Molecular Neurobiology

, Volume 44, Issue 2, pp 136–141 | Cite as

A Potential Role for Creatine in Drug Abuse?

  • Kristen E. D’AnciEmail author
  • Patricia J. Allen
  • Robin B. Kanarek


Supplemental creatine has been promoted for its positive health effects and is best known for its use by athletes to increase muscle mass. In addition to its role in physical performance, creatine supplementation has protective effects on the brain in models of neuronal damage and also alters mood state and cognitive performance. Creatine is found in high protein foods, such as fish or meat, and is also produced endogenously from the biosynthesis of arginine, glycine, and methionine. Changes in brain creatine levels, as measured using magnetic resonance spectroscopy, are seen in individuals exposed to drugs of abuse and depressed individuals. These changes in brain creatine indicate that energy metabolism differs in these populations relative to healthy individuals. Recent work shows that creatine supplementation has the ability to function in a manner similar to antidepressant drugs and can offset negative consequences of stress. These observations are important in relation to addictive behaviors as addiction is influenced by psychological factors such as psychosocial stress and depression. The significance of altered brain levels of creatine in drug-exposed individuals and the role of creatine supplementation in models of drug abuse have yet to be explored and represent gaps in the current understanding of brain energetics and addiction.


Creatine Nutrition Drug abuse Depression Stress Magnetic resonance spectroscopy Post-traumatic stress disorder Traumatic brain injury 


  1. 1.
    Andres RH et al (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343PubMedCrossRefGoogle Scholar
  2. 2.
    Gualano B et al (2010) Exploring the therapeutic role of creatine supplementation. Amino Acids 38(1):31–44PubMedCrossRefGoogle Scholar
  3. 3.
    Allen PJ et al (2010) Chronic creatine supplementation alters depression-like behavior in rodents in a sex-dependent manner. Neuropsychopharmacology 35(2):534–546PubMedCrossRefGoogle Scholar
  4. 4.
    Amital D et al (2006) Open study of creatine monohydrate in treatment-resistant posttraumatic stress disorder. J Clin Psychiatry 67(5):836–837PubMedCrossRefGoogle Scholar
  5. 5.
    Roitman S et al (2007) Creatine monohydrate in resistant depression: a preliminary study. Bipolar Disord 9(7):754–758PubMedCrossRefGoogle Scholar
  6. 6.
    Beard E, Braissant O (2010) Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem 115(2):297–313PubMedCrossRefGoogle Scholar
  7. 7.
    Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80(3):1107–1213PubMedGoogle Scholar
  8. 8.
    Wyss M, Wallimann T (1994) Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 133–134:51–66PubMedCrossRefGoogle Scholar
  9. 9.
    Mudd SH et al (2007) Methyl balance and transmethylation fluxes in humans. Am J Clin Nutr 85(1):19–25PubMedGoogle Scholar
  10. 10.
    Lyoo IK et al (2003) Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res 123(2):87–100PubMedCrossRefGoogle Scholar
  11. 11.
    Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261PubMedCrossRefGoogle Scholar
  12. 12.
    McLeish MJ, Kenyon GL (2005) Relating structure to mechanism in creatine kinase. Crit Rev Biochem Mol Biol 40(1):1–20PubMedCrossRefGoogle Scholar
  13. 13.
    Wallimann T et al (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40PubMedGoogle Scholar
  14. 14.
    Niklasson F, Agren H (1984) Brain energy metabolism and blood-brain barrier permeability in depressive patients: analyses of creatine, creatinine, urate, and albumin in CSF and blood. Biol Psychiatry 19(8):1183–1206PubMedGoogle Scholar
  15. 15.
    Kuzhikandathil EV, Molloy GR (1994) Transcription of the brain creatine kinase gene in glial cells is modulated by cyclic AMP-dependent protein kinase. J Neurosci Res 39(1):70–82PubMedCrossRefGoogle Scholar
  16. 16.
    Wilken B et al (1998) Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr Res 43(1):8–14PubMedCrossRefGoogle Scholar
  17. 17.
    Andres RH et al (2005) Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue. J Neurochem 95(1):33–45PubMedCrossRefGoogle Scholar
  18. 18.
    Andres RH et al (2005) Creatine supplementation improves dopaminergic cell survival and protects against MPP+ toxicity in an organotypic tissue culture system. Cell Transplant 14(8):537–550PubMedCrossRefGoogle Scholar
  19. 19.
    Andres RH et al (2005) Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue. Neuroscience 133(3):701–713PubMedCrossRefGoogle Scholar
  20. 20.
    Ducray AD et al (2007) Creatine treatment promotes differentiation of GABA-ergic neuronal precursors in cultured fetal rat spinal cord. J Neurosci Res 85(9):1863–1875PubMedCrossRefGoogle Scholar
  21. 21.
    Renshaw PF et al (2001) Multinuclear magnetic resonance spectroscopy studies of brain purines in major depression. Am J Psychiatry 158(12):2048–2055PubMedCrossRefGoogle Scholar
  22. 22.
    Rezin GT et al (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34(6):1021–1029PubMedCrossRefGoogle Scholar
  23. 23.
    Shao L et al (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40(4):281–295PubMedCrossRefGoogle Scholar
  24. 24.
    Brustovetsky N, Brustovetsky T, Dubinsky JM (2001) On the mechanisms of neuroprotection by creatine and phosphocreatine. J Neurochem 76(2):425–434PubMedCrossRefGoogle Scholar
  25. 25.
    Matthews RT et al (1998) Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington's disease. J Neurosci 18(1):156–163PubMedGoogle Scholar
  26. 26.
    Matthews RT et al (1999) Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol 157(1):142–149PubMedCrossRefGoogle Scholar
  27. 27.
    Roy BD et al (2002) Dietary supplementation with creatine monohydrate prevents corticosteroid-induced attenuation of growth in young rats. Can J Physiol Pharmacol 80(10):1008–1014PubMedCrossRefGoogle Scholar
  28. 28.
    Lyoo IK, Renshaw PF (2002) Magnetic resonance spectroscopy: current and future applications in psychiatric research. Biol Psychiatry 51(3):195–207PubMedCrossRefGoogle Scholar
  29. 29.
    Agren H, Niklasson F (1988) Creatinine and creatine in CSF: indices of brain energy metabolism in depression. Short note. J Neural Transm 74(1):55–59PubMedCrossRefGoogle Scholar
  30. 30.
    Czeh B et al (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98(22):12796–12801PubMedCrossRefGoogle Scholar
  31. 31.
    Iosifescu DV et al (2008) Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry 63(12):1127–1134PubMedCrossRefGoogle Scholar
  32. 32.
    Moore CM et al (1997) Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorous-31 magnetic resonance spectroscopy study. Am J Psychiatry 154(1):116–118PubMedGoogle Scholar
  33. 33.
    Volz HP et al (1998) 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiatry Clin Neurosci 248(6):289–295PubMedCrossRefGoogle Scholar
  34. 34.
    Dager SR et al (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61(5):450–458PubMedCrossRefGoogle Scholar
  35. 35.
    Segal M et al (2007) Serum creatine kinase level in unmedicated nonpsychotic, psychotic, bipolar and schizoaffective depressed patients. Eur Neuropsychopharmacol 17(3):194–198PubMedCrossRefGoogle Scholar
  36. 36.
    Kato T et al (1992) Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 26(4):223–230PubMedCrossRefGoogle Scholar
  37. 37.
    Kato T et al (1994) Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 31(2):125–133PubMedCrossRefGoogle Scholar
  38. 38.
    Gold MS et al (2009) Methamphetamine- and trauma-induced brain injuries: comparative cellular and molecular neurobiological substrates. Biol Psychiatry 66(2):118–127PubMedCrossRefGoogle Scholar
  39. 39.
    Licata SC, Renshaw PF (2010) Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci 1187:148–171PubMedCrossRefGoogle Scholar
  40. 40.
    Sakellaris G et al (2006) Prevention of complications related to traumatic brain injury in children and adolescents with creatine administration: an open label randomized pilot study. J Trauma 61(2):322–329PubMedCrossRefGoogle Scholar
  41. 41.
    Sakellaris G et al (2008) Prevention of traumatic headache, dizziness and fatigue with creatine administration. A pilot study. Acta Paediatr 97(1):31–34PubMedCrossRefGoogle Scholar
  42. 42.
    Sullivan PG et al (2000) Dietary supplement creatine protects against traumatic brain injury. Ann Neurol 48(5):723–729PubMedCrossRefGoogle Scholar
  43. 43.
    Scheff SW, Dhillon HS (2004) Creatine-enhanced diet alters levels of lactate and free fatty acids after experimental brain injury. Neurochem Res 29(2):469–479PubMedCrossRefGoogle Scholar
  44. 44.
    Zhu S et al (2004) Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J Neurosci 24(26):5909–5912PubMedCrossRefGoogle Scholar
  45. 45.
    Daumann J et al (2004) Proton magnetic resonance spectroscopy in ecstasy (MDMA) users. Neurosci Lett 362(2):113–116PubMedCrossRefGoogle Scholar
  46. 46.
    Reneman L et al (2001) Prefrontal N-acetylaspartate is strongly associated with memory performance in (abstinent) ecstasy users: preliminary report. Biol Psychiatry 50(7):550–554PubMedCrossRefGoogle Scholar
  47. 47.
    Salo R et al (2007) Attentional control and brain metabolite levels in methamphetamine abusers. Biol Psychiatry 61(11):1272–1280PubMedCrossRefGoogle Scholar
  48. 48.
    Hermann D et al (2007) Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users. Biol Psychiatry 61(11):1281–1289PubMedCrossRefGoogle Scholar
  49. 49.
    O’Neill J, Cardenas VA, Meyerhoff DJ (2001) Separate and interactive effects of cocaine and alcohol dependence on brain structures and metabolites: quantitative MRI and proton MR spectroscopic imaging. Addict Biol 6(4):347–361PubMedCrossRefGoogle Scholar
  50. 50.
    O’Neill J, Cardenas VA, Meyerhoff DJ (2001) Effects of abstinence on the brain: quantitative magnetic resonance imaging and magnetic resonance spectroscopic imaging in chronic alcohol abuse. Alcohol Clin Exp Res 25(11):1673–1682PubMedCrossRefGoogle Scholar
  51. 51.
    Yang S et al (2009) Lower glutamate levels in rostral anterior cingulate of chronic cocaine users—a (1)H-MRS study using TE-averaged PRESS at 3 T with an optimized quantification strategy. Psychiatry Res 174(3):171–176PubMedCrossRefGoogle Scholar
  52. 52.
    Adriani W et al (2007) 1 H MRS-detectable metabolic brain changes and reduced impulsive behavior in adult rats exposed to methylphenidate during adolescence. Neurotoxicol Teratol 29(1):116–125PubMedCrossRefGoogle Scholar
  53. 53.
    Ernst T et al (2000) Evidence for long-term neurotoxicity associated with methamphetamine abuse: a 1 H MRS study. Neurology 54(6):1344–1349PubMedGoogle Scholar
  54. 54.
    Chang L et al (1999) Gender effects on persistent cerebral metabolite changes in the frontal lobes of abstinent cocaine users. Am J Psychiatry 156(5):716–722PubMedGoogle Scholar
  55. 55.
    Smith LM et al (2001) Brain proton magnetic resonance spectroscopy and imaging in children exposed to cocaine in utero. Pediatrics 107(2):227–231PubMedCrossRefGoogle Scholar
  56. 56.
    Buttner A (2011) Review: the neuropathology of drug abuse. Neuropathol Appl Neurobiol 37(2):118–134PubMedCrossRefGoogle Scholar
  57. 57.
    Silva AP et al (2010) Brain injury associated with widely abused amphetamines: neuroinflammation, neurogenesis and blood–brain barrier. Curr Drug Abuse Rev 3(4):239–254PubMedCrossRefGoogle Scholar
  58. 58.
    Dechent P et al (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277(3 Pt 2):R698–R704PubMedGoogle Scholar
  59. 59.
    Nash SR et al (1994) Cloning, pharmacological characterization, and genomic localization of the human creatine transporter. Recept Channels 2(2):165–174PubMedGoogle Scholar
  60. 60.
    Ohtsuki S et al (2002) The blood–brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab 22(11):1327–1335PubMedCrossRefGoogle Scholar
  61. 61.
    Pan JW, Takahashi K (2007) Cerebral energetic effects of creatine supplementation in humans. Am J Physiol Regul Integr Comp Physiol 292(4):R1745–R1750PubMedCrossRefGoogle Scholar
  62. 62.
    Sestili P et al (2006) Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med 40(5):837–849PubMedCrossRefGoogle Scholar
  63. 63.
    Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci 7(3):207–219PubMedCrossRefGoogle Scholar
  64. 64.
    Kim J et al (2010) Reduced creatine kinase as a central and peripheral biomarker in Huntington's disease. Biochim Biophys Acta 1802(7–8):673–681PubMedGoogle Scholar
  65. 65.
    Stack EC, Matson WR, Ferrante RJ (2008) Evidence of oxidant damage in Huntington's disease: translational strategies using antioxidants. Ann NY Acad Sci 1147:79–92PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang, S.F., et al. (2011) Impaired brain creatine kinase activity in Huntington's disease. Neurodegener Dis. doi: 10.1159/000321681
  67. 67.
    Bender A et al (2005) Creatine supplementation lowers brain glutamate levels in Huntington's disease. J Neurol 252(1):36–41PubMedCrossRefGoogle Scholar
  68. 68.
    Hersch SM et al (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology 66(2):250–252PubMedCrossRefGoogle Scholar
  69. 69.
    Bender A et al (2006) Creatine supplementation in Parkinson disease: a placebo-controlled randomized pilot trial. Neurology 67(7):1262–1264PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kristen E. D’Anci
    • 1
    Email author
  • Patricia J. Allen
    • 1
  • Robin B. Kanarek
    • 1
  1. 1.Department of PsychologyTufts UniversityMedfordUSA

Personalised recommendations