Advertisement

Molecular Neurobiology

, Volume 44, Issue 1, pp 7–12 | Cite as

The Role of Notch Signaling in Adult Neurogenesis

  • Itaru ImayoshiEmail author
  • Ryoichiro KageyamaEmail author
Article

Abstract

Neurogenesis occurs throughout adulthood in the mammalian brain. Newly born neurons are incorporated into the functional networks of both the olfactory bulb and the hippocampal dentate gyrus, and there is growing evidence that adult neurogenesis is important for various brain functions. Continuous neurogenesis is achieved by the coordinated proliferation and differentiation of adult neural stem cells. In this review, we discuss the recent findings concerning the roles of Notch signaling in adult neural stem cells.

Keywords

Notch signaling Rbpj Hes1 Hes5 Adult neurogenesis Neural stem cells 

Notes

Acknowledgments

This work was supported by the grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan. I.I. was supported by JST PRESTO program.

References

  1. 1.
    Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184PubMedCrossRefGoogle Scholar
  2. 2.
    Caviness VS Jr, Takahashi T, Nowakowski RS (1995) Numbers, time and neocortical neurogenesis: a general developmental and evolutionary model. Trends Neurosci 18:379–383PubMedCrossRefGoogle Scholar
  3. 3.
    McConnell SK (1995) Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15:761–768PubMedCrossRefGoogle Scholar
  4. 4.
    Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 18:383–388PubMedCrossRefGoogle Scholar
  5. 5.
    Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development 131:3133–3145PubMedCrossRefGoogle Scholar
  6. 6.
    Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144PubMedCrossRefGoogle Scholar
  7. 7.
    Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: A major site of neurogenesis. Proc Natl Acad Sci U S A 101:3196–3201PubMedCrossRefGoogle Scholar
  8. 8.
    Fishell G, Kriegstein AR (2003) Neurons from radial glia: the consequences of asymmetric inheritance. Curr Opin Neurobiol 13:34–41PubMedCrossRefGoogle Scholar
  9. 9.
    Götz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6:777–788PubMedCrossRefGoogle Scholar
  10. 10.
    Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–369PubMedCrossRefGoogle Scholar
  11. 11.
    Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  12. 12.
    McKay R (1997) Stem cell in the central nervous system. Science 276:66–71PubMedCrossRefGoogle Scholar
  13. 13.
    Temple S (2001) The development of neural stem cells. Nature 414:112–117PubMedCrossRefGoogle Scholar
  14. 14.
    Ming G, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250PubMedCrossRefGoogle Scholar
  15. 15.
    Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles ofcontinuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:11531161CrossRefGoogle Scholar
  16. 16.
    Imayoshi I, Sakamoto M, Ohtsuka T, Kageyama R (2009) Continuous neurogenesis in the adult brain. Dev Growth Differ 51:379–386PubMedCrossRefGoogle Scholar
  17. 17.
    Doetsh F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716CrossRefGoogle Scholar
  18. 18.
    Pastrana E, Cheng LC, Doetsch F (2009) Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci U S A 106:6387–6392PubMedGoogle Scholar
  19. 19.
    Seri B, Garcia-Verdugo JM, Collado-Morente L, McEwen BS, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378PubMedCrossRefGoogle Scholar
  20. 20.
    Suh H, Consiglio A, Ray J, Sawai T, D-Amour KA, Gage FH (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528PubMedCrossRefGoogle Scholar
  21. 21.
    Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660PubMedCrossRefGoogle Scholar
  22. 22.
    Steiner B, Klempin F, Wang L, Kott M, Kettenmann H, Kempermann G (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54:805–814PubMedCrossRefGoogle Scholar
  23. 23.
    Hodge RD, Hevner RF (2011) Expression and actions of transcription factors in adult hippocampal neurogenesis. Dev Neurobiol doi: 10.1002/dneu.20882
  24. 24.
    Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530PubMedCrossRefGoogle Scholar
  25. 25.
    Ross SE, Greenberg ME, Stiles CD (2003) Basic helix-loop-helix factors in cortical development. Neuron 39:13–25PubMedCrossRefGoogle Scholar
  26. 26.
    Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233PubMedCrossRefGoogle Scholar
  27. 27.
    Yoon KJ, Koo BK, Im SK, Jeong HW, Ghim J, Kwon M, Moon JS, Miyata T, Kong YY (2008) Mind bomb 1-expressing intermediate progenitors generate Notch signaling to maintain radial glial cells. Neuron 58:519–531PubMedCrossRefGoogle Scholar
  28. 28.
    Kageyama R, Ohtsuka T, Shimojo H, Imayoshi I (2008) Dynamic Notch signaling in neural progenitor cells and a revised view of lateral inhibition. Nat Neurosci 11:1247–1251PubMedCrossRefGoogle Scholar
  29. 29.
    Mason HA, Rakowiecki SM, Raftopouloul M, Nery S, Huang Y, Gridley T, Fishell G (2005) Notch signaling coordinates the patterning of striatal compartments. Development 132:4247–4258PubMedCrossRefGoogle Scholar
  30. 30.
    Kawaguchi D, Yoshimatsu T, Hozumi K, Gotoh Y (2008) Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development 135:3849–3858PubMedCrossRefGoogle Scholar
  31. 31.
    Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R (2010) Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 30:3489–3498PubMedCrossRefGoogle Scholar
  32. 32.
    Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R (2004) Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 131:5539–5545PubMedCrossRefGoogle Scholar
  33. 33.
    Imayoshi I, Shimogori T, Ohtsuka T, Kageyama R (2008) Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline. Development 135:2531–2541PubMedCrossRefGoogle Scholar
  34. 34.
    Pierfelice T, Alberi L, Gaiano N (2011) Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69:840–855PubMedCrossRefGoogle Scholar
  35. 35.
    Stump G, Durrer A, Klein AL, Lutolf S, Suter U, Taylor V (2002) Notch1 and its ligands delta-like and Jagged are expressed and active in distinct cell populations in the postnatal mouse brain. Mech Dev 114:153–159PubMedCrossRefGoogle Scholar
  36. 36.
    Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J, Bongarzone ER (2006) Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci 28:81–91PubMedCrossRefGoogle Scholar
  37. 37.
    Irvin DK, Nakano I, Paucar A, Kornblum HI (2004) Patterns of Jagged1, Jagged2, Delta-like 1 and Delta-like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in progenitors and differentiated cells. J Neurosci Res 75:330–343PubMedCrossRefGoogle Scholar
  38. 38.
    Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas CA, Kempermann G, Taylor V, Giachino C (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6:445–456PubMedCrossRefGoogle Scholar
  39. 39.
    Ehm O, Göritz C, Covic M, Schaffner I, Schwarz TJ, Karaca E, Kempkes B, Kremmer E, Pfrieger FW, Espinosa L, Bigas A, Giachino C, Taylor V, Frisén J, Lie DC (2010) RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci 30:13794–13807PubMedCrossRefGoogle Scholar
  40. 40.
    Ables JL, Decarolis NA, Johnson MA, Rivera PD, Gao Z, Cooper DC, Radtke F, Hsieh J, Eisch AJ (2010) Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 30:10484–10492PubMedCrossRefGoogle Scholar
  41. 41.
    Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P (2007) Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci U S A 104:20558–20563PubMedCrossRefGoogle Scholar
  42. 42.
    Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826PubMedCrossRefGoogle Scholar
  43. 43.
    Carlén M, Meletis K, Göritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabé-Heider F, Yeung MSY, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisén J (2009) Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 12:259–267PubMedCrossRefGoogle Scholar
  44. 44.
    Chapouton P, Skupien P, Hesl B, Coolen M, Moore JC, Madelaine R, Kremmer E, Faus-Kessler T, Blader P, Lawson ND, Bally Cuif L (2010) Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J Neurosci 30:7961–7974PubMedCrossRefGoogle Scholar
  45. 45.
    Nyfeler Y, Kirch RD, Mantei N, Leone DP, Radtke F, Suter U, Taylor V (2005) Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. EMBO J 24:3504–3515PubMedCrossRefGoogle Scholar
  46. 46.
    Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300PubMedCrossRefGoogle Scholar
  47. 47.
    Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia-Verdugo JM, Doetsch F (2008) A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3:279–288PubMedCrossRefGoogle Scholar
  48. 48.
    Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278PubMedCrossRefGoogle Scholar
  49. 49.
    Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494PubMedCrossRefGoogle Scholar
  50. 50.
    Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mughal MR, Eckley DM, Sasaki T, Patton B, Mattson MP, Hirschi KK, Dickinson ME, ffrench-Constant C (2010) Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. J Neurosci 30:9771–9781PubMedCrossRefGoogle Scholar
  51. 51.
    High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA (2008) Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci U S A 105:1955–1959PubMedCrossRefGoogle Scholar
  52. 52.
    Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467:323–327PubMedCrossRefGoogle Scholar
  53. 53.
    Lavado A, Lagutin OV, Chow LM, Baker SJ, Oliver G (2010) Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol 8:e1000460PubMedCrossRefGoogle Scholar
  54. 54.
    Brandt MD, Maass A, Kempermann G, Storch A (2010) Physical exercise increases Notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. Eur J Neurosci 32:1256–1264PubMedCrossRefGoogle Scholar
  55. 55.
    Lazarini F, Lledo PM (2010) Is adult neurogenesis essential for olfaction? Trends Neurosci 34:20–30PubMedCrossRefGoogle Scholar
  56. 56.
    Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13:1338–1344PubMedCrossRefGoogle Scholar
  57. 57.
    Adam Y, Mizrahi A (2010) Circuit formation and maintenance—perspectives from the mammalian olfactory bulb. Curr Opin Neurobiol 20:134–140PubMedCrossRefGoogle Scholar
  58. 58.
    Eisch AJ, Cameron HA, Encinas JM, Meltzer LA, Ming GL, Overstreet-Wadiche LS (2008) Adult neurogenesis, mental health, and mental illness: hope or hype? J Neurosci 28:11785–11791PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Virus ResearchKyoto UniversityKyotoJapan
  2. 2.The Hakubi CenterKyoto UniversityKyotoJapan
  3. 3.Japan Science and Technology AgencyPrecursory Research for Embryonic Science and Technology (PRESTO)KyotoJapan
  4. 4.Japan Science and Technology AgencyCore Research for Evolutional Science and Technology (CREST)KyotoJapan

Personalised recommendations