Molecular Neurobiology

, Volume 43, Issue 2, pp 97–106

The Depolarizing Action of GABA Controls Early Network Activity in the Developing Hippocampus

  • Enrico Cherubini
  • Marilena Griguoli
  • Victoria Safiulina
  • Laura Lagostena
Article

Abstract

Early in postnatal life γ-aminobutyric acid (GABA), the primary inhibitory transmitter in adults, excites targeted neurons by an outwardly directed flux of chloride which results from the unbalance between the cation–chloride cotransporters NKCC1 and KCC2, involved in chloride uptake and extrusion, respectively. This effect contributes to generate synchronized network activity or giant depolarizing potentials (GDPs) in the developing hippocampus. Here, we review some recent data concerning the mechanisms by which GDPs are generated and their functional role in enhancing synaptic efficacy at poorly developed GABAergic and glutamatergic synapses. In adulthood, reshaping neuronal circuits due to changes in chloride homeostasis and to the shift of GABA from hyperpolarizing to depolarizing, has been implicated in several neurological disorders, including epilepsy. Evidence has been recently provided that in chronically nerve growth factor-deprived mice expressing a progressive age-dependent neurodegenerative pathology resembling that observed in patients with Alzheimer’s disease, the reduced expression of mRNA encoding for the Kcc2 gene and the depolarizing action of GABA lead to the reorganization of the neuronal hippocampal network. This may represent a novel mechanism by which GABAergic signaling counterbalances the loss of synaptic activity in neurodegenerative diseases.

Keywords

Depolarizing action of GABA Development Cation–chloride cotransporters Synaptic efficacy Correlated network activity GDPs NGF Neurodegeneration 

References

  1. 1.
    Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24:353–360PubMedCrossRefGoogle Scholar
  2. 2.
    Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707–712PubMedCrossRefGoogle Scholar
  3. 3.
    Feller MB, Butts DA, Aaron HL, Rokhsar DS, Shatz CJ (1997) Dynamic processes shape spatiotemporal properties of retinal waves. Neuron 19:293–306PubMedCrossRefGoogle Scholar
  4. 4.
    Yuste R, Katz LC (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6:333–344PubMedCrossRefGoogle Scholar
  5. 5.
    Owens DF, Boyce LH, Davis MB, Kriegstein AR (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423PubMedGoogle Scholar
  6. 6.
    Dammerman RS, Flint AC, Noctor S, Kriegstein AR (2000) An excitatory GABAergic plexus in developing neocortical layer 1. J Neurophysiol 84:428–434PubMedGoogle Scholar
  7. 7.
    Maric D, Liu QY, Maric I, Chaudry S, Chang YH, Smith SV, Sieghart W, Fritschy JM, Barker JL (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels. J Neurosci 21:2343–2360PubMedGoogle Scholar
  8. 8.
    Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 416:303–325PubMedGoogle Scholar
  9. 9.
    Chen G, Trombley PQ, van den Pol AN (1996) Excitatory actions of GABA in developing rat hypothalamic neurones. J Physiol 494:451–464PubMedGoogle Scholar
  10. 10.
    Eilers J, Plant TD, Marandi N, Konnerth A (2001) GABA-mediated Ca2+ signalling in developing rat cerebellar Purkinje neurones. J Physiol 536:429–437PubMedCrossRefGoogle Scholar
  11. 11.
    O’Donovan MJ (1999) The origin of spontaneous activity in developing networks of the vertebrate nervous system. Curr Opin Neurobiol 9:94–104PubMedCrossRefGoogle Scholar
  12. 12.
    Wang J, Reichling DB, Kyrozis A, MacDermott AB (1994) Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur J Neurosci 6:1275–1280PubMedCrossRefGoogle Scholar
  13. 13.
    Leinekugel X, Khazipov R, Cannon R, Hirase H, Ben-Ari Y, Buzsáki G (2002) Correlated bursts of activity in the neonatal hippocampus in vivo. Science 296:2049–2052PubMedCrossRefGoogle Scholar
  14. 14.
    Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929PubMedCrossRefGoogle Scholar
  15. 15.
    Bolea S, Avignone E, Berretta N, Sanchez-Andres JV, Cherubini E (1999) Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices. J Neurophysiol 81:2095–2102PubMedGoogle Scholar
  16. 16.
    Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol 507:219–236PubMedCrossRefGoogle Scholar
  17. 17.
    Mohajerani MH, Cherubini E (2005) Spontaneous recurrent network activity in organotypic rat hippocampal slices. Eur J Neurosci 22:107–118PubMedCrossRefGoogle Scholar
  18. 18.
    Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424PubMedCrossRefGoogle Scholar
  19. 19.
    Khazipov R, Leinekugel X, Khalilov I, Gaiarsa JL, Ben-Ari Y (1997) Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices. J Physiol 498:763–772PubMedGoogle Scholar
  20. 20.
    Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255PubMedCrossRefGoogle Scholar
  21. 21.
    Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727PubMedCrossRefGoogle Scholar
  22. 22.
    Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519PubMedCrossRefGoogle Scholar
  23. 23.
    Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL (1997) GABAA, NMDA and AMPA receptors: a developmentally regulated ‘ménage à trois’. Trends Neurosci 20:523–529PubMedCrossRefGoogle Scholar
  24. 24.
    Ben-Ari Y (2002) Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739PubMedCrossRefGoogle Scholar
  25. 25.
    Kaila K (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 42:489–537PubMedCrossRefGoogle Scholar
  26. 26.
    Blaesse P, Airaksinen MS, Rivera C, Kaila K (2009) Cation–chloride cotransporters and neuronal function. Neuron 61:820–838PubMedCrossRefGoogle Scholar
  27. 27.
    Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255PubMedCrossRefGoogle Scholar
  28. 28.
    Khirug S, Huttu K, Ludwig A, Smirnov S, Voipio J, Rivera C, Kaila K, Khiroug L (2005) Distinct properties of functional KCC2 expression in immature mouse hippocampal neurons in culture and in acute slices. Eur J Neurosci 21:899–904PubMedCrossRefGoogle Scholar
  29. 29.
    Luhmann HJ, Prince DA (1991) Postnatal maturation of the GABAergic system in rat neocortex. J Neurophysiol 65:247–263PubMedGoogle Scholar
  30. 30.
    Chudotvorova I, Ivanov A, Rama S, Hubner CA, Pellegrino C, Ben AY, Medina I (2005) Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses. J Physiol 566:671–679PubMedCrossRefGoogle Scholar
  31. 31.
    Cancedda L, Fiumelli H, Chen K, Poo MM (2007) Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J Neurosci 27:5224–5235PubMedCrossRefGoogle Scholar
  32. 32.
    Li H, Khirug S, Cai C, Ludwig A, Blaesse P, Kolikova J, Afzalov R, Coleman SK, Lauri S, Airaksinen MS, Keinänen K, Khiroug L, Saarma M, Kaila K, Rivera C (2007) KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron 56:1019–1033PubMedCrossRefGoogle Scholar
  33. 33.
    Horn Z, Ringstedt T, Blaesse P, Kaila K, Herlenius E (2010) Premature expression of KCC2 in embryonic mice perturbs neural development by an ion transport-independent mechanism. Eur J Neurosci 31:2142–2155PubMedCrossRefGoogle Scholar
  34. 34.
    Wang DD, Kriegstein AR (2008) GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation. J Neurosci 28:5547–5558PubMedCrossRefGoogle Scholar
  35. 35.
    Overstreet-Wadiche LS, Bensen AL, Westbrook GL (2006) Delayed development of adult-generated granule cells in dentate gyrus. J Neurosci 26:2326–2334PubMedCrossRefGoogle Scholar
  36. 36.
    Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1997) Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:6496–6499PubMedCrossRefGoogle Scholar
  37. 37.
    Sipilä ST, Schuchmann S, Voipio J, Yamada J, Kaila K (2006) The cation–chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus. J Physiol 573:765–773PubMedCrossRefGoogle Scholar
  38. 38.
    Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593PubMedCrossRefGoogle Scholar
  39. 39.
    Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216:745–747PubMedCrossRefGoogle Scholar
  40. 40.
    Miles R, Wong RK (1987) Latent synaptic pathways revealed after tetanic stimulation in the hippocampus. Nature 329:724–726PubMedCrossRefGoogle Scholar
  41. 41.
    Traub RD, Miles R (1991) Multiple modes of neuronal population activity emerge after modifying specific synapses in a model of the CA3 region of the hippocampus. Ann NY Acad Sci 627:277–290PubMedCrossRefGoogle Scholar
  42. 42.
    Sipilä ST, Huttu K, Soltesz I, Voipio J, Kaila K (2005) Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus. J Neurosci 25:5280–5289PubMedCrossRefGoogle Scholar
  43. 43.
    Safiulina VF, Zacchi P, Taglialatela M, Yaari Y, Cherubini E (2008) Low expression of Kv7/M channels facilitates intrinsic and network bursting in the developing rat hippocampus. J Physiol 586:5437–5453PubMedCrossRefGoogle Scholar
  44. 44.
    Sipilä ST, Huttu K, Voipio J, Kaila K (2006) Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na+ current and terminated by a slow Ca2+-activated K+ current. Eur J Neurosci 23:2330–2338PubMedCrossRefGoogle Scholar
  45. 45.
    Marchionni I, Omrani A, Cherubini E (2007) In the developing rat hippocampus a tonic GABAA-mediated conductance selectively enhances the glutamatergic drive of principal cells. J Physiol 581:515–528PubMedCrossRefGoogle Scholar
  46. 46.
    Demarque M, Represa A, Becq H, Khalilov I, Ben-Ari Y, Aniksztejn L (2002) Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation. Neuron 36:1051–1061PubMedCrossRefGoogle Scholar
  47. 47.
    Yue C, Yaari Y (2004) KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci 24:4614–4624PubMedCrossRefGoogle Scholar
  48. 48.
    Menendez de la Prida LM, Huberfeld G, Cohen I, Miles R (2006) Threshold behavior in the initiation of hippocampal population bursts. Neuron 49:131–142CrossRefGoogle Scholar
  49. 49.
    Menendez de la Prida LM, Sanchez-Andres JV (1999) Nonlinear frequency-dependent synchronization in the developing hippocampus. J Neurophysiol 82:202–208Google Scholar
  50. 50.
    Menendez de la Prida L, Sanchez-Andres JV (2000) Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism. Neuroscience 97:227–241PubMedCrossRefGoogle Scholar
  51. 51.
    Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327PubMedCrossRefGoogle Scholar
  52. 52.
    Strata F, Atzori M, Molnar M, Ugolini G, Tempia F, Cherubini E (1997) A pacemaker current in dye-coupled hilar interneurons contributes to the generation of giant GABAergic potentials in developing hippocampus. J Neurosci 17:1435–1446PubMedGoogle Scholar
  53. 53.
    Bender RA, Galindo R, Mameli M, Gonzalez-Vega R, Valenzuela CF, Baram TZ (2005) Synchronized network activity in developing rat hippocampus involves regional hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function. Eur J Neurosci 22:2669–2674PubMedCrossRefGoogle Scholar
  54. 54.
    Connors BW, Long MA (2004) Electrical synapses in the mammalian brain. Annu Rev Neurosci 27:393–418PubMedCrossRefGoogle Scholar
  55. 55.
    Crépel V, Aronov D, Jorquera I, Represa A, Ben-Ari Y, Cossart R (2007) A parturition-associated nonsynaptic coherent activity pattern in the developing hippocampus. Neuron 54:105–120PubMedCrossRefGoogle Scholar
  56. 56.
    Durand GM, Kovalchuk Y, Konnerth A (1996) Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381:71–75PubMedCrossRefGoogle Scholar
  57. 57.
    Voronin LL, Cherubini E (2004) ‘Deaf, mute and whispering’ silent synapses: their role in synaptic plasticity. J Physiol 557:3–12PubMedCrossRefGoogle Scholar
  58. 58.
    Safiulina VF, Fattorini G, Conti F, Cherubini E (2006) GABAergic signaling at mossy fiber synapses in neonatal rat hippocampus. J Neurosci 26:597–608PubMedCrossRefGoogle Scholar
  59. 59.
    Kasyanov AM, Safiulina VF, Voronin LL, Cherubini E (2004) GABA-mediated giant depolarizing potentials as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus. Proc Natl Acad Sci USA 101:3967–3972PubMedCrossRefGoogle Scholar
  60. 60.
    Mohajerani MH, Sivakumaran S, Zacchi P, Aguilera P, Cherubini E (2007) Correlated network activity enhances synaptic efficacy via BDNF and the ERK pathway at immature CA3-CA1 connections in the hippocampus. Proc Natl Acad Sci USA 104:13176–13181PubMedCrossRefGoogle Scholar
  61. 61.
    Goodman LJ, Valverde J, Lim F, Geschwind MD, Federoff HJ, Geller AI, Hefti F (1996) Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol Cell Neurosci 7:222–238PubMedCrossRefGoogle Scholar
  62. 62.
    Lessmann V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 69:341–374PubMedCrossRefGoogle Scholar
  63. 63.
    Magby JP, Bi C, Chen ZY, Lee FS, Plummer MR (2006) Single-cell characterization of retrograde signaling by brain-derived neurotrophic factor. J Neurosci 26:13531–13536PubMedCrossRefGoogle Scholar
  64. 64.
    Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32PubMedCrossRefGoogle Scholar
  65. 65.
    Fiorentino H, Kuczewski N, Diabira D, Ferrand N, Pangalos MN, Porcher C, Gaiarsa JL (2009) GABA(B) receptor activation triggers BDNF release and promotes the maturation of GABAergic synapses. J Neurosci 29:11650–11661PubMedCrossRefGoogle Scholar
  66. 66.
    Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421PubMedCrossRefGoogle Scholar
  67. 67.
    Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R, Rivera C (2007) Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 27:9866–9873PubMedCrossRefGoogle Scholar
  68. 68.
    Nabekura J, Ueno T, Okabe A, Furuta A, Iwaki T, Shimizu-Okabe C, Fukuda A, Akaike N (2002) Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury. J Neurosci 22:4412–4417PubMedGoogle Scholar
  69. 69.
    van den Pol AN, Obrietan K, Chen G (1996) Excitatory actions of GABA after neuronal trauma. J Neurosci 16:4283–4292PubMedGoogle Scholar
  70. 70.
    Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021PubMedCrossRefGoogle Scholar
  71. 71.
    Funk K, Woitecki A, Franjic-Würtz C, Gensch T, Möhrlen F, Frings S (2008) Modulation of chloride homeostasis by inflammatory mediators in dorsal root ganglion neurons. Mol Pain 4:32–44PubMedCrossRefGoogle Scholar
  72. 72.
    Lagostena L, Rosato-Siri M, D’Onofrio M, Brandi R, Arisi I, Capsoni S, Franzot J, Cattaneo A, Cherubini E (2010) In the adult hippocampus, chronic nerve growth factor deprivation shifts GABAergic signaling from the hyperpolarizing to the depolarizing direction. J Neurosci 30:885–893PubMedCrossRefGoogle Scholar
  73. 73.
    Payne JA (1997) Functional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]o regulation. Am J Physiol 273:C1516–C1525PubMedGoogle Scholar
  74. 74.
    Liu Z, Neff RA, Berg DK (2006) Sequential interplay of nicotinic and GABAergic signaling guides neuronal development. Science 314:1610–1613PubMedCrossRefGoogle Scholar
  75. 75.
    Capsoni S, Ugolini G, Comparini A, Ruberti F, Berardi N, Cattaneo A (2000) Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc Natl Acad Sci USA 97:6826–6831PubMedCrossRefGoogle Scholar
  76. 76.
    Ruberti F, Capsoni S, Comparini A, Di Daniel E, Franzot J, Gonfloni S, Rossi G, Berardi N, Cattaneo A (2000) Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci 20:2589–2601PubMedGoogle Scholar
  77. 77.
    Rosato-Siri M, Cattaneo A, Cherubini E (2006) Nicotine-induced enhancement of synaptic plasticity at CA3-CA1 synapses requires GABAergic interneurons in adult anti-NGF mice. J Physiol 576:361–377PubMedCrossRefGoogle Scholar
  78. 78.
    Capsoni S, Giannotta S, Cattaneo A (2002) Beta-amyloid plaques in a model for sporadic Alzheimer’s disease based on transgenic anti-nerve growth factor antibodies. Mol Cell Neurosci 21:15–28PubMedCrossRefGoogle Scholar
  79. 79.
    Pesavento E, Capsoni S, Domenici L, Cattaneo A (2002) Acute cholinergic rescue of synaptic plasticity in the neurodegenerating cortex of anti-nerve-growth-factor mice. Eur J Neurosci 15:1030–1036PubMedCrossRefGoogle Scholar
  80. 80.
    Rivera C, Voipio J, Thomas-Crusells J, Li H, Emri Z, Sipilä S, Payne JA, Minichiello L, Saarma M, Kaila K (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J Neurosci 24:4683–4691PubMedCrossRefGoogle Scholar
  81. 81.
    Peng S, Garzon DJ, Marchese M, Klein W, Ginsberg SD, Francis BM, Mount HT, Mufson EJ, Salehi A, Fahnestock M (2009) Decreased brain-derived neurotrophic factor depends on amyloid aggregation state in transgenic mouse models of Alzheimer’s disease. J Neurosci 29:9321–9329PubMedCrossRefGoogle Scholar
  82. 82.
    Barbato C, Ruberti F, Pieri M, Vilardo E, Costanzo M, Ciotti MT, Zona C, Cogoni C (2010) MicroRNA-92 modulates K(+) Cl(−) co-transporter KCC2 expression in cerebellar granule neurons. J Neurochem 113:591–600PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Enrico Cherubini
    • 1
  • Marilena Griguoli
    • 1
  • Victoria Safiulina
    • 1
  • Laura Lagostena
    • 1
  1. 1.Neurobiology Sector and IIT UnitInternational School for Advanced Studies (SISSA)TriesteItaly

Personalised recommendations