGoogle Scholar
  107. 107.
    Williams DW, Tyrer M, Shepherd D (2000) Tau and Tau reporters disrupt central projections of sensory neurons in Drosophila. J Comp Neurol 428(4):630–640PubMedCrossRefGoogle Scholar
  108. 108.
    Murray MJ, Merritt DJ, Brand AH, Whitington PM (1998) In vivo dynamics of axon pathfinding in the Drosophilia CNS: a time-lapse study of an identified motorneuron. J Neurobiol 37(4):607–621PubMedCrossRefGoogle Scholar
  109. 109.
    Herrup K, Neve R, Ackerman SL, Copani A (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24(42):9232–9239PubMedCrossRefGoogle Scholar
  110. 110.
    Shulman JM, Feany MB (2003) Genetic modifiers of tauopathy in Drosophila. Genetics 165(3):1233–1242PubMedGoogle Scholar
  111. 111.
    Blard O, Feuillette S, Bou J, Chaumette B, Frebourg T, Campion D, Lecourtois M (2007) Cytoskeleton proteins are modulators of mutant Tau-induced neurodegeneration in Drosophila. Hum Mol Genet 16(5):555–566PubMedCrossRefGoogle Scholar
  112. 112.
    Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB (2007) Abnormal bundling and accumulation of F-actin mediates Tau-induced neuronal degeneration in vivo. Nat Cell Biol 9(2):139–148PubMedCrossRefGoogle Scholar
  113. 113.
    Heidary G, Fortini ME (2001) Identification and characterization of the Drosophila Tau homolog. Mech Dev 108(1–2):171–178PubMedCrossRefGoogle Scholar
  114. 114.
    Tian AG, Deng WM (2009) Par-1 and Tau regulate the anterior-posterior gradient of microtubules in Drosophila oocytes. Dev Biol 327(2):458–464PubMedCrossRefGoogle Scholar
  115. 115.
    Bettencourt da Cruz A, Schwarzel M, Schulze S, Niyyati M, Heisenberg M, Kretzschmar D (2005) Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila. Mol Biol Cell 16(5):2433–2442PubMedCrossRefGoogle Scholar
  116. 116.
    Chen X, Li Y, Huang J, Cao D, Yang G, Liu W, Lu H, Guo A (2007) Study of tauopathies by comparing Drosophila and human Tau in Drosophila. Cell Tissue Res 329(1):169–178PubMedCrossRefGoogle Scholar
  117. 117.
    Ubhi KK, Shaibah H, Newman TA, Shepherd D, Mudher A (2007) A comparison of the neuronal dysfunction caused by Drosophila Tau and human Tau in a Drosophila model of tauopathies. Invert Neurosci 7(3):165–171PubMedCrossRefGoogle Scholar
  118. 118.
    Chee F, Mudher A, Newman TA, Cuttle M, Lovestone S, Shepherd D (2006) Overexpression of Tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Biochem Soc Trans 34(Pt 1):88–90PubMedGoogle Scholar
  119. 119.
    Sofola O, Kerr F, Rogers I, Killick R, Augustin H, Gandy C, Allen MJ, Hardy J, Lovestone S, Partridge L (2010) Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer’s disease. PLoS Genet 6(9):e1001087PubMedCrossRefGoogle Scholar
  120. 120.
    Feuillette S, Miguel L, Frebourg T, Campion D, Lecourtois M (2010) Drosophila models of human tauopathies indicate that Tau protein toxicity in vivo is mediated by soluble cytosolic phosphorylated forms of the protein. J Neurochem 113(4):895–903PubMedCrossRefGoogle Scholar
  121. 121.
    Cowan CM, Bossing T, Page A, Shepherd D, Mudher A (2010) Soluble hyper-phosphorylated Tau causes microtubule breakdown and functionally compromises normal Tau in vivo. Acta Neuropathol 120(5):593–604PubMedCrossRefGoogle Scholar
  122. 122.
    Cowan CM, Chee F, Shepherd D, Mudher A (2010) Disruption of neuronal function by soluble hyperphosphorylated Tau in a Drosophila model of tauopathy. Biochem Soc Trans 38(2):564–570PubMedCrossRefGoogle Scholar
  123. 123.
    Ghosh S, Feany MB (2004) Comparison of pathways controlling toxicity in the eye and brain in Drosophila models of human neurodegenerative diseases. Hum Mol Genet 13(18):2011–2018PubMedCrossRefGoogle Scholar
  124. 124.
    Karsten SL, Sang TK, Gehman LT, Chatterjee S, Liu J, Lawless GM, Sengupta S, Berry RW, Pomakian J, Oh HS, Schulz C, Hui KS, Wiedau-Pazos M, Vinters HV, Binder LI, Geschwind DH, Jackson GR (2006) A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of Tau-induced neurodegeneration. Neuron 51(5):549–560PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Katerina Papanikolopoulou
    • 1
  • Efthimios M. C. Skoulakis
    • 1
  1. 1.Institute of Cellular and Developmental BiologyBiomedical Sciences Research Centre “Alexander Fleming”VariGreece

Personalised recommendations