Molecular Neurobiology

, Volume 44, Issue 1, pp 53–64 | Cite as

Cell Biology of the BLOC-1 Complex Subunit Dysbindin, a Schizophrenia Susceptibility Gene

  • Ariana P. Mullin
  • Avanti Gokhale
  • Jennifer Larimore
  • Victor Faundez
Article

Abstract

There is growing interest in the biology of dysbindin and its genetic locus (DTNBP1) due to genetic variants associated with an increased risk of schizophrenia. Reduced levels of dysbindin mRNA and protein in the hippocampal formation of schizophrenia patients further support involvement of this locus in disease risk. Here, we discuss phylogenetically conserved dysbindin molecular interactions that define its contribution to the assembly of the biogenesis of lysosome-related organelles complex-1 (BLOC-1). We explore fundamental cellular processes where dysbindin and the dysbindin-containing BLOC-1 complex are implicated. We propose that cellular, tissue, and system neurological phenotypes from dysbindin deficiencies in model genetic organisms, and likely individuals affected with schizophrenia, emerge from abnormalities in few core cellular mechanisms controlled by BLOC-1-dysbindin-containing complex rather than from defects in dysbindin itself.

Keywords

Dysbindin DTNBP1 Hermansky–Pudlak BLOC-1 AP-3 Schizophrenia 

References

  1. 1.
    Benson MA, Newey SE, Martin-Rendon E, Hawkes R, Blake DJ (2001) Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 276(26):24232–24241PubMedGoogle Scholar
  2. 2.
    Talbot K, Ong WY, Blake DJ, Tang D, Louneva N, Carlson GC et al (2009) Dysbindin-1 and its protein family, with special attention to the potential role of dysbindin-1 in neuronal functions and the pathophysiology of schizophrenia. In: Kantrowitz Ja (ed) Handbook of Neurochemistry and Molecular Neurobiology, vol. 27. Springer Science, New York, pp 107–241Google Scholar
  3. 3.
    Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV et al (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71(2):337–348PubMedGoogle Scholar
  4. 4.
    Straub RE, MacLean CJ, O'Neill FA, Burke J, Murphy B, Duke F et al (1995) A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nat Genet 11(3):287–293PubMedGoogle Scholar
  5. 5.
    Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ et al (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113(9):1353–1363PubMedGoogle Scholar
  6. 6.
    Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ et al (2008) Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40(7):827–834PubMedGoogle Scholar
  7. 7.
    Schizophrenia_Research_Forum. 2010 13 March 2010 [cited; Available from: http://www.schizophreniaforum.org/res/sczgene/default.asp
  8. 8.
    Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ et al (1999) Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 56(2):162–168PubMedGoogle Scholar
  9. 9.
    Cannon TD, Kaprio J, Lonnqvist J, Huttunen M, Koskenvuo M (1998) The genetic epidemiology of schizophrenia in a Finnish twin cohort. A population-based modeling study. Arch Gen Psychiatry 55(1):67–74PubMedGoogle Scholar
  10. 10.
    Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60(12):1187–1192PubMedGoogle Scholar
  11. 11.
    Consortium IS (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455(7210):237–241Google Scholar
  12. 12.
    Stefansson H, Rujescu D, Cichon S, Pietilainen OP, Ingason A, Steinberg S et al (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455(7210):232–236PubMedGoogle Scholar
  13. 13.
    Moreno-De-Luca D, Mulle JG, Kaminsky EB, Sanders SJ, Myers SM, Adam MP et al (2010) Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am J Hum Genet 87(5):618–630PubMedGoogle Scholar
  14. 14.
    Karayiorgou M, Simon TJ, Gogos JA (2010) 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 11(6):402–416PubMedGoogle Scholar
  15. 15.
    Mulle JG, Dodd AF, McGrath JA, Wolyniec PS, Mitchell AA, Shetty AC et al (2010) Microdeletions of 3q29 confer high risk for schizophrenia. Am J Hum Genet 87(2):229–236PubMedGoogle Scholar
  16. 16.
    Ingason A, Rujescu D, Cichon S, Sigurdsson E, Sigmundsson T, Pietilainen OP et al (2010) Copy number variations of chromosome 16p13.1 region associated with schizophrenia. Mol Psychiatry 16(1):17–25Google Scholar
  17. 17.
    McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S et al (2009) Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet 41(11):1223–1227PubMedGoogle Scholar
  18. 18.
    Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, Sawa A (2009) Understanding the role of disc1 in psychiatric disease and during normal development. J Neurosci 29(41):12768–12775PubMedGoogle Scholar
  19. 19.
    Gauthier J, Champagne N, Lafreniere RG, Xiong L, Spiegelman D, Brustein E et al (2010) De novo mutations in the gene encoding the synaptic scaffolding protein SHANK3 in patients ascertained for schizophrenia. Proc Natl Acad Sci USA 107(17):7863–7868PubMedGoogle Scholar
  20. 20.
    Tarabeux J, Champagne N, Brustein E, Hamdan FF, Gauthier J, Lapointe M et al (2010) De novo truncating mutation in kinesin 17 associated with schizophrenia. Biol Psychiatry 68(7):649–656PubMedGoogle Scholar
  21. 21.
    Gottesman II, Shields J (1967) A polygenic theory of schizophrenia. Proc Natl Acad Sci USA 58(1):199–205PubMedGoogle Scholar
  22. 22.
    Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46(2):222–228PubMedGoogle Scholar
  23. 23.
    Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460(7256):748–752PubMedGoogle Scholar
  24. 24.
    Ioannidis JP, Boffetta P, Little J, O'Brien TR, Uitterlinden AG, Vineis P et al (2008) Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 37(1):120–132PubMedGoogle Scholar
  25. 25.
    Dwyer S, Carroll L, Mantripragada KK et al. Mutation screening of the DTNBP1 exonic sequence in 669 schizophrenics and 710 controls using high-resolution melting analysis. Am J Med Genet B Neuropsychiatr Genet 153B(3): 766–774Google Scholar
  26. 26.
    Li W, Zhang Q, Oiso N, Novak EK, Gautam R, O'Brien EP et al (2003) Hermansky-Pudlak Syndrome Type 7 (HPS-7) results from mutant dysbindin, a member of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Nat Genet 35(1):84–89PubMedGoogle Scholar
  27. 27.
    Schwab SG, Knapp M, Mondabon S, Hallmayer J, Borrmann-Hassenbach M, Albus M et al (2003) Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. Am J Hum Genet 72(1):185–190PubMedGoogle Scholar
  28. 28.
    Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M et al (2004) Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatry 61(4):336–344PubMedGoogle Scholar
  29. 29.
    Morris DW, McGhee KA, Schwaiger S, Scully P, Quinn J, Meagher D et al (2003) No evidence for association of the dysbindin gene [DTNBP1] with schizophrenia in an Irish population-based study. Schizophr Res 60(2–3):167–172PubMedGoogle Scholar
  30. 30.
    Mutsuddi M, Morris DW, Waggoner SG, Daly MJ, Scolnick EM, Sklar P (2006) Analysis of high-resolution HapMap of DTNBP1 (dysbindin) suggests no consistency between reported common variant associations and schizophrenia. Am J Hum Genet 79(5):903–909PubMedGoogle Scholar
  31. 31.
    Peters K, Wiltshire S, Henders AK, Dragovic M, Badcock JC, Chandler D et al (2008) Comprehensive analysis of tagging sequence variants in DTNBP1 shows no association with schizophrenia or with its composite neurocognitive endophenotypes. Am J Med Genet B Neuropsychiatr Genet 147B(7):1159–1166PubMedGoogle Scholar
  32. 32.
    Strohmaier J, Frank J, Wendland JR, Schumacher J, Jamra RA, Treutlein J et al (2010) A reappraisal of the association between dysbindin (DTNBP1) and schizophrenia in a large combined case-control and family-based sample of German ancestry. Schizophr Res 118(1–3):98–105PubMedGoogle Scholar
  33. 33.
    Turunen JA, Peltonen JO, Pietilainen OP, Hennah W, Loukola A, Paunio T et al (2007) The role of DTNBP1, NRG1, and AKT1 in the genetics of schizophrenia in Finland. Schizophr Res 91(1–3):27–36PubMedGoogle Scholar
  34. 34.
    Abazyan B, Nomura J, Kannan G, Ishizuka K, Tamashiro KL, Nucifora F et al (2010) Prenatal interaction of mutant DISC1 and immune activation produces adult psychopathology. Biol Psychiatry 68(12):1172–1181PubMedGoogle Scholar
  35. 35.
    Guo AY, Sun J, Riley BP, Thiselton DL, Kendler KS, Zhao Z (2009) The dystrobrevin-binding protein 1 gene: features and networks. Mol Psychiatry 14(1):18–29PubMedGoogle Scholar
  36. 36.
    Tang J, LeGros RP, Louneva N, Yeh L, Cohen JW, Hahn CG et al (2009) Dysbindin-1 in dorsolateral prefrontal cortex of schizophrenia cases is reduced in an isoform-specific manner unrelated to dysbindin-1 mRNA expression. Hum Mol Genet 18(20):3851–3863PubMedGoogle Scholar
  37. 37.
    Talbot K, Louneva N, Cohen JW, Kazi H, Blake DJ, Arnold SE (2011) Synaptic dysbindin-1 reductions in schizophrenia occur in an isoform-specific manner indicating their subsynaptic location. PLoS ONE 6(3):e16886PubMedGoogle Scholar
  38. 38.
    Bray NJ, Preece A, Williams NM, Moskvina V, Buckland PR, Owen MJ et al (2005) Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Hum Mol Genet 14(14):1947–1954PubMedGoogle Scholar
  39. 39.
    Weickert CS, Rothmond DA, Hyde TM, Kleinman JE, Straub RE (2008) Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients. Schizophr Res 98(1–3):105–110PubMedGoogle Scholar
  40. 40.
    Weickert CS, Straub RE, McClintock BW, Matsumoto M, Hashimoto R, Hyde TM et al (2004) Human dysbindin (DTNBP1) gene expression in normal brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen Psychiatry 61(6):544–555PubMedGoogle Scholar
  41. 41.
    Donohoe G, Frodl T, Morris D, Spoletini I, Cannon DM, Cherubini A et al (2010) Reduced occipital and prefrontal brain volumes in dysbindin-associated schizophrenia. Neuropsychopharmacology 35(2):368–373PubMedGoogle Scholar
  42. 42.
    Donohoe G, Morris DW, Clarke S, McGhee KA, Schwaiger S, Nangle JM et al (2007) Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: a preliminary study. Neuropsychologia 45(2):454–458PubMedGoogle Scholar
  43. 43.
    Donohoe G, Morris DW, De Sanctis P, Magno E, Montesi JL, Garavan HP et al (2008) Early visual processing deficits in dysbindin-associated schizophrenia. Biol Psychiatry 63(5):484–489PubMedGoogle Scholar
  44. 44.
    Narr KL, Szeszko PR, Lencz T, Woods RP, Hamilton LS, Phillips O et al (2009) DTNBP1 is associated with imaging phenotypes in schizophrenia. Hum Brain Mapp 30(11):3783–3794PubMedGoogle Scholar
  45. 45.
    Fallgatter AJ, Herrmann MJ, Hohoff C, Ehlis AC, Jarczok TA, Freitag CM et al (2006) DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in healthy individuals. Neuropsychopharmacology 31(9):2002–2010PubMedGoogle Scholar
  46. 46.
    Markov V, Krug A, Krach S, Whitney C, Eggermann T, Zerres K et al (2009) Genetic variation in schizophrenia-risk-gene dysbindin 1 modulates brain activation in anterior cingulate cortex and right temporal gyrus during language production in healthy individuals. Neuroimage 47(4):2016–2022PubMedGoogle Scholar
  47. 47.
    Mechelli A, Viding E, Kumar A, Pettersson-Yeo W, Fusar-Poli P, Tognin S et al (2010) Dysbindin modulates brain function during visual processing in children. Neuroimage 49(1):817–822PubMedGoogle Scholar
  48. 48.
    Wolf C, Jackson MC, Kissling C et al. (2011) Dysbindin-1 genotype effects on emotional working memory. Mol Psychiatry 16(2):145–155Google Scholar
  49. 49.
    Ghiani CA, Starcevic M, Rodriguez-Fernandez IA, Nazarian R, Cheli VT, Chan LN et al (2010) The dysbindin-containing Complex (BLOC-1) in brain: developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Mol Psychiatry 15(2):115, 204–215Google Scholar
  50. 50.
    Starcevic M, Dell'Angelica EC (2004) Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Biol Chem 279(27):28393–28401PubMedGoogle Scholar
  51. 51.
    Di Pietro SM, Dell'Angelica EC (2005) The cell biology of Hermansky-Pudlak syndrome: recent advances. Traffic 6(7):525–533PubMedGoogle Scholar
  52. 52.
    Cheli VT, Daniels RW, Godoy R, Hoyle DJ, Kandachar V, Starcevic M et al (2010) Genetic modifiers of abnormal organelle biogenesis in a drosophila model of BLOC-1 deficiency. Hum Mol Genet 19(5):861–878PubMedGoogle Scholar
  53. 53.
    Nazarian R, Starcevic M, Spencer MJ, Dell'Angelica EC (2006) Reinvestigation of the dysbindin subunit of BLOC-1 (biogenesis of lysosome-related organelles complex-1) as a dystrobrevin-binding protein. Biochem J 395(3):587–598PubMedGoogle Scholar
  54. 54.
    Feng YQ, Zhou ZY, He X, Wang H, Guo XL, Hao CJ et al (2008) Dysbindin deficiency in sandy mice causes reduction of snapin and displays behaviors related to schizophrenia. Schizophr Res 106(2–3):218–228PubMedGoogle Scholar
  55. 55.
    Li W, Rusiniak ME, Chintala S, Gautam R, Novak EK, Swank RT (2004) Murine Hermansky-Pudlak syndrome genes: regulators of lysosome-related organelles. BioEssays 26(6):616–628PubMedGoogle Scholar
  56. 56.
    Wei ML (2006) Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 19(1):19–42PubMedGoogle Scholar
  57. 57.
    Morgan NV, Pasha S, Johnson CA, Ainsworth JR, Eady RA, Dawood B et al (2006) A germline mutation in BLOC1S3/reduced pigmentation causes a novel variant of Hermansky-Pudlak Syndrome (HPS8). Am J Hum Genet 78(1):160–166PubMedGoogle Scholar
  58. 58.
    Talbot K (2009) The sandy (sdy) mouse: a dysbindin-1 mutant relevant to schizophrenia research. Prog Brain Res 179:87–94PubMedGoogle Scholar
  59. 59.
    Dickman DK, Davis GW (2009) The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326(5956):1127–1130PubMedGoogle Scholar
  60. 60.
    Newell-Litwa K, Chintala S, Jenkins S, Pare JF, McGaha L, Smith Y et al (2010) Hermansky-Pudlak protein complexes, AP-3 and BLOC-1, differentially regulate presynaptic composition in the striatum and hippocampus. J Neurosci 30(3):820–831PubMedGoogle Scholar
  61. 61.
    Newell-Litwa K, Salazar G, Smith Y, Faundez V (2009) Roles of BLOC-1 and AP-3 complexes in cargo sorting to synaptic vesicles. Mol Biol Cell 20(5):1441–1453PubMedGoogle Scholar
  62. 62.
    Morris DW, Murphy K, Kenny N, Purcell SM, McGhee KA, Schwaiger S et al (2008) Dysbindin (DTNBP1) and the biogenesis of lysosome-related organelles complex 1 (BLOC-1): main and epistatic gene effects are potential contributors to schizophrenia susceptibility. Biol Psychiatry 63(1):24–31PubMedGoogle Scholar
  63. 63.
    Gerrish A, Williams H, Moskvina V, Owen MJ, O'Donovan MC, Williams NM (2009) An examination of MUTED as a schizophrenia susceptibility gene. Schizophr Res 107(1):110–111PubMedGoogle Scholar
  64. 64.
    Li W, Feng Y, Hao C, Guo X, Cui Y, He M et al (2007) The BLOC interactomes form a network in endosomal transport. J Genet Genomics 34(8):669–682PubMedGoogle Scholar
  65. 65.
    Rodriguez-Fernandez IA, Dell'Angelica EC (2009) A data-mining approach to rank candidate protein-binding partners-The case of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Inherit Metab Dis 32(2):190–203PubMedGoogle Scholar
  66. 66.
    Mead CL, Kuzyk MA, Moradian A, Wilson GM, Holt RA, Morin GB (2010) Cytosolic protein interactions of the schizophrenia susceptibility gene dysbindin. J Neurochem 113(6):1491–1503PubMedGoogle Scholar
  67. 67.
    Fei E, Ma X, Zhu C et al. (2010) Nucleocytoplasmic shuttling of dysbindin-1, a schizophrenia related protein, regulates synapsin I expression. J Biol Chem 285(49):38630–38640Google Scholar
  68. 68.
    Okuda H, Kuwahara R, Matsuzaki S, Miyata S, Kumamoto N, Hattori T et al (2010) Dysbindin regulates the transcriptional level of myristoylated alanine-rich protein kinase C substrate via the interaction with NF-YB in mice brain. PLoS ONE 5(1):e8773PubMedGoogle Scholar
  69. 69.
    Oyama S, Yamakawa H, Sasagawa N, Hosoi Y, Futai E, Ishiura S (2009) Dysbindin-1, a schizophrenia-related protein, functionally interacts with the DNA-dependent protein kinase complex in an isoform-dependent manner. PLoS ONE 4(1):e4199PubMedGoogle Scholar
  70. 70.
    Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N et al (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13(21):2699–2708PubMedGoogle Scholar
  71. 71.
    Cesca F, Baldelli P, Valtorta F, Benfenati F (2010) The synapsins: key actors of synapse function and plasticity. Prog Neurobiol 91(4):313–348PubMedGoogle Scholar
  72. 72.
    Ito H, Morishita R, Shinoda T et al. Dysbindin-1, WAVE2 and Abi-1 form a complex that regulates dendritic spine formation. Mol Psychiatry 15(10): 976–986Google Scholar
  73. 73.
    Falcon-Perez JM, Starcevic M, Gautam R, Dell'Angelica EC (2002) BLOC-1, a novel complex containing the pallidin and muted proteins involved in the biogenesis of melanosomes and platelet-dense granules. J Biol Chem 277(31):28191–28199PubMedGoogle Scholar
  74. 74.
    Kubota K, Kumamoto N, Matsuzaki S, Hashimoto R, Hattori T, Okuda H et al (2009) Dysbindin engages in c-Jun N-terminal kinase activity and cytoskeletal organization. Biochem Biophys Res Commun 379(2):191–195PubMedGoogle Scholar
  75. 75.
    Newell-Litwa K, Seong E, Burmeister M, Faundez V (2007) Neuronal and non-neuronal functions of the AP-3 sorting machinery. J Cell Sci 120(Pt 4):531–541PubMedGoogle Scholar
  76. 76.
    Dell'angelica EC (2009). AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol 21(4):552–559Google Scholar
  77. 77.
    Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447PubMedGoogle Scholar
  78. 78.
    Robinson MS (2004) Adaptable adaptors for coated vesicles. Trends Cell Biol 14(4):167–174PubMedGoogle Scholar
  79. 79.
    Salazar G, Craige B, Styers ML, Newell-Litwa KA, Doucette MM, Wainer BH et al (2006) BLOC-1 complex deficiency alters the targeting of adaptor protein complex-3 cargoes. Mol Biol Cell 17(9):4014–4026PubMedGoogle Scholar
  80. 80.
    Di Pietro SM, Falcon-Perez JM, Tenza D, Setty SR, Marks MS, Raposo G et al (2006) BLOC-1 interacts with BLOC-2 and the AP-3 complex to facilitate protein trafficking on endosomes. Mol Biol Cell 17(9):4027–4038PubMedGoogle Scholar
  81. 81.
    Setty SR, Tenza D, Truschel ST, Chou E, Sviderskaya EV, Theos AC et al (2007) BLOC-1 is required for cargo-specific sorting from vacuolar early endosomes toward lysosome-related organelles. Mol Biol Cell 18(3):768–780PubMedGoogle Scholar
  82. 82.
    Baust T, Anitei M, Czupalla C, Parshyna I, Bourel L, Thiele C et al (2008) Protein networks supporting AP-3 function in targeting lysosomal membrane proteins. Mol Biol Cell 19(5):1942–1951PubMedGoogle Scholar
  83. 83.
    Janvier K, Bonifacino JS (2005) Role of the endocytic machinery in the sorting of lysosome-associated membrane proteins. Mol Biol Cell 16(9):4231–4242PubMedGoogle Scholar
  84. 84.
    Le Borgne R, Alconada A, Bauer U, Hoflack B (1998) The mammalian AP-3 adaptor-like complex mediates the intracellular transport of lysosomal membrane glycoproteins. J Biol Chem 273(45):29451–29461PubMedGoogle Scholar
  85. 85.
    Iizuka Y, Sei Y, Weinberger DR, Straub RE (2007) Evidence that the BLOC-1 protein dysbindin modulates dopamine D2 receptor internalization and signaling but not D1 internalization. J Neurosci 27(45):12390–12395PubMedGoogle Scholar
  86. 86.
    Ji Y, Yang F, Papaleo F, Wang HX, Gao WJ, Weinberger DR et al (2009) Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proc Natl Acad Sci USA 106(46):19593–19598PubMedGoogle Scholar
  87. 87.
    Tang TT, Yang F, Chen BS, Lu Y, Ji Y, Roche KW et al (2009) Dysbindin regulates hippocampal LTP by controlling NMDA receptor surface expression. Proc Natl Acad Sci USA 106(50):21395–21400PubMedGoogle Scholar
  88. 88.
    Marley A, von Zastrow M (2010) Dysbindin promotes the post-endocytic sorting of G protein-coupled receptors to lysosomes. PLoS ONE 5(2):e9325PubMedGoogle Scholar
  89. 89.
    Asensio CS, Sirkis DW, Edwards RH (2010) RNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway. J Cell Biol 191(6):1173–1187PubMedGoogle Scholar
  90. 90.
    Grabner CP, Price SD, Lysakowski A, Cahill AL, Fox AP (2006) Regulation of large dense-core vesicle volume and neurotransmitter content mediated by adaptor protein 3. Proc Natl Acad Sci USA 103(26):10035–10040PubMedGoogle Scholar
  91. 91.
    Salazar G, Zlatic S, Craige B, Peden AA, Pohl J, Faundez V (2009) Hermansky-Pudlak syndrome protein complexes associate with phosphatidylinositol 4-kinase type II alpha in neuronal and non-neuronal cells. J Biol Chem 284(3):1790–1802PubMedGoogle Scholar
  92. 92.
    Hashimoto R, Ohi K, Okada T, Yasuda Y, Yamamori H, Hori H et al (2009) Association analysis between schizophrenia and the AP-3 complex genes. Neurosci Res 65(1):113–115PubMedGoogle Scholar
  93. 93.
    Hikita T, Taya S, Fujino Y, Taneichi-Kuroda S, Ohta K, Tsuboi D et al (2009) Proteomic analysis reveals novel binding partners of dysbindin, a schizophrenia-related protein. J Neurochem 110(5):1567–1574PubMedGoogle Scholar
  94. 94.
    Taneichi-Kuroda S, Taya S, Hikita T, Fujino Y, Kaibuchi K (2009) Direct interaction of dysbindin with the AP-3 complex via its mu subunit. Neurochem Int 54(7):431–438PubMedGoogle Scholar
  95. 95.
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2):153–166PubMedGoogle Scholar
  96. 96.
    Faundez V, Horng JT, Kelly RB (1998) A function for the AP3 coat complex in synaptic vesicle formation from endosomes. Cell 93(3):423–432PubMedGoogle Scholar
  97. 97.
    Ooi CE, Dell'Angelica EC, Bonifacino JS (1998) ADP-ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J Cell Biol 142(2):391–402PubMedGoogle Scholar
  98. 98.
    Borner GH, Harbour M, Hester S, Lilley KS, Robinson MS (2006) Comparative proteomics of clathrin-coated vesicles. J Cell Biol 175(4):571–578PubMedGoogle Scholar
  99. 99.
    Salazar G, Craige B, Wainer BH, Guo J, De Camilli P, Faundez V (2005) Phosphatidylinositol-4-kinase type II alpha is a component of adaptor protein-3-derived vesicles. Mol Biol Cell 16(8):3692–3704PubMedGoogle Scholar
  100. 100.
    Craige B, Salazar G, Faundez V (2008) Phosphatidylinositol-4-kinase type II alpha contains an AP-3 sorting motif and a kinase domain that are both required for endosome traffic. Mol Biol Cell 19:1415–1426PubMedGoogle Scholar
  101. 101.
    Perreault ML, Hasbi A, Alijaniaram M, Fan T, Varghese G, Fletcher PJ et al (2010) The dopamine D1-D2 receptor heteromer localizes in dynorphin/enkephalin neurons: increased high affinity state following amphetamine and in schizophrenia. J Biol Chem 285(47):36625–36634PubMedGoogle Scholar
  102. 102.
    Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: Version III—the final common pathway. Schizophr Bull 35(3):549–562PubMedGoogle Scholar
  103. 103.
    De Mei C, Ramos M, Iitaka C, Borrelli E (2009) Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 9(1):53–58PubMedGoogle Scholar
  104. 104.
    Mengual E, Pickel VM (2002) Ultrastructural immunocytochemical localization of the dopamine D2 receptor and tyrosine hydroxylase in the rat ventral pallidum. Synapse 43(3):151–162PubMedGoogle Scholar
  105. 105.
    Wang H, Pickel VM (2002) Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol 442(4):392–404PubMedGoogle Scholar
  106. 106.
    Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine MS et al (2004) Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 42(4):653–663PubMedGoogle Scholar
  107. 107.
    Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA et al (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci USA 90(19):8861–8865PubMedGoogle Scholar
  108. 108.
    Sesack SR, Aoki C, Pickel VM (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 14(1):88–106PubMedGoogle Scholar
  109. 109.
    Setty SR, Tenza D, Sviderskaya EV et al. (2008) Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature 454(7208):1142–1146Google Scholar
  110. 110.
    Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7(9):631–643PubMedGoogle Scholar
  111. 111.
    Wickner W, Schekman R (2008) Membrane fusion. Nat Struct Mol Biol 15(7):658–664PubMedGoogle Scholar
  112. 112.
    Brocker C, Engelbrecht-Vandre S, Ungermann C (2010) Multisubunit tethering complexes and their role in membrane fusion. Curr Biol 20(21):R943–R952PubMedGoogle Scholar
  113. 113.
    Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477PubMedGoogle Scholar
  114. 114.
    Huang L, Kuo YM, Gitschier J (1999) The pallid gene encodes a novel, syntaxin 13-interacting protein involved in platelet storage pool deficiency. Nat Genet 23(3):329–332PubMedGoogle Scholar
  115. 115.
    Lu L, Cai Q, Tian JH, Sheng ZH (2009) Snapin associates with late endocytic compartments and interacts with late endosomal snares. Biosci Rep 29(4):261–269PubMedGoogle Scholar
  116. 116.
    Bao Y, Lopez JA, James DE, Hunziker W (2008) Snapin interacts with the Exo70 subunit of the exocyst and modulates GLUT4 trafficking. J Biol Chem 283(1):324–331PubMedGoogle Scholar
  117. 117.
    Ilardi JM, Mochida S, Sheng ZH (1999) Snapin: a SNARE-associated protein implicated in synaptic transmission. Nat Neurosci 2(2):119–124PubMedGoogle Scholar
  118. 118.
    Buxton P, Zhang XM, Walsh B, Sriratana A, Schenberg I, Manickam E et al (2003) Identification and characterization of snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells. Biochem J 375(Pt 2):433–440PubMedGoogle Scholar
  119. 119.
    Tian JH, Wu ZX, Unzicker M, Lu L, Cai Q, Li C et al (2005) The role of snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells. J Neurosci 25(45):10546–10555PubMedGoogle Scholar
  120. 120.
    Pan PY, Tian JH, Sheng ZH (2009) Snapin facilitates the synchronization of synaptic vesicle fusion. Neuron 61(3):412–424PubMedGoogle Scholar
  121. 121.
    Chen XW, Feng YQ, Hao CJ, Guo XL, He X, Zhou ZY et al (2008) DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 181(5):791–801PubMedGoogle Scholar
  122. 122.
    Nagai T, Kitahara Y, Shiraki A, Hikita T, Taya S, Kaibuchi K et al (2010) Dysfunction of dopamine release in the prefrontal cortex of dysbindin deficient sandy mice: an in vivo microdialysis study. Neurosci Lett 470(2):134–138PubMedGoogle Scholar
  123. 123.
    Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC et al (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294(5544):1117–1122PubMedGoogle Scholar
  124. 124.
    Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Bendito G et al (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5(1):19–26PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ariana P. Mullin
    • 1
    • 3
  • Avanti Gokhale
    • 3
  • Jennifer Larimore
    • 3
  • Victor Faundez
    • 1
    • 2
    • 3
  1. 1.Graduate Program in NeuroscienceEmory UniversityAtlantaUSA
  2. 2.Center for Neurodegenerative DiseasesEmory UniversityAtlantaUSA
  3. 3.Department of Cell BiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations