Molecular Neurobiology

, Volume 44, Issue 1, pp 65–70 | Cite as

Bending Tau into Shape: The Emerging Role of Peptidyl-Prolyl Isomerases in Tauopathies

  • John KorenIII
  • Umesh K. Jinwal
  • Zachary Davey
  • Janine Kiray
  • Karthik Arulselvam
  • Chad A. Dickey
Article

Abstract

The Hsp90-associated cis-trans peptidyl-prolyl isomerase—FK506 binding protein 51 (FKBP51)—was recently found to co-localize with the microtubule (MT)-associated protein tau in neurons and physically interact with tau in brain tissues from humans who died from Alzheimer’s disease (AD). Tau pathologically aggregates in neurons, a process that is closely linked with cognitive deficits in AD. Tau typically functions to stabilize and bundle MTs. Cellular events like calcium influx destabilize MTs, disengaging tau. This excess tau should be degraded, but sometimes it is stabilized and forms higher-order aggregates, a pathogenic hallmark of tauopathies. FKBP51 was also found to increase in forebrain neurons with age, further supporting a novel role for FKBP51 in tau processing. This, combined with compelling evidence that the prolyl isomerase Pin1 regulates tau stability and phosphorylation dynamics, suggests an emerging role for isomerization in tau pathogenesis.

Keywords

Isomerase Tau Folding Phosphorylation Alzheimer's Tauopathies 

References

  1. 1.
    Oddo S et al (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421PubMedCrossRefGoogle Scholar
  2. 2.
    Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer beta-amyloid cores in rat brain. Proc Natl Acad Sci U S A 88(19):8362–8366PubMedCrossRefGoogle Scholar
  3. 3.
    Roberson ED et al (2011) Amyloid-beta/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer's disease. J Neurosci 31(2):700–711PubMedCrossRefGoogle Scholar
  4. 4.
    Mukaetova-Ladinska EB et al (2000) Alpha-synuclein inclusions in Alzheimer and Lewy body diseases. J Neuropathol Exp Neurol 59(5):408–417PubMedGoogle Scholar
  5. 5.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259PubMedCrossRefGoogle Scholar
  6. 6.
    Hardy J et al (2006) Tangle diseases and the tau haplotypes. Alzheimer Dis Assoc Disord 20(1):60–62PubMedCrossRefGoogle Scholar
  7. 7.
    Simon-Sanchez J et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson's disease. Nat Genet 41(12):1308–1312PubMedCrossRefGoogle Scholar
  8. 8.
    Shimura H, Miura-Shimura Y, Kosik KS (2004) Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem 279(17):17957–17962PubMedCrossRefGoogle Scholar
  9. 9.
    Shimura H et al (2004) CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 279(6):4869–4876PubMedCrossRefGoogle Scholar
  10. 10.
    Carrettiero DC et al (2009) The cochaperone BAG2 sweeps paired helical filament-insoluble tau from the microtubule. J Neurosci 29(7):2151–2161PubMedCrossRefGoogle Scholar
  11. 11.
    Petrucelli L et al (2004) CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum Mol Genet 13(7):703–714PubMedCrossRefGoogle Scholar
  12. 12.
    Dickey CA et al (2006) Pharmacologic reductions of total tau levels; implications for the role of microtubule dynamics in regulating tau expression. Mol Neurodegener 1:6PubMedCrossRefGoogle Scholar
  13. 13.
    Dickey CA et al (2006) HSP induction mediates selective clearance of tau phosphorylated at proline-directed Ser/Thr sites but not KXGS (MARK) sites. FASEB J 20(6):753–755PubMedGoogle Scholar
  14. 14.
    Dickey CA et al (2008) Akt and CHIP coregulate tau degradation through coordinated interactions. Proc Natl Acad Sci U S A 105(9):3622–3627PubMedCrossRefGoogle Scholar
  15. 15.
    Dickey CA, Petrucelli L (2006) Current strategies for the treatment of Alzheimer's disease and other tauopathies. Expert Opin Ther Targets 10(5):665–676PubMedCrossRefGoogle Scholar
  16. 16.
    Dickey CA et al (2006) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 26(26):6985–6996PubMedCrossRefGoogle Scholar
  17. 17.
    Dou F et al (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci U S A 100(2):721–726PubMedCrossRefGoogle Scholar
  18. 18.
    Luo W et al (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci U S A 104(22):9511–9516PubMedCrossRefGoogle Scholar
  19. 19.
    Jinwal UK et al (2010) The Hsp90 cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30(2):591–599PubMedCrossRefGoogle Scholar
  20. 20.
    Jinwal UK et al (2010) Hsp70 ATPase modulators as therapeutics for Alzheimer's and other neurodegenerative diseases. Mol Cell Pharmacol 2(2):43–46PubMedGoogle Scholar
  21. 21.
    Jinwal UK et al (2010) Hsc70 rapidly engages tau after microtubule destabilization. J Biol Chem 285(22):16798–16805PubMedCrossRefGoogle Scholar
  22. 22.
    Wang CL, Yang HL (2011) Conserved residues in the subunit interface of tau glutathione s-transferase affect catalytic and structural functions. J Integr Plant Biol 53(1):35–43PubMedCrossRefGoogle Scholar
  23. 23.
    Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8(11):904–916PubMedCrossRefGoogle Scholar
  24. 24.
    Lu PJ et al (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399(6738):784–788PubMedCrossRefGoogle Scholar
  25. 25.
    Romero PR et al (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci U S A 103(22):8390–8395PubMedCrossRefGoogle Scholar
  26. 26.
    Galas MC et al (2006) The peptidylprolyl cis/trans-isomerase Pin1 modulates stress-induced dephosphorylation of Tau in neurons. Implication in a pathological mechanism related to Alzheimer disease. J Biol Chem 281(28):19296–19304PubMedCrossRefGoogle Scholar
  27. 27.
    Pei H et al (2009) FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell 16(3):259–266PubMedCrossRefGoogle Scholar
  28. 28.
    Harding MW et al (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341(6244):758–760PubMedCrossRefGoogle Scholar
  29. 29.
    Sugata H et al (2009) A peptidyl-prolyl isomerase, FKBP12, accumulates in Alzheimer neurofibrillary tangles. Neurosci Lett 459(2):96–99PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshiyama Y et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53(3):337–351PubMedCrossRefGoogle Scholar
  31. 31.
    Armistead DM et al (1995) Design, synthesis and structure of non-macrocyclic inhibitors of FKBP12, the major binding protein for the immunosuppressant FK506. Acta Crystallogr D Biol Crystallogr 51(Pt 4):522–528PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao L et al (2006) FK506-binding protein ligands: structure-based design, synthesis, and neurotrophic/neuroprotective properties of substituted 5,5-dimethyl-2-(4-thiazolidine)carboxylates. J Med Chem 49(14):4059–4071PubMedCrossRefGoogle Scholar
  33. 33.
    Davies TH, Ning YM, Sanchez ER (2005) Differential control of glucocorticoid receptor hormone-binding function by tetratricopeptide repeat (TPR) proteins and the immunosuppressive ligand FK506. Biochemistry 44(6):2030–2038PubMedCrossRefGoogle Scholar
  34. 34.
    Davies TH, Sanchez ER (2005) FKBP52. Int J Biochem Cell Biol 37(1):42–47PubMedCrossRefGoogle Scholar
  35. 35.
    Chambraud B et al (2010) A role for FKBP52 in Tau protein function. Proc Natl Acad Sci U S A 107(6):2658–2663PubMedCrossRefGoogle Scholar
  36. 36.
    Quinta HR et al (2010) Subcellular rearrangement of hsp90-binding immunophilins accompanies neuronal differentiation and neurite outgrowth. J Neurochem 115(3):716–734PubMedCrossRefGoogle Scholar
  37. 37.
    Ruan B et al (2008) Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc Natl Acad Sci U S A 105(1):33–38PubMedCrossRefGoogle Scholar
  38. 38.
    Chambraud B et al (2007) The immunophilin FKBP52 specifically binds to tubulin and prevents microtubule formation. FASEB J 21(11):2787–2797PubMedCrossRefGoogle Scholar
  39. 39.
    Yong W et al (2007) Essential role for co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J Biol Chem 282(7):5026–5036PubMedCrossRefGoogle Scholar
  40. 40.
    Binder EB et al (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299(11):1291–1305PubMedCrossRefGoogle Scholar
  41. 41.
    Nielsen JV et al (2004) Fkbp8: novel isoforms, genomic organization, and characterization of a forebrain promoter in transgenic mice. Genomics 83(1):181–192PubMedCrossRefGoogle Scholar
  42. 42.
    Shirane M et al (2008) Regulation of apoptosis and neurite extension by FKBP38 is required for neural tube formation in the mouse. Genes Cells 13(6):635–651PubMedCrossRefGoogle Scholar
  43. 43.
    Edlich F et al (2006) The specific FKBP38 inhibitor N-(N',N'-dimethylcarboxamidomethyl)cycloheximide has potent neuroprotective and neurotrophic properties in brain ischemia. J Biol Chem 281(21):14961–14970PubMedCrossRefGoogle Scholar
  44. 44.
    Fischer G, Bang H, Mech C (1984) Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides. Biomed Biochim Acta 43(10):1101–1111PubMedGoogle Scholar
  45. 45.
    Fischer G et al (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337(6206):476–478PubMedCrossRefGoogle Scholar
  46. 46.
    Handschumacher RE et al (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226(4674):544–547PubMedCrossRefGoogle Scholar
  47. 47.
    Takahashi N, Hayano T, Suzuki M (1989) Peptidyl-prolyl cis-trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature 337(6206):473–475PubMedCrossRefGoogle Scholar
  48. 48.
    Ortiz M et al (2006) Patterns of evolution of host proteins involved in retroviral pathogenesis. Retrovirology 3:11PubMedCrossRefGoogle Scholar
  49. 49.
    Ke H, Huai Q (2004) Crystal structures of cyclophilin and its partners. Front Biosci 9:2285–2296PubMedCrossRefGoogle Scholar
  50. 50.
    Kim IS et al (2011) A cyclophilin A CPR1 overexpression enhances stress acquisition in Saccharomyces cerevisiae. Mol Cells 29(6):567–574CrossRefGoogle Scholar
  51. 51.
    Lian Q et al (2001) Selective changes of calcineurin (protein phosphatase 2B) activity in Alzheimer's disease cerebral cortex. Exp Neurol 167(1):158–165PubMedCrossRefGoogle Scholar
  52. 52.
    Barinaga M (1991) The secret of saltiness. Science 254(5032):654–655PubMedCrossRefGoogle Scholar
  53. 53.
    Galigniana MD et al (2004) Cyclophilin-A is bound through its peptidylprolyl isomerase domain to the cytoplasmic dynein motor protein complex. J Biol Chem 279(53):55754–55759PubMedCrossRefGoogle Scholar
  54. 54.
    Barrientos SA et al (2011) Axonal degeneration is mediated by the mitochondrial permeability transition pore. J Neurosci 31(3):966–978PubMedCrossRefGoogle Scholar
  55. 55.
    Pirkl F, Buchner J (2001) Functional analysis of the Hsp90-associated human peptidyl prolyl cis/trans isomerases FKBP51, FKBP52 and Cyp40. J Mol Biol 308(4):795–806PubMedCrossRefGoogle Scholar
  56. 56.
    Li J, Richter K, Buchner J (2011) Mixed Hsp90-cochaperone complexes are important for the progression of the reaction cycle. Nat Struct Mol Biol 18(1):61–66PubMedCrossRefGoogle Scholar
  57. 57.
    Ratajczak T et al (2009) Cyclophilin 40: an Hsp90-cochaperone associated with apo-steroid receptors. Int J Biochem Cell Biol 41(8–9):1652–1655PubMedCrossRefGoogle Scholar
  58. 58.
    Kimmins S, MacRae TH (2000) Maturation of steroid receptors: an example of functional cooperation among molecular chaperones and their associated proteins. Cell Stress Chaperones 5(2):76–86PubMedCrossRefGoogle Scholar
  59. 59.
    Naylor DJ, Hoogenraad NJ, Hoj PB (1999) Characterisation of several Hsp70 interacting proteins from mammalian organelles. Biochim Biophys Acta 1431(2):443–450PubMedCrossRefGoogle Scholar
  60. 60.
    Lane-Guermonprez L et al (2005) Synapsin associates with cyclophilin B in an ATP- and cyclosporin A-dependent manner. J Neurochem 93(6):1401–1411PubMedCrossRefGoogle Scholar
  61. 61.
    Morot-Gaudry-Talarmain Y (2009) Physical and functional interactions of cyclophilin B with neuronal actin and peroxiredoxin-1 are modified by oxidative stress. Free Radic Biol Med 47(12):1715–1730PubMedCrossRefGoogle Scholar
  62. 62.
    Bergsma DJ et al (1991) The cyclophilin multigene family of peptidyl-prolyl isomerases. Characterization of three separate human isoforms. J Biol Chem 266(34):23204–23214PubMedGoogle Scholar
  63. 63.
    Ozaki K et al (1996) Cloning, expression and chromosomal mapping of a novel cyclophilin-related gene (PPIL1) from human fetal brain. Cytogenet Cell Genet 72(2–3):242–245PubMedCrossRefGoogle Scholar
  64. 64.
    Carson R et al (2009) Variation in RTN3 and PPIL2 genes does not influence platelet membrane beta-secretase activity or susceptibility to alzheimer's disease in the northern Irish population. Neuromolecular Med 11(4):337–344PubMedCrossRefGoogle Scholar
  65. 65.
    Zeng L et al (2001) Molecular cloning, structure and expression of a novel nuclear RNA-binding cyclophilin-like gene (PPIL4) from human fetal brain. Cytogenet Cell Genet 95(1–2):43–47PubMedCrossRefGoogle Scholar
  66. 66.
    Nagase T et al (1999) Prediction of the coding sequences of unidentified human genes. XV. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res 6(5):337–345PubMedCrossRefGoogle Scholar
  67. 67.
    Meza-Zepeda LA et al (2002) Positional cloning identifies a novel cyclophilin as a candidate amplified oncogene in 1q21. Oncogene 21(14):2261–2269PubMedCrossRefGoogle Scholar
  68. 68.
    Shmueli O et al (2003) GeneNote: whole genome expression profiles in normal human tissues. C R Biol 326(10–11):1067–1072PubMedCrossRefGoogle Scholar
  69. 69.
    Yanai I et al (2005) Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21(5):650–659PubMedCrossRefGoogle Scholar
  70. 70.
    Chen S et al (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3(2):118–129PubMedCrossRefGoogle Scholar
  71. 71.
    Mi H et al (1996) A nuclear RNA-binding cyclophilin in human T cells. FEBS Lett 398(2–3):201–205PubMedCrossRefGoogle Scholar
  72. 72.
    Zhou Z et al (2001) Molecular cloning and characterization of a novel peptidylprolyl isomerase (cyclophilin)-like gene (PPIL3) from human fetal brain. Cytogenet Cell Genet 92(3–4):231–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • John KorenIII
    • 1
  • Umesh K. Jinwal
    • 1
  • Zachary Davey
    • 1
  • Janine Kiray
    • 1
  • Karthik Arulselvam
    • 1
  • Chad A. Dickey
    • 2
    • 1
  1. 1.Department of Molecular MedicineUSF Health Byrd Alzheimer’s InstituteTampaUSA
  2. 2.Departments of Molecular Medicine and PsychiatryUniversity of South Florida Alzheimer’s InstituteTampaUSA

Personalised recommendations