Molecular Neurobiology

, Volume 42, Issue 1, pp 52–63 | Cite as

Brain Endothelial Cell Death: Modes, Signaling Pathways, and Relevance to Neural Development, Homeostasis, and Disease

Article

Abstract

Emerging evidence indicates that brain microvascular endothelial cells play a critical role in brain development, maturation, and homeostasis. Acute or chronic insults, including oxidative stress, oxygen–glucose deprivation, trauma, infections, inflammatory cytokines, DNA damaging agents, β-amyloid deposition, and endoplasmic reticulum stress induce brain endothelial cell dysfunction and damage, which can result in cell death. The homeostatic balance between endothelial cell survival and endothelial cell death is critical for brain development, remodeling, and repair. On the other hand, dysregulation of brain endothelial cell death exacerbates, or even initiates, several inflammatory, ischemic, and degenerative disorders of the central nervous system. In here, the morphological, biochemical, and functional characteristics of the brain endothelium and its contribution to brain homeostasis will be reviewed. Recent insights into modalities and regulatory pathways involved in brain endothelial cell death will be described. The effects of regulated and dysregulated endothelial cell death leading to angiogenesis will be outlined. The relevance of brain endothelial cell dysfunction and death to disease processes will be discussed with special reference to recent findings that could help translate current knowledge on brain endothelial cell apoptosis into new therapeutic strategies for the treatment of certain neurological disorders.

Keyword

Brain Endothelium Apoptosis Signaling pathways Neurogenesis 

Notes

Acknowledgments

We thank Shannon Wilson, a volunteer student in M.T.R.’s laboratory, for her assistance during the preparation of this manuscript and Christopher Brown from the Department of Visual Media at Indiana University School of Medicine.

References

  1. 1.
    Lopez AD, Murray CJL (1998) The global burden of disease, 1990–2020. Nat Med 4:1241–1243PubMedGoogle Scholar
  2. 2.
    Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohammed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurological disorders. Neurology 68:326–337PubMedGoogle Scholar
  3. 3.
    Janca A, Prilipko L, Saraceno B (2000) A World Health Organization perspective on neurology and neuroscience. Arch Neurol 57:1786–1788PubMedGoogle Scholar
  4. 4.
    Janca A, Aarli JA, Prilipko L, Dua T, Saxena S, Saraceno B (2006) WHO/WFN survey on neurological services: a world-wide perspective. J Neurol Sci 247:29–34PubMedGoogle Scholar
  5. 5.
    Dua T, Garrido Cumbrera M, Mathers C, Saxena S (2006) Global burden of neurological disorders: estimates and projections. In: WHO (ed) Neurological disorders: public health challenges, chapter 3. World Health Organization Press, Geneva, Switzerland, pp 27–39Google Scholar
  6. 6.
    Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke and Alzheimer disease. J Appl Physiol 100:328–335PubMedGoogle Scholar
  7. 7.
    Guo S, Kim WJ, Lok J, Lee S-R, Besancon E, Luo B-H, Stins MF, Wang X, Dedhar S, Lo EH (2008) Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci USA 105:7582–7587PubMedGoogle Scholar
  8. 8.
    Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173PubMedGoogle Scholar
  9. 9.
    Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood–brain barrier. Prog Drug Res 61:39–78PubMedGoogle Scholar
  10. 10.
    Bovetti S, Hsich YC, Bovolin P, Perroteau I, Kazunori T, Puche AC (2007) Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J Neurosci 27:5976–5980PubMedGoogle Scholar
  11. 11.
    Fisher M (2008) Injuries to the vascular endothelium: vascular wall and endothelial dysfunction. Rev Neurol Dis 5:S4–S11PubMedGoogle Scholar
  12. 12.
    Hamel E, Nicolakakis T, Aboulkassim B, Ongali B, Tong X-K (2007) Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer’s disease. Exp Physiol 93:116–120PubMedGoogle Scholar
  13. 13.
    del Zoppo GJ (2006) Stroke and neurovascular protection. New Engl J Med 354:553–555PubMedGoogle Scholar
  14. 14.
    Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185PubMedGoogle Scholar
  15. 15.
    Kniesel U, Wolburg H (2000) Tight junctions of the blood–brain barrier. Cell Mol Neurobiol 20:57–76PubMedGoogle Scholar
  16. 16.
    Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55PubMedGoogle Scholar
  17. 17.
    Oldenford WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood–brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417Google Scholar
  18. 18.
    Sedlakova R, Shiver RR, Del Maestro RF (1999) Ultrastructure of the blood–brain barrier in the rabbit. J Submicrosc Cytol Pathol 31:149–161PubMedGoogle Scholar
  19. 19.
    Park JA, Choi KS, Kim SY, Kim KW (2003) Coordinated interaction of the vascular and nervous systems: from molecule- to cell-based approaches. Biochem Biophys Res Commun 311:247–253PubMedGoogle Scholar
  20. 20.
    Guo S, Lo EH (2009) Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40:S4–S7PubMedGoogle Scholar
  21. 21.
    Hamel E (2006) Perivascular nerves and the regulation of the vascular tone. J Appl Physiol 100:1059–1064PubMedGoogle Scholar
  22. 22.
    Koehler RC, Gebremedhin D, Harder DR (2006) Role of astrocytes in cerebrovascular regulation. J Appl Physiol 100:307–317PubMedGoogle Scholar
  23. 23.
    Ward NL, Lamanna JC (2004) The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol Res 26:870–883PubMedGoogle Scholar
  24. 24.
    Iadecola C, Needergaard M (2007) Glia regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376PubMedGoogle Scholar
  25. 25.
    del Zoppo GJ, Milner R (2006) Integrin–matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol 26:1966–1975PubMedGoogle Scholar
  26. 26.
    Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115:3729–3738PubMedGoogle Scholar
  27. 27.
    Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200PubMedGoogle Scholar
  28. 28.
    Shen Q, Goderie SQ, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340PubMedGoogle Scholar
  29. 29.
    Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494PubMedGoogle Scholar
  30. 30.
    McCarty JH (2009) Integrin-mediated regulation of neurovascular development, physiology and disease. Cell Adh Migr 3:211–215PubMedGoogle Scholar
  31. 31.
    Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, Wang S, Ibañez CF, Rafii S, Hempstead BL (2000) Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127:4531–4540PubMedGoogle Scholar
  32. 32.
    Kim H, Li Q, Hempstead BL, Madri JA (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546PubMedGoogle Scholar
  33. 33.
    Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA (1999) Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 13:450–464PubMedGoogle Scholar
  34. 34.
    Chen J, Zhang C, Jiang H, Li Y, Zhang L, Robin A, Katakowski M, Lu M, Chopp M (2005) Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Meta 25:281–290Google Scholar
  35. 35.
    Chan PH (2005) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14Google Scholar
  36. 36.
    Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Rad Biol Med 39:51–70PubMedGoogle Scholar
  37. 37.
    Yin K-J, Chen S-D, Lee J-M, Xu J, Hsu CY (2002) ATM gene regulates oxygen-glucose deprivation-induced nuclear factor-kB DNA-binding activity and downstream apoptotic cascade in mouse cerebrovascular endothelial cells. Stroke 33:2471–2477PubMedGoogle Scholar
  38. 38.
    Kimura H, Gules I, Meguro T, Zhang JH (2003) Cytotoxicity of cytokines in cerebral microvascular endothelial cells. Brain Res 990:148–156PubMedGoogle Scholar
  39. 39.
    van Sorge NM, Ebrahimi CM, McGillivray SM, Quach D, Sabet M, Guiney DG, Doran KS (2008) Anthrax toxins inhibit neutrophil signaling pathways in brain endothelium and contribute to the pathogenesis of meningitis. PloS One 3:1–12Google Scholar
  40. 40.
    Zipfel GJ, Han H, Ford AL, Lee J-M (2009) Cerebral amyloid angiopathy: progressive disruption of the neurovascular unit. Stroke 40:S16–S19PubMedGoogle Scholar
  41. 41.
    Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113PubMedGoogle Scholar
  42. 42.
    Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  43. 43.
    Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228PubMedGoogle Scholar
  44. 44.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Diff 16:3–11Google Scholar
  45. 45.
    Degterev A, Hitomi J, Germscheid M, Chen IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321PubMedGoogle Scholar
  46. 46.
    Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323PubMedGoogle Scholar
  47. 47.
    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119PubMedGoogle Scholar
  48. 48.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257PubMedGoogle Scholar
  49. 49.
    Twomey C, McCarthy JV (2005) Pathways of apoptosis and importance in development. J Cell Mol Med 9:345–359PubMedGoogle Scholar
  50. 50.
    Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306PubMedGoogle Scholar
  51. 51.
    Hetts SW (1998) To die or not to die: an overview of apoptosis and its role in disease. J Am Med Assoc 279:300–307Google Scholar
  52. 52.
    Stennicke HR, Salvesen GS (1998) Properties of the caspases. Biochim Biophys Acta 1387:17–31PubMedGoogle Scholar
  53. 53.
    Cullen SP, Martin SJ (2009) Caspase activation pathways: some recent progress. Cell Death Diff 16:935–938Google Scholar
  54. 54.
    Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326PubMedGoogle Scholar
  55. 55.
    Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801PubMedGoogle Scholar
  56. 56.
    Chwieralski CE, Welte T, Bühling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149PubMedGoogle Scholar
  57. 57.
    Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Diff 14:10–22Google Scholar
  58. 58.
    Sun XM, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 274:5053–5060PubMedGoogle Scholar
  59. 59.
    Inoue S, Browne G, Melino G, Cohen GM (2009) Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Diff 16:1053–1061Google Scholar
  60. 60.
    Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42PubMedGoogle Scholar
  61. 61.
    Youle RJ, Strasser A (2008) The Bcl-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59PubMedGoogle Scholar
  62. 62.
    Wosik K, Biernacki K, Khouzam MP, Prat A (2007) Death receptor expression and function at the human blood brain barrier. J Neurol Sci 259:53–60PubMedGoogle Scholar
  63. 63.
    Basuroy S, Bhattacharya S, Leffler CW, Parfenova H (2009) Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells. Am J Physiol Cell Physiol 296:C422–C432PubMedGoogle Scholar
  64. 64.
    Rege TA, Stewart J Jr, Dranka B, Benveniste EN, Silverstein RL, Gladson CL (2009) Thrombospondin-1-induced apoptosis of brain microvascular endothelial cells can be mediated by TNF-R1. J Cell Physiol 218:94–103PubMedGoogle Scholar
  65. 65.
    Sata M, Suhara T, Walsh K (2000) Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol 20:309–316PubMedGoogle Scholar
  66. 66.
    Janin A, Deschaumes C, Daneshpouy M, Estaquier J, Micic-Polianski J, Rajagopalan-Levasseur P, Akarid K, Mounier N, Gluckman E, Socié G, Ameisen JC (2002) CD95 engagement induces disseminated endothelial cell apoptosis in vivo: immunopathologic implications. Blood 99:2940–2947PubMedGoogle Scholar
  67. 67.
    Choi C, Benveniste EN (2004) Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res Rev 44:65–81PubMedGoogle Scholar
  68. 68.
    Bermpohl D, Halle A, Freyer D, Dagand E, Braun JS, Bechmann I, Schröder NWJ, Weber JR (2005) Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J Clin Invest 115:1607–1615PubMedGoogle Scholar
  69. 69.
    Kim T-A, Avraham HK, Koh Y-H, Jiang S, Park I-W, Avraham S (2003) HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells. J Immunol 170:2629–2637PubMedGoogle Scholar
  70. 70.
    Wassmer SC, de Souza JB, Frère C, Candal FJ, Juhan-Vague I, Grau GE (2006) TGF-β1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. J Immunol 176:1180–1184PubMedGoogle Scholar
  71. 71.
    Girard M, Bisser S, Courtioux B, Vermot-Desroches C, Bouteille B, Wijdenes J, Preud’homme JL, Jauberteau MO (2003) In vitro induction of microglial and endothelial cell apoptosis by cerebrospinal fluids from patients with human African trypanosomiasis. Int J Parasitol 33:713–720PubMedGoogle Scholar
  72. 72.
    Potter S, Chan-Ling T, Ball HJ, Mansour H, Mitchell A, Maluish L, Hunt NH (2006) Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 36:485–496PubMedGoogle Scholar
  73. 73.
    Suo Z, Fang C, Crawford F, Mullan M (1997) Superoxide free radical and intracellular calcium mediate Aβ1-42 induced endothelial toxicity. Brain Res 762:144–152PubMedGoogle Scholar
  74. 74.
    Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165:347–356PubMedGoogle Scholar
  75. 75.
    Kimura C, Oike M, Watanabe M, Ito Y (2007) Proapoptotic nitric oxide production in amyloid β protein-treated cerebral microvascular endothelial cells. Microcirculation 14:89–97PubMedGoogle Scholar
  76. 76.
    Xu J, Chen S, Ku G, Ahmed SH, Xu J, Chen H, Hsu CY (2001) Amyloid β peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J Cereb Blood Flow Metab 21:702–710PubMedGoogle Scholar
  77. 77.
    Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668PubMedGoogle Scholar
  78. 78.
    Brault S, Martinez-Bermudez AK, Marrache AM, Gobeil F Jr, Hou X, MD BM, Quiniou C, Almazan G, Lachance C, Roberts J II, Varma DR, Chemtob S (2003) Selective neuromicrovascular endothelial cell death by 8-Iso-prostaglandin F: possible role in ischemic brain injury. Stroke 34:776–782PubMedGoogle Scholar
  79. 79.
    Cheng T, Liu D, Griffin JH, Fernández JA, Castellino F, Rosen ED, Fukudome K, Zlokovic BV (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9:338–342PubMedGoogle Scholar
  80. 80.
    Parfenova H, Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, Leffler CW (2006) Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am J Physiol Cell Physiol 290:1399–1410Google Scholar
  81. 81.
    Quiniou C, Sennlaub F, Beauchamp MH, Checchin D, Lahaie I, Brault S, Gobeil F Jr, Sirinyan M, Kooli A, Hardy P, Pshezhetsky A, Chemtob S (2006) Dominant role for calpain in thromboxane-induced neuromicrovascular endothelial cytotoxicity. J Pharmacol Exp Ther 316:618–627PubMedGoogle Scholar
  82. 82.
    Li Y-Q, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS (2003) Endothelial apoptosis initiates acute blood–barrier disruption after ionizing radiation. Cancer Res 63:5950–5956PubMedGoogle Scholar
  83. 83.
    Peña LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327PubMedGoogle Scholar
  84. 84.
    Jung Y-S, Kim C-S, Park H-S, Sohn S, Lee B-H, Moon C-K, Lee S-H, Baik EJ, Moon C-H (2003) N-nitrosocarbofuran induces apoptosis in mouse brain microvascular endothelial cells (bEnd.3). J Pharmacol Sci 93:489–495PubMedGoogle Scholar
  85. 85.
    Jung Y-S, Jeong E-M, Park EK, Kim Y-M, Sohn S, Lee SH, Baik EJ, Moon C-H (2008) Cadmium induces apoptotic cell death through p38 MAPK in brain microvessel endothelial cells. Eur J Pharmacol 578:11–18PubMedGoogle Scholar
  86. 86.
    Cheresh DA, Stupack DG (2008) Regulation of angiogenesis: apoptotic cues from the ECM. Oncogene 27:6285–6298PubMedGoogle Scholar
  87. 87.
    Erdreich-Epstein A, Tran LB, Cox OT, Huang EY, Laug WE, Shimada H, Millard M (2005) Endothelial apoptosis induced by inhibition of integrins ανβ3 and ανβ5 involves ceramide metabolic pathways. Blood 105:4353–4361PubMedGoogle Scholar
  88. 88.
    Cande C, Vahsen N, Garrido C, Kroemer G (2004) Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Diff 11:591–595Google Scholar
  89. 89.
    Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664PubMedGoogle Scholar
  90. 90.
    Fujii J, Wood K, Matsuda F, Carneiro-Filho BA, Schlegel KH, Yutsudo T, Binnington-Boyd B, Lingwood CA, Obata F, Kim KS, Yoshida S-I, Obrig T (2008) Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect Immun 76:3679–3689PubMedGoogle Scholar
  91. 91.
    Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40PubMedGoogle Scholar
  92. 92.
    Narasimhan P, Liu J, Song YS, Massengale JL, Chan PH (2009) VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40:1467–1473PubMedGoogle Scholar
  93. 93.
    Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869PubMedGoogle Scholar
  94. 94.
    Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251PubMedGoogle Scholar
  95. 95.
    Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 115:61–70PubMedGoogle Scholar
  96. 96.
    Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874PubMedGoogle Scholar
  97. 97.
    Dolado I, Nebreda AR (2008) Regulation of tumorigenesis by p38αMAP kinase. Topics in Current Genetics: Stress-Activated Protein Kinases 20:99–128Google Scholar
  98. 98.
    Karahashi H, Michelsen KS, Arditi M (2009) Lipopolysaccharide-induced apoptosis in transformed bovine brain endothelial cells and human dermal microvessel endothelial cells: the role of JNK. J Immunol 182:7280–7286PubMedGoogle Scholar
  99. 99.
    Yatsushige H, Yamaguchi-Okada M, Zhou C, Calvert JW, Cahill J, Colohan ART, Zhang JH (2008) Inhibition of c-Jun N-terminal kinase pathway attenuates cerebral vasospasm after experimental subarachnoid hemorrhage through the suppression of apoptosis. In: Kiris T, Zhang JH (eds) Cerebral vasospasm new strategies in research and treatment, vol 104. Springer, Vienna, pp 27–31Google Scholar
  100. 100.
    Yin KJ, Lee J-M, Chen SD, Xu J, Hsu CY (2002) Amyloid-β induces Smac release via AP-1/Bim activation in cerebral endothelial cells. J Neurosci 22:9764–9770PubMedGoogle Scholar
  101. 101.
    Lee S-R, Lo EH (2003) Interactions between p38 mitogen-activated protein kinase and caspase-3 in cerebral endothelial cell death after hypoxia-reoxygenation. Stroke 34:2704–2709PubMedGoogle Scholar
  102. 102.
    Rush S, Khan G, Bamisaiye A, Bidwell P, Leaver HA, Rizzo MT (2007) C-jun amino-terminal kinase and mitogen activated protein kinase 1/2 mediate hepatocyte growth factor-induced migration of brain endothelial cells. Exp Cell Res 313:121–132PubMedGoogle Scholar
  103. 103.
    Hattori K, Naguro I, Runchel C, Ichijo H (2009) The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal 7:1–10Google Scholar
  104. 104.
    Hsu M-J, Hsu CY, Chen B-C, Chen M-C, Ou G, Lin C-H (2007) Apoptosis signal-regulating kinase 1 in amyloid β peptide-induced cerebral endothelial cell apoptosis. J Neurosci 27:5719–5729PubMedGoogle Scholar
  105. 105.
    Yin K-J, Hsu CY, Hu X-Y, Chen H, Chen S-W, Xu J, Lee J-M (2006) Protein phosphatase 2A regulates Bim expression via the Akt/FKHRL1 signaling pathway in amyloid-β peptide-induced cerebrovascular endothelial cell death. J Neurosci 26:2290–2299PubMedGoogle Scholar
  106. 106.
    Mancuso MR, Kuhnert F, Kuo CJ (2008) Developmental angiogenesis of the central nervous system. Lymphat Res Biol 6:3–4Google Scholar
  107. 107.
    Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320PubMedGoogle Scholar
  108. 108.
    Conway ME, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521PubMedGoogle Scholar
  109. 109.
    Hirschi KK, Rohovsky SA, D’Amore PA (1997) Cell–cell interactions in vessel assembly: a model for the fundamentals of vascular remodelling. Transpl Immunol 5:177–178PubMedGoogle Scholar
  110. 110.
    Louissaint A Jr, Rao S, Leventhal C, Goldman SA (2002) Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Cell 34:945–960Google Scholar
  111. 111.
    Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016PubMedGoogle Scholar
  112. 112.
    Shyu W-C, Lin S-Z, Chiang M-F, Su C-Y, Li H (2006) Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing β1 integrin-mediated angiogenesis in chronic stroke rats. J Neurosci 26:3444–3453PubMedGoogle Scholar
  113. 113.
    Chavakis E, Dimmeler S (2002) Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 22:887–893PubMedGoogle Scholar
  114. 114.
    Giordano FJ, Johnson RS (2001) Angiogenesis: the role of the microenvironment in flipping the switch. Curr Opin Genet Dev 11:35–40PubMedGoogle Scholar
  115. 115.
    Tertemiz F, Kayisli UA, Arici A, Demir R (2005) Apoptosis contributes to vascular lumen formation and vascular branching in human placental vasculogenesis. Biol Reprod 72:727–735PubMedGoogle Scholar
  116. 116.
    Weihua Z, Tsan R, Schroit AJ, Fidler IJ (2005) Apoptotic cells initiate endothelial cell sprouting via electrostatic signaling. Cancer Res 65:11529–11535PubMedGoogle Scholar
  117. 117.
    Xing C, Lee S, Kim WJ, Wang H, Yang Y-G, Ning MM, Wang X, Lo EH (2009) Neurovascular effects of CD47 signaling: promotion of cell death, inflammation, and suppression of angiogenesis in brain endothelial cells in vitro. J Neurosci Res 87:2571–2577PubMedGoogle Scholar
  118. 118.
    Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48PubMedGoogle Scholar
  119. 119.
    Nag S, Papneja T, Venugopalan R, Stewart DJ (2005) Increased angiopoietin-2 expression is associated with endothelial apoptosis and blood–brain barrier breakdown. Lab Invest 85:1189–1198PubMedGoogle Scholar
  120. 120.
    Deininger MH, Fimmen BA, Thal DR, Schluesener HJ, Meyermann R (2002) Aberrant neuronal and paracellular deposition of endostatin in brains of patients with Alzheimer’s disease. J Neurosci 22:10621–10626PubMedGoogle Scholar
  121. 121.
    Hossman KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565Google Scholar
  122. 122.
    Nagasawa H, Kogure K (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037–1043PubMedGoogle Scholar
  123. 123.
    Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decade of success and failure. NeuroRx 1:36–45PubMedGoogle Scholar
  124. 124.
    Zubkov AY, Aoki K, Parent AD, Zhang JH (2002) Preliminary study of the effects of caspase inhibitors on vasospasm in dog penetrating arteries. Life Sci 70:3007–3018PubMedGoogle Scholar
  125. 125.
    Gules I, Satoh M, Nanda A, Zhang JH (2003) Apoptosis, blood–brain barrier, and subarachnoid hemorrhage. Acta Neurochir Suppl 86:483–487PubMedGoogle Scholar
  126. 126.
    Huang J, van Gelder JM (2002) The probability of sudden death from rupture of intracranial aneurysm: a meta analysis. Neurosurgery 51:1101–1105PubMedGoogle Scholar
  127. 127.
    Meguro T, Chen B, Lancon J, Zhang JH (2001) Oxyhemoglobin induces caspase-mediated cell death in cerebral endothelial cells. J Neurochem 77:1128–1135PubMedGoogle Scholar
  128. 128.
    Kolias AG, Sen J, Belli A (2008) Pathogenesis of cerebral vasospam following aneurismal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res 87:1–11Google Scholar
  129. 129.
    Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH (2004) Neurovascular protection reduces early brain injury after subaracnoid hemorrhage. Stroke 35:2412–2417PubMedGoogle Scholar
  130. 130.
    Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT, Spetzler RF (1998) Cerebral cavernous malformations: incidence and familial occurrence. N Engl J Med 319:343–347CrossRefGoogle Scholar
  131. 131.
    Guclu B, Ozturk AK, Pricola KL, Bilguvar K, Shin D, O’Roak BJ, Gunel M (2005) Mutations in apoptosis-related gene, PDCD10, cause cerebral cavernous malformation 3. Neurosurgery 57:1008–1013PubMedGoogle Scholar
  132. 132.
    Chen L, Tanriover G, Yano H, Friedlander R, Louvi A, Gunel M (2009) Apoptotic functions of PDCD10/CCM3, the gene mutated in cerebral cavernous malformation 3. Stroke 40:1474–1481PubMedGoogle Scholar
  133. 133.
    Scheibel AB, Duong TH, Jacob R (1989) Alzheimer’s disease as a capillary dementia. Ann Med 21:103–107PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Signal Transduction LaboratoryMethodist Research InstituteIndianapolisUSA
  2. 2.Department of PharmacologyIndiana University School of MedicineIndianapolisUSA
  3. 3.Department of Clinical NeuroscienceEdinburgh UniversityEdinburghUK

Personalised recommendations