Advertisement

Molecular Neurobiology

, Volume 42, Issue 2, pp 103–113 | Cite as

The UPR and the Anti-oxidant Response: Relevance to Sleep and Sleep Loss

  • Marishka K. Brown
  • Nirinjini NaidooEmail author
Article

Abstract

Oxidative stress has been linked to various physiological and pathological processes such as aging and neurological disorders. Recent evidence has now implicated a role for oxidative stress in sleep and sleep loss. Studies suggest that wakefulness results in an oxidative burden and sleep provides a protective mechanism against these harmful effects. Prolonged wakefulness/sleep deprivation activates an adaptive stress pathway termed the unfolded protein response (UPR), which temporarily guards against the deleterious consequences of reactive oxygen species. The UPR affects the function of the endoplasmic reticulum, which is the site for integral and secretory membrane processing and folding. Several downstream effectors of the UPR operate in an antioxidant capacity to reduce the load of these toxic species; a process that may be important in delaying the progression of neurodegenerative diseases. This review will highlight the molecular components of the UPR that ameliorate the accumulation of oxidative stress and may therefore provide potential therapeutic targets.

Keywords

UPR Sleep Sleep loss Oxidative stress Anti-oxidant Nrf2 ATF4 Aging 

Notes

Acknowledgments

We thank Ms. Jennifer Montoya for assistance with the illustrations.

References

  1. 1.
    Cirelli C (2002) How sleep deprivation affects gene expression in the brain: a review of recent findings. J Appl Physiol 92:394–400PubMedGoogle Scholar
  2. 2.
    Cirelli C (2006) Cellular consequences of sleep deprivation in the brain. Sleep Med Rev 10:307–321PubMedCrossRefGoogle Scholar
  3. 3.
    Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10:49–62PubMedCrossRefGoogle Scholar
  4. 4.
    Mackiewicz M, Shockley KR, Romer MA, Galante RJ, Zimmerman JE et al (2007) Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31:441–457PubMedCrossRefGoogle Scholar
  5. 5.
    Methippara MM, Bashir T, Kumar S, Alam N, Szymusiak R et al (2009) Salubrinal, an inhibitor of protein synthesis, promotes deep slow wave sleep. Am J Physiol Regul Integr Comp Physiol 296:R178–R184PubMedGoogle Scholar
  6. 6.
    Reimund E (1994) The free radical flux theory of sleep. Med Hypotheses 43:231–233PubMedCrossRefGoogle Scholar
  7. 7.
    Silva RH, Abilio VC, Takatsu AL, Kameda SR, Grassl C et al (2004) Role of hippocampal oxidative stress in memory deficits induced by sleep deprivation in mice. Neuropharmacology 46:895–903PubMedCrossRefGoogle Scholar
  8. 8.
    Everson CA, Laatsch CD, Hogg N (2005) Antioxidant defense responses to sleep loss and sleep recovery. Am J Physiol Regul Integr Comp Physiol 288:R374–R383PubMedGoogle Scholar
  9. 9.
    Gopalakrishnan A, Ji LL, Cirelli C (2004) Sleep deprivation and cellular responses to oxidative stress. Sleep 27:27–35PubMedGoogle Scholar
  10. 10.
    D'Almeida V, Hipolide DC, Azzalis LA, Lobo LL, Junqueira VB et al (1997) Absence of oxidative stress following paradoxical sleep deprivation in rats. Neurosci Lett 235:25–28PubMedCrossRefGoogle Scholar
  11. 11.
    D'Almeida V, Lobo LL, Hipolide DC, de Oliveira AC, Nobrega JN et al (1998) Sleep deprivation induces brain region-specific decreases in glutathione levels. Neuroreport 9:2853–2856PubMedCrossRefGoogle Scholar
  12. 12.
    Ramanathan L, Gulyani S, Nienhuis R, Siegel JM (2002) Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. Neuroreport 13:1387–1390PubMedCrossRefGoogle Scholar
  13. 13.
    Chang HM, Mai FD, Chen BJ, Wu UI, Huang YL et al (2008) Sleep deprivation predisposes liver to oxidative stress and phospholipid damage: a quantitative molecular imaging study. J Anat 212:295–305PubMedCrossRefGoogle Scholar
  14. 14.
    McEwen BS (2006) Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load. Metabolism 55:S20–S23PubMedCrossRefGoogle Scholar
  15. 15.
    Naidoo N, Giang W, Galante RJ, Pack AI (2005) Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J Neurochem 92:1150–1157PubMedCrossRefGoogle Scholar
  16. 16.
    Benavides A, Pastor D, Santos P, Tranque P, Calvo S (2005) CHOP plays a pivotal role in the astrocyte death induced by oxygen and glucose deprivation. Glia 52:261–275PubMedCrossRefGoogle Scholar
  17. 17.
    DeGracia DJ, Montie HL (2004) Cerebral ischemia and the unfolded protein response. J Neurochem 91:1–8PubMedCrossRefGoogle Scholar
  18. 18.
    Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Dodd RL et al (2005) Damage to the endoplasmic reticulum and activation of apoptotic machinery by oxidative stress in ischemic neurons. J Cereb Blood Flow Metab 25:41–53PubMedCrossRefGoogle Scholar
  19. 19.
    Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398PubMedGoogle Scholar
  20. 20.
    Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599PubMedCrossRefGoogle Scholar
  21. 21.
    Hampton RY (2000) ER stress response: getting the UPR hand on misfolded proteins. Curr Biol 10:R518–R521PubMedCrossRefGoogle Scholar
  22. 22.
    Schroder M (2006) The unfolded protein response. Mol Biotechnol 34:279–290PubMedCrossRefGoogle Scholar
  23. 23.
    Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658PubMedCrossRefGoogle Scholar
  24. 24.
    Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258PubMedCrossRefGoogle Scholar
  25. 25.
    Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389PubMedCrossRefGoogle Scholar
  26. 26.
    Cirelli C, Tononi G (2000) Gene expression in the brain across the sleep-waking cycle. Brain Res 885:303–321PubMedCrossRefGoogle Scholar
  27. 27.
    Terao A, Steininger TL, Hyder K, Apte-Deshpande A, Ding J et al (2003) Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience 116:187–200PubMedCrossRefGoogle Scholar
  28. 28.
    Terao A, Wisor JP, Peyron C, Apte-Deshpande A, Wurts SW et al (2006) Gene expression in the rat brain during sleep deprivation and recovery sleep: an Affymetrix GeneChip study. Neuroscience 137:593–605PubMedCrossRefGoogle Scholar
  29. 29.
    Naidoo N, Casiano V, Cater J, Zimmerman J, Pack AI (2007) A role for the molecular chaperone protein BiP/GRP78 in Drosophila sleep homeostasis. Sleep 30:557–565PubMedGoogle Scholar
  30. 30.
    Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B et al (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104:20090–20095PubMedCrossRefGoogle Scholar
  31. 31.
    Malhotra JD, Miao H, Zhang K, Wolfson A, Pennathur S et al (2008) Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci U S A 105:18525–18530PubMedCrossRefGoogle Scholar
  32. 32.
    Cullinan SB, Diehl JA (2004) PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 279:20108–20117PubMedCrossRefGoogle Scholar
  33. 33.
    Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904PubMedCrossRefGoogle Scholar
  34. 34.
    Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633PubMedCrossRefGoogle Scholar
  35. 35.
    Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D et al (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 22:10690–10698PubMedGoogle Scholar
  36. 36.
    Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41:35–43PubMedCrossRefGoogle Scholar
  37. 37.
    Nakanishi H, Sun Y, Nakamura RK, Mori K, Ito M et al (1997) Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur J Neurosci 9:271–279PubMedCrossRefGoogle Scholar
  38. 38.
    Ramm P, Smith CT (1990) Rates of cerebral protein synthesis are linked to slow wave sleep in the rat. Physiol Behav 48:749–753PubMedCrossRefGoogle Scholar
  39. 39.
    Ding J, Nieto FJ, Beauchamp NJ Jr, Harris TB, Robbins JA et al (2004) Sleep-disordered breathing and white matter disease in the brainstem in older adults. Sleep 27:474–479PubMedGoogle Scholar
  40. 40.
    Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266:11632–11639PubMedGoogle Scholar
  41. 41.
    Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260PubMedCrossRefGoogle Scholar
  42. 42.
    Wild AC, Gipp JJ, Mulcahy T (1998) Overlapping antioxidant response element and PMA response element sequences mediate basal and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase catalytic subunit gene. Biochem J 332(Pt 2):373–381PubMedGoogle Scholar
  43. 43.
    Wild AC, Moinova HR, Mulcahy RT (1999) Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem 274:33627–33636PubMedCrossRefGoogle Scholar
  44. 44.
    He CH, Gong P, Hu B, Stewart D, Choi ME et al (2001) Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276:20858–20865PubMedCrossRefGoogle Scholar
  45. 45.
    Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K et al (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86PubMedCrossRefGoogle Scholar
  46. 46.
    Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A 93:14960–14965PubMedCrossRefGoogle Scholar
  47. 47.
    Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557PubMedCrossRefGoogle Scholar
  48. 48.
    Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ et al (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209PubMedCrossRefGoogle Scholar
  49. 49.
    Hayes JD, Ellis EM, Neal GE, Harrison DJ, Manson MM (1999) Cellular response to cancer chemopreventive agents: contribution of the antioxidant responsive element to the adaptive response to oxidative and chemical stress. Biochem Soc Symp 64:141–168PubMedGoogle Scholar
  50. 50.
    Hayes JD, McMahon M (2001) Molecular basis for the contribution of the antioxidant responsive element to cancer chemoprevention. Cancer Lett 174:103–113PubMedCrossRefGoogle Scholar
  51. 51.
    Yoh K, Itoh K, Enomoto A, Hirayama A, Yamaguchi N et al (2001) Nrf2-deficient female mice develop lupus-like autoimmune nephritis. Kidney Int 60:1343–1353PubMedCrossRefGoogle Scholar
  52. 52.
    Sykiotis GP, Bohmann D (2008) Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell 14:76–85PubMedCrossRefGoogle Scholar
  53. 53.
    Chan K, Han XD, Kan YW (2001) An important function of Nrf2 in combating oxidative stress: detoxification of acetaminophen. Proc Natl Acad Sci U S A 98:4611–4616PubMedCrossRefGoogle Scholar
  54. 54.
    Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T et al (2000) Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem 275:16023–16029PubMedCrossRefGoogle Scholar
  55. 55.
    Holtz WA, Turetzky JM, Jong YJ, O'Malley KL (2006) Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. J Neurochem 99:54–69PubMedCrossRefGoogle Scholar
  56. 56.
    Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38:317–332PubMedCrossRefGoogle Scholar
  57. 57.
    Liang G, Hai T (1997) Characterization of human activating transcription factor 4, a transcriptional activator that interacts with multiple domains of cAMP-responsive element-binding protein (CREB)-binding protein. J Biol Chem 272:24088–24095PubMedCrossRefGoogle Scholar
  58. 58.
    Fels DR, Koumenis C (2006) The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth. Cancer Biol Ther 5:723–728PubMedCrossRefGoogle Scholar
  59. 59.
    Lassot I, Segeral E, Berlioz-Torrent C, Durand H, Groussin L et al (2001) ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol 21:2192–2202PubMedCrossRefGoogle Scholar
  60. 60.
    Harding HP, Novoa I, Zhang Y, Zeng H, Wek R et al (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108PubMedCrossRefGoogle Scholar
  61. 61.
    Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28PubMedCrossRefGoogle Scholar
  62. 62.
    Lange PS, Chavez JC, Pinto JT, Coppola G, Sun CW et al (2008) ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med 205:1227–1242PubMedCrossRefGoogle Scholar
  63. 63.
    Mayumi-Matsuda K, Kojima S, Suzuki H, Sakata T (1999) Identification of a novel kinase-like gene induced during neuronal cell death. Biochem Biophys Res Commun 258:260–264PubMedCrossRefGoogle Scholar
  64. 64.
    Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H (2005) TRB3, a novel ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in cell death. EMBO J 24:1243–1255PubMedCrossRefGoogle Scholar
  65. 65.
    Ameri K, Harris AL (2008) Activating transcription factor 4. Int J Biochem Cell Biol 40:14–21PubMedCrossRefGoogle Scholar
  66. 66.
    Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916PubMedCrossRefGoogle Scholar
  67. 67.
    Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L et al (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406PubMedGoogle Scholar
  68. 68.
    Chakravarthi S, Jessop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic reticulum-generated oxidative stress. EMBO Rep 7:271–275PubMedCrossRefGoogle Scholar
  69. 69.
    Ron D, Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Genes Dev 6:439–453PubMedCrossRefGoogle Scholar
  70. 70.
    Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995PubMedCrossRefGoogle Scholar
  71. 71.
    Scheuner D, Song B, McEwen E, Liu C, Laybutt R et al (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–1176PubMedCrossRefGoogle Scholar
  72. 72.
    Naidoo N, Ferber M, Master M, Zhu Y, Pack AI (2008) Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J Neurosci 28:6539–6548PubMedCrossRefGoogle Scholar
  73. 73.
    Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK et al (2004) Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A 101:3381–3386PubMedCrossRefGoogle Scholar
  74. 74.
    Leung L, Kwong M, Hou S, Lee C, Chan JY (2003) Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J Biol Chem 278:48021–48029PubMedCrossRefGoogle Scholar
  75. 75.
    Hirayama A, Yoh K, Nagase S, Ueda A, Itoh K et al (2003) EPR imaging of reducing activity in Nrf2 transcriptional factor-deficient mice. Free Radic Biol Med 34:1236–1242PubMedCrossRefGoogle Scholar
  76. 76.
    Kim HJ, Barajas B, Wang M, Nel AE (2008) Nrf2 activation by sulforaphane restores the age-related decrease of T(H)1 immunity: role of dendritic cells. J Allergy Clin Immunol 121(1255–1261):e1257Google Scholar
  77. 77.
    Chan JY, Kwong M (2000) Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the Nrf2 basic-leucine zipper protein. Biochim Biophys Acta 1517:19–26PubMedGoogle Scholar
  78. 78.
    Chan K, Kan YW (1999) Nrf2 is essential for protection against acute pulmonary injury in mice. Proc Natl Acad Sci U S A 96:12731–12736PubMedCrossRefGoogle Scholar
  79. 79.
    Enomoto A, Itoh K, Nagayoshi E, Haruta J, Kimura T et al (2001) High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol Sci 59:169–177PubMedCrossRefGoogle Scholar
  80. 80.
    Ikeyama S, Wang XT, Li J, Podlutsky A, Martindale JL et al (2003) Expression of the pro-apoptotic gene gadd153/chop is elevated in liver with aging and sensitizes cells to oxidant injury. J Biol Chem 278:16726–16731PubMedCrossRefGoogle Scholar
  81. 81.
    Kirkland JL, Tchkonia T, Pirtskhalava T, Han J, Karagiannides I (2002) Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol 37:757–767PubMedCrossRefGoogle Scholar
  82. 82.
    Li J, Holbrook NJ (2004) Elevated gadd153/chop expression and enhanced c-Jun N-terminal protein kinase activation sensitizes aged cells to ER stress. Exp Gerontol 39:735–744PubMedCrossRefGoogle Scholar
  83. 83.
    Paz Gavilan M, Vela J, Castano A, Ramos B, del Rio JC et al (2006) Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiol Aging 27:973–982PubMedCrossRefGoogle Scholar
  84. 84.
    Hussain SG, Ramaiah KV (2007) Reduced eIF2alpha phosphorylation and increased proapoptotic proteins in aging. Biochem Biophys Res Commun 355:365–370PubMedCrossRefGoogle Scholar
  85. 85.
    Peker Y, Kraiczi H, Hedner J, Loth S, Johansson A et al (1999) An independent association between obstructive sleep apnoea and coronary artery disease. Eur Respir J 14:179–184PubMedCrossRefGoogle Scholar
  86. 86.
    Peppard PE, Young T, Palta M, Skatrud J (2000) Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med 342:1378–1384PubMedCrossRefGoogle Scholar
  87. 87.
    Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM et al (2005) Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 353:2034–2041PubMedCrossRefGoogle Scholar
  88. 88.
    Lavie L (2009) Oxidative stress—a unifying paradigm in obstructive sleep apnea and comorbidities. Prog Cardiovasc Dis 51:303–312PubMedCrossRefGoogle Scholar
  89. 89.
    Suzuki YJ, Jain V, Park AM, Day RM (2006) Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic Biol Med 40:1683–1692PubMedCrossRefGoogle Scholar
  90. 90.
    Christou K, Moulas AN, Pastaka C, Gourgoulianis KI (2003) Antioxidant capacity in obstructive sleep apnea patients. Sleep Med 4:225–228PubMedCrossRefGoogle Scholar
  91. 91.
    Jung HH, Han H, Lee JH (2005) Sleep apnea, coronary artery disease, and antioxidant status in hemodialysis patients. Am J Kidney Dis 45:875–882PubMedCrossRefGoogle Scholar
  92. 92.
    Takahashi K, Chin K, Nakamura H, Morita S, Sumi K et al (2008) Plasma thioredoxin, a novel oxidative stress marker, in patients with obstructive sleep apnea before and after nasal continuous positive airway pressure. Antioxid Redox Signal 10:715–726PubMedCrossRefGoogle Scholar
  93. 93.
    Row BW, Kheirandish L, Neville JJ, Gozal D (2002) Impaired spatial learning and hyperactivity in developing rats exposed to intermittent hypoxia. Pediatr Res 52:449–453PubMedGoogle Scholar
  94. 94.
    Veasey SC, Davis CW, Fenik P, Zhan G, Hsu YJ et al (2004) Long-term intermittent hypoxia in mice: protracted hypersomnolence with oxidative injury to sleep-wake brain regions. Sleep 27:194–201PubMedGoogle Scholar
  95. 95.
    Zhu Y, Fenik P, Zhan G, Mazza E, Kelz M et al (2007) Selective loss of catecholaminergic wake active neurons in a murine sleep apnea model. J Neurosci 27:10060–10071PubMedCrossRefGoogle Scholar
  96. 96.
    Zhu Y, Fenik P, Zhan G, Sanfillipo-Cohn B, Naidoo N et al (2008) Eif-2a protects brainstem motoneurons in a murine model of sleep apnea. J Neurosci 28:2168–2178PubMedCrossRefGoogle Scholar
  97. 97.
    Ramanathan L, Gozal D, Siegel JM (2005) Antioxidant responses to chronic hypoxia in the rat cerebellum and pons. J Neurochem 93:47–52PubMedCrossRefGoogle Scholar
  98. 98.
    Christou K, Kostikas K, Pastaka C, Tanou K, Antoniadou I et al (2009) Nasal continuous positive airway pressure treatment reduces systemic oxidative stress in patients with severe obstructive sleep apnea syndrome. Sleep Med 10:87–94PubMedCrossRefGoogle Scholar
  99. 99.
    Calabrese V, Guagliano E, Sapienza M, Panebianco M, Calafato S et al (2007) Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res 32:757–773PubMedCrossRefGoogle Scholar
  100. 100.
    Forman MS, Lee VM, Trojanowski JQ (2003) 'Unfolding' pathways in neurodegenerative disease. Trends Neurosci 26:407–410PubMedCrossRefGoogle Scholar
  101. 101.
    Johnson JA, Johnson DA, Kraft AD, Calkins MJ, Jakel RJ et al (2008) The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 1147:61–69PubMedCrossRefGoogle Scholar
  102. 102.
    Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F et al (2005) The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol 110:165–172PubMedCrossRefGoogle Scholar
  103. 103.
    Morito N, Yoh K, Itoh K, Hirayama A, Koyama A et al (2003) Nrf2 regulates the sensitivity of death receptor signals by affecting intracellular glutathione levels. Oncogene 22:9275–9281PubMedCrossRefGoogle Scholar
  104. 104.
    Gavilan MP, Pintado C, Gavilan E, Jimenez S, Rios RM et al (2009) Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition. Aging Cell 8:654–665PubMedCrossRefGoogle Scholar
  105. 105.
    Lee JM, Shih AY, Murphy TH, Johnson JA (2003) NF-E2-related factor-2 mediates neuroprotection against mitochondrial complex I inhibitors and increased concentrations of intracellular calcium in primary cortical neurons. J Biol Chem 278:37948–37956PubMedCrossRefGoogle Scholar
  106. 106.
    Lewerenz J, Maher P (2009) Basal levels of eIF2alpha phosphorylation determine cellular antioxidant status by regulating ATF4 and xCT expression. J Biol Chem 284:1106–1115PubMedCrossRefGoogle Scholar
  107. 107.
    Bliwise DL (2004) Sleep disorders in Alzheimer's disease and other dementias. Clin Cornerstone 6(Suppl 1A):S16–S28PubMedCrossRefGoogle Scholar
  108. 108.
    Koh K, Evans JM, Hendricks JC, Sehgal A (2006) A Drosophila model for age-associated changes in sleep:wake cycles. Proc Natl Acad Sci U S A 103:13843–13847PubMedCrossRefGoogle Scholar
  109. 109.
    Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837PubMedCrossRefGoogle Scholar
  110. 110.
    Mackiewicz M. Sleep Gene.org 2009 (www.sleepgene.org).

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Sleep and Respiratory NeurobiologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations