Molecular Neurobiology

, Volume 40, Issue 2, pp 166–182 | Cite as

Chronic Stress- and Sex-Specific Neuromorphological and Functional Changes in Limbic Structures

  • Katie J. McLaughlin
  • Sarah E. Baran
  • Cheryl D. Conrad


Chronic stress produces sex-specific neuromorphological changes in a variety of brain regions, which likely contribute to the gender differences observed in stress-related illnesses and cognitive ability. Here, we review the literature investigating the relationship between chronic stress and sex differences on brain plasticity and function, with an emphasis on morphological changes in dendritic arborization and spines in the hippocampus, prefrontal cortex, and amygdala. These brain structures are highly interconnected and sensitive to stress and gonadal hormones, and influence a variety of cognitive abilities. Although much less work has been published using female subjects than with male subjects, the findings suggest that the relationship between brain morphology and function is very different between the sexes. After reviewing the literature, we present a model showing how chronic stress influences the morphology of these brain regions and changes the dynamic of how these limbic structures interact with each other to produce altered behavioral outcomes in spatial ability, behavioral flexibility/executive function, and emotional arousal.


Stress Hippocampus Prefrontal cortex Amygdala Sex difference Spatial memory Emotional arousal Fear conditioning Behavioral flexibility Depression Post-traumatic stress disorder 





Cornu ammonis






Major depressive disorder




Prefrontal cortex


Post-traumatic stress disorder



This study was supported by MH64727, a grant from the Institute for Mental Health Research, and the Arizona Biomedical Research Commission.


  1. 1.
    Hamann S, Canli T (2004) Individual differences in emotion processing. Curr Opin Neurobiol 14(2):233–238PubMedGoogle Scholar
  2. 2.
    Eichenbaum H, Yonelinas AP, Ranganath C (2007) The medial temporal lobe and recognition memory. Annu Rev Neurosci 30:123–152PubMedGoogle Scholar
  3. 3.
    Lipton PA, Eichenbaum H (2008) Complementary roles of hippocampus and medial entorhinal cortex in episodic memory. Neural Plast 2008:1–8Google Scholar
  4. 4.
    Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9(3):182–194PubMedGoogle Scholar
  5. 5.
    Burgess N (2008) Spatial cognition and the brain. Ann N Y Acad Sci 1124:77–97PubMedGoogle Scholar
  6. 6.
    O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, OxfordGoogle Scholar
  7. 7.
    Kesner RP, Hopkins RO (2006) Mnemonic functions of the hippocampus: a comparison between animals and humans. Biol Psychol 73(1):3–18PubMedGoogle Scholar
  8. 8.
    Aggleton JP, Hunt PR, Rawlins JN (1986) The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav Brain Res 19:133–146PubMedGoogle Scholar
  9. 9.
    Kessels RP, de Haan EH, Kappelle LJ, Postma A (2001) Varieties of human spatial memory: a meta-analysis on the effects of hippocampal lesions. Brain Res Brain Res Rev 35(3):295–303PubMedGoogle Scholar
  10. 10.
    Morris RGM, Garrud P, Rawlins JNP, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683PubMedGoogle Scholar
  11. 11.
    McEwen BS, Milner TA (2007) Hippocampal formation: shedding light on the influence of sex and stress on the brain. Brain Res Rev 55(2):343–355PubMedGoogle Scholar
  12. 12.
    Luine V (2002) Sex differences in chronic stress effects on memory in rats. Stress 5(3):205–216PubMedGoogle Scholar
  13. 13.
    Luine VN, Beck KD, Bowman RE, Frankfurt M, Maclusky NJ (2007) Chronic stress and neural function: accounting for sex and age. J Neuroendocrinol 19(10):743–751PubMedGoogle Scholar
  14. 14.
    Ragozzino ME (2007) The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. Ann N Y Acad Sci 1121:355–375PubMedGoogle Scholar
  15. 15.
    Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28(7):771–784PubMedGoogle Scholar
  16. 16.
    Cahill L, McGaugh JL (1998) Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci 21:294–299PubMedGoogle Scholar
  17. 17.
    LeDoux J (2000) The amygdala and emotion: a view through fear. In: Aggleton JP (ed) The amygdala: a functional analysis. Oxford University Press, New York, pp 289–310Google Scholar
  18. 18.
    LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedGoogle Scholar
  19. 19.
    Diamond DM, Campbell AM, Park CR, Halonen J, Zoladz PR (2007) The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes–Dodson law. Neural Past 2007:1–33Google Scholar
  20. 20.
    Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20(16):6225–6231PubMedGoogle Scholar
  21. 21.
    Gao YJ, Ren WH, Zhang YQ, Zhao ZQ (2004) Contributions of the anterior cingulate cortex and amygdala to pain- and fear-conditioned place avoidance in rats. Pain 110(1–2):343–353PubMedGoogle Scholar
  22. 22.
    Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):274–285PubMedGoogle Scholar
  23. 23.
    Conrad CD, Magariños AM, LeDoux JE, McEwen BS (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav Neurosci 113(5):902–913PubMedGoogle Scholar
  24. 24.
    Conrad CD, MacMillan DD II, Tsekhanov S, Wright RL, Baran SE, Fuchs RE (2004) Influence of chronic corticosterone and glucocorticoid receptor antagonism in the amygdala on fear conditioning. Neurobiol Learn Mem 81(3):185–199PubMedGoogle Scholar
  25. 25.
    Miracle AD, Brace MF, Huyck KD, Singler SA, Wellman CL (2006) Chronic stress impairs recall of extinction of conditioned fear. Neurobiol Learn Mem 85(3):213–218PubMedGoogle Scholar
  26. 26.
    Garcia R, Spennato G, Nilsson-Todd L, Moreau JL, Deschaux O (2008) Hippocampal low-frequency stimulation and chronic mild stress similarly disrupt fear extinction memory in rats. Neurobiol Learn Mem 89(4):560–566PubMedGoogle Scholar
  27. 27.
    Baran SE, Armstrong CE, Niren DC, Hanna JJ, Conrad CD (2009) Chronic stress and sex differences on the recall of fear conditioning and extinction. Neurobiol Learn Mem 91:323–332PubMedGoogle Scholar
  28. 28.
    Cahill L (2005) His brain, her brain. Sci Am 292(5):40–47PubMedGoogle Scholar
  29. 29.
    Cahill L (2006) Why sex matters for neuroscience. Nat Rev Neurosci 7(6):477–484PubMedGoogle Scholar
  30. 30.
    Amaral DG, Lavenex P (2007) Hippocampal neuroanatomy. In: Andersen P, Morris RG, Amaral DG, Bliss T, O’Keefe J (eds) The hippocampus book. Oxford University Press, New York, pp 37–114Google Scholar
  31. 31.
    Smith TC, Wingard DL, Ryan MA, Kritz-Silverstein D, Slymen DJ, Sallis JF (2008) Prior assault and posttraumatic stress disorder after combat deployment. Epidemiology 19(3):505–512PubMedGoogle Scholar
  32. 32.
    Weber K, Rockstroh B, Borgelt J, Awiszus B, Popov T, Hoffmann K, Schonauer K, Watzl H, Propster K (2008) Stress load during childhood affects psychopathology in psychiatric patients. BMC Psychiatry 8:63PubMedGoogle Scholar
  33. 33.
    Kendler KS, Prescott CA (1999) A population-based twin study of lifetime major depression in men and women. Arch Gen Psychiatry 56(1):39–44PubMedGoogle Scholar
  34. 34.
    Patten SB, Stuart HL, Russell ML, Maxwell CJ, Arboleda-Florez J (2003) Epidemiology of major depression in a predominantly rural health region. Soc Psychiatry Psychiatr Epidemiol 38(7):360–365PubMedGoogle Scholar
  35. 35.
    Paykel ES (2003) Life events and affective disorders. Acta Psychiatr Scand Suppl 108(418):61–66Google Scholar
  36. 36.
    Bale TL (2006) Stress sensitivity and the development of affective disorders. Horm Behav 50(4):529–533PubMedGoogle Scholar
  37. 37.
    Hammen C, Kim EY, Eberhart NK, Brennan PA (2009) Chronic and acute stress and the prediction of major depression in women. Depress Anxiety (in press). doi: 10.1002/da.20571
  38. 38.
    Gold PW, Chrousos GP (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 7(3):254–275PubMedGoogle Scholar
  39. 39.
    Breslau N, Davis GC, Andreski P, Peterson EL, Schultz LR (1997) Sex differences in posttraumatic stress disorder. Arch Gen Psychiatry 54(11):1044–1048PubMedGoogle Scholar
  40. 40.
    Chida Y, Hamer M (2008) Chronic psychosocial factors and acute physiological responses to laboratory-induced stress in healthy populations: a quantitative review of 30 years of investigations. Psychol Bull 134(6):829–885PubMedGoogle Scholar
  41. 41.
    Weber K, Rockstroh B, Borgelt J, Awiszus B, Popov T, Hoffmann K, Schonauer K, Watzl H, Propster K (2008) Stress load during childhood affects psychopathology in psychiatric patients. BMC Psychiatry 8:63–72PubMedGoogle Scholar
  42. 42.
    Agid O, Kohn Y, Lerer B (2000) Environmental stress and psychiatric illness. Biomed Pharmacother 54(3):135–141PubMedGoogle Scholar
  43. 43.
    De Bellis MD, Baum AS, Birmaher B, Keshavan MS, Eccard CH, Boring AM, Jenkins FJ, Ryan ND (1999) A.E. Bennett Research Award. Developmental traumatology. Part I: biological stress systems. Biol Psychiatry 45(10):1259–1270PubMedGoogle Scholar
  44. 44.
    De Bellis MD, Thomas LA (2003) Biologic findings of post-traumatic stress disorder and child maltreatment. Curr Psychiatry Rep 5(2):108–117PubMedGoogle Scholar
  45. 45.
    Reus VI, Wolkowitz OM (2001) Antiglucocorticoid drugs in the treatment of depression. Expert Opin Investig Drugs 10:1789–1796PubMedGoogle Scholar
  46. 46.
    Brown ES, Varghese FP, McEwen BS (2004) Association of depression with medical illness: does cortisol play a role? Biol Psychiatry 55(1):1–9PubMedGoogle Scholar
  47. 47.
    Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4(2):141–194PubMedGoogle Scholar
  48. 48.
    Gomez RG, Fleming SH, Keller J, Flores B, Kenna H, Debattista C, Solvason B, Schatzberg AF (2006) The neuropsychological profile of psychotic major depression and its relation to cortisol. Biol Psychiatry 60:472–478PubMedGoogle Scholar
  49. 49.
    Reppermund S, Zihl J, Lucae S, Horstmann S, Kloiber S, Holsboer F, Ising M (2007) Persistent cognitive impairment in depression: the role of psychopathology and altered hypothalamic–pituitary–adrenocortical (HPA) system regulation. Biol Psychiatry 62(5):400–406PubMedGoogle Scholar
  50. 50.
    Beck AT (2008) The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry 165(8):969–977PubMedGoogle Scholar
  51. 51.
    Pardon MC, Rattray I (2008) What do we know about the long-term consequences of stress on ageing and the progression of age-related neurodegenerative disorders? Neurosci Biobehav Rev 32(6):1103–1120PubMedGoogle Scholar
  52. 52.
    Sotiropoulos I, Cerqueira JJ, Catania C, Takashima A, Sousa N, Almeida OF (2008) Stress and glucocorticoid footprints in the brain—the path from depression to Alzheimer’s disease. Neurosci Biobehav Rev 32(6):1161–1173PubMedGoogle Scholar
  53. 53.
    Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134:319–329PubMedGoogle Scholar
  54. 54.
    McEwen BS, Weiss JM, Schwartz LS (1968) Selective retention of corticosterone by limbic structures in rat brain. Nature 220:911–912PubMedGoogle Scholar
  55. 55.
    McEwen BS, Weiss JM, Schwartz LS (1969) Uptake of corticosterone by rat brain and its concentration by certain limbic structures. Brain Res 16:227–241PubMedGoogle Scholar
  56. 56.
    Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935PubMedGoogle Scholar
  57. 57.
    Bremner JD, Elzinga B, Schmahl C, Vermetten E (2008) Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res 167:171–186PubMedGoogle Scholar
  58. 58.
    Bremner JD (2006) The relationship between cognitive and brain changes in posttraumatic stress disorder. Ann N Y Acad Sci 1071:80–86PubMedGoogle Scholar
  59. 59.
    Karl A, Schaefer M, Malta LS, Dörfel D, Rohleder N, Werner A (2006) A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev 30:1004–1031PubMedGoogle Scholar
  60. 60.
    Gilbertson MW, Shenton ME, Ciazewski A, Kasai K, Lasko NB, Orr SP, Pitman RK (2002) Smaller hippocampal volume predicts pathological vulnerability to psychological trauma. Nat Neurosci 5:1242–1247PubMedGoogle Scholar
  61. 61.
    Lindauer RJ, Vlieger EJ, Jalink M, Olff M, Carlier IV, Majoie CB, den Heeten GJ, Gersons BP (2004) Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biol Psychiatry 56(5):356–363PubMedGoogle Scholar
  62. 62.
    Wignall EL, Dickson JM, Vaughan P, Farrow TF, Wilkinson ID, Hunter MD, Woodruff PW (2004) Smaller hippocampal volume in patients with recent-onset posttraumatic stress disorder. Biol Psychiatry 56(11):832–836PubMedGoogle Scholar
  63. 63.
    Brown ES, Rush AJ, McEwen BS (1999) Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 21:474–484PubMedGoogle Scholar
  64. 64.
    Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157(1):115–117PubMedGoogle Scholar
  65. 65.
    Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatr 160(8):1516–1518PubMedGoogle Scholar
  66. 66.
    Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161(4):598–607PubMedGoogle Scholar
  67. 67.
    Lange C, Irle E (2004) Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychol Med 34(6):1059–1064PubMedGoogle Scholar
  68. 68.
    Vasic N, Walter H, Hose A, Wolf RC (2008) Gray matter reduction associated with psychopathology and cognitive dysfunction in unipolar depression: a voxel-based morphometry study. J Affect Disord 109(1–2):107–116PubMedGoogle Scholar
  69. 69.
    Sheline YI, Wang PW, Gado MH, Csernansky JC, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 93:3908–3913PubMedGoogle Scholar
  70. 70.
    Vakili K, Pillay SS, Lafer B, Fava M, Renshaw PF, Bonello-Cintron CM, Yurgelun-Todd DA (2000) Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study. Biol Psychiatry 47(12):1087–1090PubMedGoogle Scholar
  71. 71.
    von Gunten A, Fox NC, Cipolotti L, Ron MA (2000) A volumetric study of hippocampus and amygdala in depressed patients with subjective memory problems. J Neuropsychiatry Clin Neurosci 12(4):493–498Google Scholar
  72. 72.
    Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jager M, Leinsinger G, Bottlender R, Hahn K, Moller HJ (2002) Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 159(7):1112–1118PubMedGoogle Scholar
  73. 73.
    Keller J, Shen L, Gomez RG, Garrett A, Solvason HB, Reiss A, Schatzberg AF (2008) Hippocampal and amygdalar volumes in psychotic and nonpsychotic unipolar depression. Am J Psychiatr 165(7):872–880PubMedGoogle Scholar
  74. 74.
    Sheline YI, Mittler BL, Mintun MA (2002) The hippocampus and depression. Eur Psychiatry 17(Suppl 3):300–305PubMedGoogle Scholar
  75. 75.
    Frodl TS, Koutsouleris N, Bottlender R, Born C, Jager M, Scupin I, Reiser M, Moller HJ, Meisenzahl EM (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 65(10):1156–1165PubMedGoogle Scholar
  76. 76.
    Ahima RS, Harlan RE (1990) Charting of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system. Neuroscience 39(3):579–604PubMedGoogle Scholar
  77. 77.
    Ahima RS, Harlan RE (1991) Differential corticosteroid regulation of type II glucocorticoid receptor-like immunoreactivity in the rat central nervous system: topography and implications. Endocrinology 129(1):226–236PubMedGoogle Scholar
  78. 78.
    Ahima R, Krozowski Z, Harlan R (1991) Type I corticosteroid receptor-like immunoreactivity in the rat CNS: distribution and regulation by corticosteroids. J Comp Neurol 313(3):522–538PubMedGoogle Scholar
  79. 79.
    Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC, Cullinan WE (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24(3):151–180PubMedGoogle Scholar
  80. 80.
    Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, Staib LH, Charney DS (2002) Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry 51(4):273–279PubMedGoogle Scholar
  81. 81.
    Coryell W, Nopoulos P, Drevets W, Wilson T, Andreasen NC (2005) Subgenual prefrontal cortex volumes in major depressive disorder and schizophrenia: diagnostic specificity and prognostic implications. Am J Psychiatry 162(9):1706–1712PubMedGoogle Scholar
  82. 82.
    Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA (2008) Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord 10(1):1–37PubMedGoogle Scholar
  83. 83.
    Brown ES, Woolston DJ, Frol AB (2008) Amygdala volume in patients receiving chronic corticosteroid therapy. Biol Psychiatry 63(7):705–709PubMedGoogle Scholar
  84. 84.
    Sheline YI, Gado MH, Price JL (1998) Amygdala core nuclei volumes are decreased in recurrent major depression. NeuroReport 9(9):2023–2028PubMedGoogle Scholar
  85. 85.
    Yoshikawa E, Matsuoka Y, Yamasue H, Inagaki M, Nakano T, Akechi T, Kobayakawa M, Fujimori M, Nakaya N, Akizuki N, Imoto S, Murakami K, Kasai K, Uchitomi Y (2006) Prefrontal cortex and amygdala volume in first minor or major depressive episode after cancer diagnosis. Biol Psychiatry 59(8):707–712PubMedGoogle Scholar
  86. 86.
    Frodl T, Meisenzahl E, Zetzsche T, Bottlender R, Born C, Groll C, Jager M, Leinsinger G, Hahn K, Moller HJ (2002) Enlargement of the amygdala in patients with a first episode of major depression. Biol Psychiatry 51(9):708–714PubMedGoogle Scholar
  87. 87.
    Ramel W, Goldin PR, Eyler LT, Brown GG, Gotlib IH, McQuaid JR (2007) Amygdala reactivity and mood-congruent memory in individuals at risk for depressive relapse. Biol Psychiatry 61(2):231–239PubMedGoogle Scholar
  88. 88.
    Kemp AH, Felmingham K, Das P, Hughes G, Peduto AS, Bryant RA, Williams LM (2007) Influence of comorbid depression on fear in posttraumatic stress disorder: an fMRI study. Psychiatry Res 155(3):265–259PubMedGoogle Scholar
  89. 89.
    Shin LM, Rauch SL, Pitman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071:67–79PubMedGoogle Scholar
  90. 90.
    Shin LM, Wright CI, Cannistraro PA, Wedig MM, McMullin K, Martis B, Macklin ML, Lasko NB, Cavanagh SR, Krangel TS, Orr SP, Pitman RK, Whalen PJ, Rauch SL (2005) A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch Gen Psychiatry 62(3):273–281PubMedGoogle Scholar
  91. 91.
    Woon FL, Hedges DW (2008) Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: a meta-analysis. Hippocampus 18(8):729–736PubMedGoogle Scholar
  92. 92.
    Becker JB, Arnold AP, Berkley KJ, Blaustein JD, Eckel LA, Hampson E, Herman JP, Marts S, Sadee W, Steiner M, Taylor J, Young E (2005) Strategies and methods for research on sex differences in brain and behavior. Endocrinology 146:1650–1673PubMedGoogle Scholar
  93. 93.
    Olff M, Langeland W, Draijer N, Gersons BP (2007) Gender differences in posttraumatic stress disorder. Psychol Bull 133(2):183–204PubMedGoogle Scholar
  94. 94.
    Richter R, Flowers T (2008) Gendered dimensions of disaster care: critical distinctions in female psychosocial needs, triage, pain assessment, and care. Am J Disaster Med 3(1):31–37PubMedGoogle Scholar
  95. 95.
    Heller W (1993) Gender differences in depression: perspectives from neuropsychology. J Affect Disord 29(2–3):129–143PubMedGoogle Scholar
  96. 96.
    Kessler RC, McGonagle KA, Swartz M, Blazer DG, Nelson CB (1993) Sex and depression in the National Comorbidity Survey. I: Lifetime prevalence, chronicity and recurrence. J Affect Disord 29(2-3):85–96PubMedGoogle Scholar
  97. 97.
    Weissman MM, Bland R, Joyce PR, Newman S, Wells JE, Wittchen HU (1993) Sex differences in rates of depression: cross-national perspectives. J Affect Disord 29(2–3):77–84PubMedGoogle Scholar
  98. 98.
    Gao S, Hendrie HC, Hall KS, Hui S (1998) The relationships between age, sex, and the incidence of dementia and Alzheimer disease: a meta-analysis. Arch Gen Psychiatry 55(9):809–815PubMedGoogle Scholar
  99. 99.
    Azad NA, Al Bugami M, Loy-English I (2007) Gender differences in dementia risk factors. Gend Med 4(2):120–129PubMedGoogle Scholar
  100. 100.
    Altemus KL, Almi CR (1997) Neonatal hippocampal damage in rats: long-term spatial memory deficits and associations with magnitude of hippocampal damage. Hippocampus 7:403–414PubMedGoogle Scholar
  101. 101.
    Parry BL, Javeed S, Laughlin GA, Hauger R, Clopton P (2000) Cortisol circadian rhythms during the menstrual cycle and with sleep deprivation in premenstrual dysphoric disorder and normal control subjects. Biol Psychiatry 48(9):920–931PubMedGoogle Scholar
  102. 102.
    Kajantie E, Phillips DI (2006) The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology 31(2):151–178PubMedGoogle Scholar
  103. 103.
    Young EA, Altemus M (2004) Puberty, ovarian steroids, and stress. Ann N Y Acad Sci 1021:124–133PubMedGoogle Scholar
  104. 104.
    Endicott J (1993) The menstrual cycle and mood disorders. J Affect Disord 29(2–3):193–200PubMedGoogle Scholar
  105. 105.
    Goldstein JM, Jerram M, Poldrack R, Ahern T, Kennedy DN, Seidman LJ, Makris N (2005) Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J Neurosci 25(40):9309–9316PubMedGoogle Scholar
  106. 106.
    Protopopescu X, Pan H, Altemus M, Tuescher O, Polanecsky M, McEwen B, Silbersweig D, Stern E (2005) Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proc Natl Acad Sci U S A 102(44):16060–16065PubMedGoogle Scholar
  107. 107.
    Genazzani AR, Pluchino N, Luisi S, Luisi M (2007) Estrogen, cognition and female ageing. Hum Reprod Update 13(2):175–187PubMedGoogle Scholar
  108. 108.
    Garcia-Bueno B, Caso JR, Leza JC (2008) Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 32(6):1136–1151PubMedGoogle Scholar
  109. 109.
    Buynitsky T, Mostofsky DI (2009) Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev 33:1089–1098PubMedGoogle Scholar
  110. 110.
    Conrad CD, Galea LAM, Kuroda Y, McEwen BS (1996) Chronic stress impairs rat spatial memory on the Y-maze, and this effect is blocked by tianeptine pretreatment. Behav Neurosci 110(6):1321–1334PubMedGoogle Scholar
  111. 111.
    Wright RL, Conrad CD (2005) Chronic stress leaves novelty-seeking intact while impairing spatial recognition memory in the Y-maze. Stress 8(2):151–154PubMedGoogle Scholar
  112. 112.
    Wright RL, Lightner EN, Harman JS, Meijer OC, Conrad CD (2006) Attenuating corticosterone levels on the day of memory assessment prevents chronic stress-induced impairments in spatial memory. Eur J NeuroSci 24:595–605PubMedGoogle Scholar
  113. 113.
    Kleen JK, Sitomer MT, Killeen PR, Conrad CD (2006) Chronic stress impairs spatial memory and motivation for reward without disrupting motor ability and motivation to explore. Behav Neurosci 120(4):842–851PubMedGoogle Scholar
  114. 114.
    Bellani R, Luecken L, Conrad CD (2006) Peripubertal anxiety profile can predict spatial memory impairments following chronic stress. Behav Brain Res 166(2):263–270PubMedGoogle Scholar
  115. 115.
    Duman RS (2004) Depression: a case of neuronal life and death? Biol Psychiatry 56(3):140–145PubMedGoogle Scholar
  116. 116.
    Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59(12):1136–1143PubMedGoogle Scholar
  117. 117.
    Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22:6810–6818PubMedGoogle Scholar
  118. 118.
    McLaughlin KJ, Gomez JL, Baran SE, Conrad CD (2007) The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms. Brain Res 1161:56–64PubMedGoogle Scholar
  119. 119.
    Magariños AM, McEwen BS, Flügge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16:3534–3540PubMedGoogle Scholar
  120. 120.
    Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60(2):236–248PubMedGoogle Scholar
  121. 121.
    Brown SM, Henning S, Wellman CL (2005) Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb Cortex 15(11):1714–1722PubMedGoogle Scholar
  122. 122.
    Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6PubMedGoogle Scholar
  123. 123.
    Vyas A, Jadhav S, Chattarji S (2006) Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143(2):387–393PubMedGoogle Scholar
  124. 124.
    Cui H, Sakamoto H, Higashi S, Kawata M (2008) Effects of single-prolonged stress on neurons and their afferent inputs in the amygdala. Neuroscience 152(3):703–712PubMedGoogle Scholar
  125. 125.
    Colla M, Kronenberg G, Deuschle M, Meichel K, Hagen T, Bohrer M, Heuser I (2007) Hippocampal volume reduction and HPA-system activity in major depression. J Psychiatry Res 41(7):553–560Google Scholar
  126. 126.
    Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS (1992) Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 222:157–162PubMedGoogle Scholar
  127. 127.
    Luo L, Tan RX (2001) Fluoxetine inhibits dendrite atrophy of hippocampal neurons by decreasing nitric oxide synthase expression in rat depression model. Acta Pharmacol Sin 22(10):865–870PubMedGoogle Scholar
  128. 128.
    Bao AM, Meynen G, Swaab DF (2008) The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev 57:531–553PubMedGoogle Scholar
  129. 129.
    Purves D, Lichtman JW (1985) Geometrical differences among homologous neurons in mammals. Science 228(4697):298–302PubMedGoogle Scholar
  130. 130.
    Schaefer AT, Larkum ME, Sakmann B, Roth A (2003) Coincidence detection in pyramidal neurons is tuned by their dendritic branching pattern. J Neurophysiol 89(6):3143–3154PubMedGoogle Scholar
  131. 131.
    Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9(3):206–221PubMedGoogle Scholar
  132. 132.
    Cove J, Blinder P, Baranes D (2009) Contacts among non-sister dendritic branches at bifurcations shape neighboring dendrites and pattern their synaptic inputs. Brain Res 1251:30–41PubMedGoogle Scholar
  133. 133.
    Martinez JL Jr, Barea-Rodriguez EJ (1997) How the brain stores information: Hebbian mechanisms. In: Lueer G, Lass U (eds) Erinnern und Behalten Wege zur Erforschung des menschlichen gedaechtnisses. Vandenhoeck & Ruprecht, Goettingen, pp 39–59Google Scholar
  134. 134.
    Conrad CD (2006) What is the functional significance of chronic stress-induced CA3 dendritic retraction within the hippocampus? Behav Cogn Neurosci Rev 5(1):41–60PubMedGoogle Scholar
  135. 135.
    Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33(1):88–109PubMedGoogle Scholar
  136. 136.
    Calabrese F, Molteni R, Racagni G, Riva MA (2009) Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology (in press). doi: 10.1016/j.psyneuen.2009.05.014
  137. 137.
    Grossman AW, Churchill JD, McKinney BC, Kodish IM, Otte SL, Greenough WT (2003) Experience effects on brain development: possible contributions to psychopathology. J Child Psychol Psychiatry 44(1):33–63PubMedGoogle Scholar
  138. 138.
    Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Rev 39(1):29–54PubMedGoogle Scholar
  139. 139.
    Sjostrom PJ, Rancz EA, Roth A, Hausser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88(2):769–840PubMedGoogle Scholar
  140. 140.
    Viau V (2002) Functional cross-talk between the hypothalamic–pituitary–gonadal and –adrenal axes. J Neuroendocrinol 14(6):506–513PubMedGoogle Scholar
  141. 141.
    Aloisi AM, Bonifazi M (2006) Sex hormones, central nervous system and pain. Horm Behav 50(1):1–7PubMedGoogle Scholar
  142. 142.
    Altemus M, Redwine L, Leong Y, Yoshikawa T, Yehuda R, Detera-Wadleigh S, Murphy DL (1997) Reduced sensitivity to glucocorticoid feedback and reduced glucocorticoid receptor mRNA expression in the luteal phase of the menstrual cycle. Neuropsychopharmacology 17:100–109PubMedGoogle Scholar
  143. 143.
    Viau V, Meaney MJ (1991) Variations in the hypothalamic–pituitary–adrenal response to stress during the estrous cycle in the rat. Endocrinology 129(5):2503–2511PubMedGoogle Scholar
  144. 144.
    Atkinson HC, Waddell BJ (1997) Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology 138(9):3842–3848PubMedGoogle Scholar
  145. 145.
    Haim S, Shakhar G, Rossene E, Taylor AN, Ben-Eliyahu S (2003) Serum levels of sex hormones and corticosterone throughout 4- and 5-day estrous cycles in Fischer 344 rats and their simulation in ovariectomized females. J Endocrinol Invest 26(10):1013–1022PubMedGoogle Scholar
  146. 146.
    Conrad CD, Jackson JL, Wieczorek L, Baran SE, Harman JS, Wright RL, Korol DL (2004) Acute restraint stress impairs spatial memory in male but not female rats: influence of estrous cycle. Pharmacol Biochem Behav 78(3):569–579PubMedGoogle Scholar
  147. 147.
    Dalla C, Antoniou K, Drossopoulou G, Xagoraris M, Kokras N, Sfikakis A, Papadopoulou-Daifoti Z (2005) Chronic mild stress impact: are females more vulnerable? Neuroscience 135(3):703–714PubMedGoogle Scholar
  148. 148.
    McEwen BS, Conrad CD, Kuroda Y, Frankfurt M, Magariños AM, McKittrick C (1997) Prevention of stress-induced morphological and cognitive consequences. Eur Neuropsychopharm 7:S323–S328Google Scholar
  149. 149.
    McEwen BS, Magariños AM (1997) Stress effects on morphology and function of the hippocampus. Ann N Y Acad Sci 821:271–284PubMedGoogle Scholar
  150. 150.
    McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54(5 Suppl 1):20–23PubMedGoogle Scholar
  151. 151.
    Lambert KG, Buckelew SK, Staffiso-Sandoz G, Gaffga S, Carpenter W, Fisher J, Kinsely CH (1998) Activity-stress induces atrophy of apical dendrites of hippocampal pyramidal neurons in male rats. Physiol Behav 65:43–49PubMedGoogle Scholar
  152. 152.
    Sousa N, Lukoyanov NV, Madeira MD, Almeida OFX, Paula-Barbosa MM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97:253–266PubMedGoogle Scholar
  153. 153.
    Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231PubMedGoogle Scholar
  154. 154.
    Magariños AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69(1):83–88PubMedGoogle Scholar
  155. 155.
    Sandi C, Davies HA, Cordero MI, Rodriquez JJ, Popov VI, Stewart MG (2003) Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur J NeuroSci 17:2447–2456PubMedGoogle Scholar
  156. 156.
    Fuchs E, Uno H, Flügge G (1995) Chronic psychosocial stress induces morphological alterations in hippocampal pyramidal neurons of the tree shrew. Brain Res 673(2):275–282PubMedGoogle Scholar
  157. 157.
    Conrad CD, McLaughlin KJ, Harman JS, Foltz C, Wieczorek L, Lightner E, Wright RL (2007) Chronic glucocorticoids increase hippocampal vulnerability to neurotoxicity under conditions that produce CA3 dendritic retraction but fail to impair spatial recognition memory. J Neurosci 27(31):8278–8285PubMedGoogle Scholar
  158. 158.
    Luine VN, Spencer RL, McEwen BS (1993) Effects of chronic corticosterone ingestion on spatial memory performance and hippocampal serotonergic function. Brain Res 616:65–70PubMedGoogle Scholar
  159. 159.
    Luine V, Villegas M, Martinez C, McEwen BS (1994) Repeated stress causes reversible impairments of spatial memory performance. Brain Res 639:167–170PubMedGoogle Scholar
  160. 160.
    Park CR, Campbell AM, Diamond DM (2001) Chronic psychosocial stress impairs learning and memory and increases sensitivity to yohimbine in rats. Biol Psychiatry 50:994–1004PubMedGoogle Scholar
  161. 161.
    Gerges NZ, Alzoubi KH, Park CR, Diamond DM, Alkadhi KA (2004) Adverse effect of the combination of hypothyroidism and chronic psychosocial stress on hippocampus-dependent memory in rats. Behav Brain Res 155(1):77–84PubMedGoogle Scholar
  162. 162.
    Srivareerat M, Tran TT, Alzoubi KH, Alkadhi KA (2009) Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in beta-amyloid rat model of Alzheimer’s disease. Biol Psychiatry 65(11):918–926PubMedGoogle Scholar
  163. 163.
    Sunanda, Shankaranarayana Rao BS, Raju TR (2000) Chronic restraint stress impairs acquisition and retention of spatial memory task in rats. Curr Sci 79:14581–1584Google Scholar
  164. 164.
    Ohl F, Fuchs E (1999) Differential effects of chronic stress on memory processes in the tree shrew. Cogn Brain Res 7:379–387Google Scholar
  165. 165.
    Venero C, Tilling T, Hermans-Borgmeyer I, Schmidt R, Schachner M, Sandi C (2002) Chronic stress induces opposite changes in the mRNA expression of the cell adhesion molecules NCAM and L1. Neuroscience 115(4):1211–1219PubMedGoogle Scholar
  166. 166.
    Wright RL, Conrad CD (2008) Enriched environment prevents chronic stress-induced spatial learning and memory deficits. Behav Brain Res 187(1):41–47PubMedGoogle Scholar
  167. 167.
    Ma WP, Cao J, Tian M, Cui MH, Han HL, Yang YX, Xu L (2007) Exposure to chronic constant light impairs spatial memory and influences long-term depression in rats. Neurosci Res 59(2):224–230PubMedGoogle Scholar
  168. 168.
    Song L, Che W, Min-Wei W, Murakami Y, Matsumoto K (2006) Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress. Pharmacol Biochem Behav 83(2):186–193PubMedGoogle Scholar
  169. 169.
    Walesiuk A, Trofimiuk E, Braszko JJ (2005) Gingko biloba extract diminishes stress-induced memory deficits in rats. Pharmacol Rep 57(2):176–187PubMedGoogle Scholar
  170. 170.
    Watanabe Y, Gould E, Cameron HA, Daniels DC, McEwen BS (1992) Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus 2(4):431–436PubMedGoogle Scholar
  171. 171.
    Lathe R (2001) Hormones and hippocampus. J Endocrinol 169:205–231PubMedGoogle Scholar
  172. 172.
    Galea LAM, McEwen BS, Tanapat P, Deak T, Spencer RL, Dhabhar FS (1997) Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 81(3):689–697PubMedGoogle Scholar
  173. 173.
    McLaughlin KJ, Wilson JO, Harman J, Wright RL, Wieczorek L, Gomez J, Korol DL, Conrad CD (2009) Chronic 17β-estradiol or cholesterol prevents stress-induced hippocampal CA3 dendritic retraction in ovariectomized females: possible correspondence between CA1 spine properties and spatial acquisition. Hippocampus (in press)Google Scholar
  174. 174.
    McLaughlin KJ, Baran SE, Wright RL, Conrad CD (2005) Chronic stress enhances spatial memory in ovariectomized female rats despite CA3 dendritic retraction: possible involvement of CA1 neurons. Neuroscience 135(4):1045–1054PubMedGoogle Scholar
  175. 175.
    Bowman RE, Zrull MC, Luine VN (2001) Chronic restraint stress enhances radial arm maze performance in female rats. Brain Res 904:279–289PubMedGoogle Scholar
  176. 176.
    Kitraki E, Kremmyda O, Youlatos D, Alexis MN, Kittas C (2004) Gender-dependent alterations in corticosteroid receptor status and spatial performance following 21 days of restraint stress. Neuroscience 125:47–55PubMedGoogle Scholar
  177. 177.
    Kitraki E, Kremmyda O, Youlatos D, Alexis M, Kittas C (2004) Spatial performance and corticosteroid receptor status in the 21-day restraint stress paradigm. Ann N Y Acad Sci 1018:323–327PubMedGoogle Scholar
  178. 178.
    Conrad CD, Grote KA, Hobbs RJ, Ferayorni A (2003) Sex differences in spatial and non-spatial Y-maze performance after chronic stress. Neurobiol Learn Mem 79:32–40PubMedGoogle Scholar
  179. 179.
    Bowman RE, Ferguson D, Luine VN (2002) Effects of chronic restraint stress and estradiol on open field activity, spatial memory, and monoaminergic neurotransmitters in ovariectomized rats. Neuroscience 113:401–410PubMedGoogle Scholar
  180. 180.
    McEwen BS, Alves SE (1999) Estrogen actions in the central nervous system. Endocr Rev 20(3):279–307PubMedGoogle Scholar
  181. 181.
    Lee SJ, McEwen BS (2001) Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications. Annu Rev Pharmacol Toxicol 41:569–591PubMedGoogle Scholar
  182. 182.
    Loy R, Gerlach JL, McEwen BS (1988) Autoradiographic localization of estradiol-binding neurons in the rat hippocampal formation and entorhinal cortex. Brain Res 467(2):245–251PubMedGoogle Scholar
  183. 183.
    Blurton-Jones M, Tuszynski MH (2002) Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats. J Comp Neurol 452(3):276–287PubMedGoogle Scholar
  184. 184.
    Kretz O, Fester L, Wehrenberg U, Zhou L, Brauckmann S, Zhao S, Prange-Kiel J, Naumann T, Jarry H, Frotscher M, Rune GM (2004) Hippocampal synapses depend on hippocampal estrogen synthesis. J Neurosci 24(26):5913–5921PubMedGoogle Scholar
  185. 185.
    Cornil CA, Ball GF, Balthazart J (2006) Functional significance of the rapid regulation of brain estrogen action: where do the estrogens come from? Brain Res 1126(1):2–26PubMedGoogle Scholar
  186. 186.
    Conrad CD, Jackson JL, Wise L (2004) Chronic stress enhances ibotenic acid-induced damage selectively within the hippocampal CA3 region of male, but not female rats. Neuroscience 125(3):759–767PubMedGoogle Scholar
  187. 187.
    Takuma K, Matsuo A, Himeno Y, Hoshina Y, Ohno Y, Funatsu Y, Arai S, Kamei H, Mizoguchi H, Nagai T, Koike K, Inoue M, Yamada K (2007) 17β-Estradiol attenuates hippocampal neuronal loss and cognitive dysfunction induced by chronic restraint stress in ovariectomized rats. Neuroscience 146(1):60–68PubMedGoogle Scholar
  188. 188.
    Bowman RE, Beck KD, Luine VN (2003) Chronic stress effects on memory: sex differences in performance and monoaminergic activity. Horm Behav 43:48–59PubMedGoogle Scholar
  189. 189.
    Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI (2002) Place cells and place recognition maintained by direct entorhinal–hippocampal circuitry. Science 296(5576):2243–2246PubMedGoogle Scholar
  190. 190.
    Vago DR, Bevan A, Kesner RP (2007) The role of the direct perforant path input to the CA1 subregion of the dorsal hippocampus in memory retention and retrieval. Hippocampus 17(10):977–987PubMedGoogle Scholar
  191. 191.
    Brun VH, Leutgeb S, Wu HQ, Schwarcz R, Witter MP, Moser EI, Moser MB (2008) Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron 57(2):290–302PubMedGoogle Scholar
  192. 192.
    Kajiwara R, Wouterlood FG, Sah A, Boekel AJ, Baks-te Bulte LT, Witter MP (2008) Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1—an anatomical study in the rat. Hippocampus 18(3):266–280PubMedGoogle Scholar
  193. 193.
    Poirier GL, Amin E, Aggleton JP (2008) Qualitatively different hippocampal subfield engagement emerges with mastery of a spatial memory task by rats. J Neurosci 28:1034–1045PubMedGoogle Scholar
  194. 194.
    Vago DR, Kesner RP (2008) Disruption of the direct perforant path input to the CA1 subregion of the dorsal hippocampus interferes with spatial working memory and novelty detection. Behav Brain Res 189(2):273–283PubMedGoogle Scholar
  195. 195.
    Goodrich-Hunsaker NJ, Hunsaker MR, Kesner RP (2008) The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information. Behav Neurosci 122(1):16–26PubMedGoogle Scholar
  196. 196.
    Hoang LT, Kesner RP (2008) Dorsal hippocampus, CA3, and CA1 lesions disrupt temporal sequence completion. Behav Neurosci 122(1):9–15PubMedGoogle Scholar
  197. 197.
    Hunsaker MR, Lee B, Kesner RP (2008) Evaluating the temporal context of episodic memory: the role of CA3 and CA1. Behav Brain Res 188(2):310–315PubMedGoogle Scholar
  198. 198.
    Okada K, Okaichi H (2009) Functional differentiation and cooperation among the hippocampal subregions in rats to effect spatial memory processes. Behav Brain Res 200(1):181–191PubMedGoogle Scholar
  199. 199.
    Nakazawa K, Sun LD, Quirk MC, Rondi-Reig L, Wilson MA, Tonegawa S (2003) Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 38(2):305–315PubMedGoogle Scholar
  200. 200.
    Gold AE, Kesner RP (2005) The role of the CA3 subregion of the dorsal hippocampus in spatial pattern completion in the rat. Hippocampus 15(6):808–814PubMedGoogle Scholar
  201. 201.
    Lee I, Jerman TS, Kesner RP (2005) Disruption of delayed memory for a sequence of spatial locations following CA1- or CA3-lesions of the dorsal hippocampus. Neurobiol Learn Mem 84(2):138–147PubMedGoogle Scholar
  202. 202.
    Maclusky NJ, Hajszan T, Prange-Kiel J, Leranth C (2006) Androgen modulation of hippocampal synaptic plasticity. Neuroscience 138:957–965PubMedGoogle Scholar
  203. 203.
    Cunningham RL, Claiborne BJ, McGinnis MY (2007) Pubertal exposure to anabolic androgenic steroids increases spine densities on neurons in the limbic system of male rats. Neuroscience 150(3):609–615PubMedGoogle Scholar
  204. 204.
    Hajszan T, MacLusky NJ, Leranth C (2008) Role of androgens and the androgen receptor in remodeling of spine synapses in limbic brain areas. Horm Behav 53(5):638–646PubMedGoogle Scholar
  205. 205.
    Prange-Kiel J, Rune GM (2006) Direct and indirect effects of estrogen on the rat hippocampus. Neuroscience 138:765–772PubMedGoogle Scholar
  206. 206.
    Woolley CS (2007) Acute effects of estrogen on neuronal physiology. Annu Rev Pharmacol Toxicol 47:657–680PubMedGoogle Scholar
  207. 207.
    McLaughlin KJ, Bimonte-Nelson HA, Neisewander JL, Conrad CD (2008) Assessment of estradiol influence on spatial tasks and hippocampal CA1 spines: evidence that the duration of hormone deprivation after ovariectomy compromises 17β-estradiol effectiveness in altering CA1 spines. Horm Behav 54(3):386–395PubMedGoogle Scholar
  208. 208.
    Woolley CS, Gould E, Frankfurt M, McEwen BS (1990) Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci 10:4035–4039PubMedGoogle Scholar
  209. 209.
    Woolley CS, McEwen BS (1992) Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci 12(7):2549–2554PubMedGoogle Scholar
  210. 210.
    Woolley CS (1998) Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Horm Behav 34:140–148PubMedGoogle Scholar
  211. 211.
    Garza-Meilandt A, Cantu RE, Claiborne BJ (2006) Estradiol’s effects on learning and neuronal morphology vary with route of administration. Behav Neurosci 120(4):905–916PubMedGoogle Scholar
  212. 212.
    Wallace M, Luine V, Arellanos A, Frankfurt M (2006) Ovariectomized rats show decreased recognition memory and spine density in the hippocampus and prefrontal cortex. Brain Res 1126(1):176–182PubMedGoogle Scholar
  213. 213.
    Sandstrom NJ, Williams CL (2001) Memory retention is modulated by acute estradiol and progesterone replacement. Behav Neurosci 115:384–393PubMedGoogle Scholar
  214. 214.
    Sandstrom NJ, Williams CL (2004) Spatial memory retention is enhanced by acute and continuous estradiol replacement. Horm Behav 45(2):128–135PubMedGoogle Scholar
  215. 215.
    Donohue HS, Gabbott PLA, Davies HA, Rodriguez JJ, Cordero MI, Sandi C, Medvedev NI, Popov VI, Colyer FM, Peddie CJ, Stewart MG (2006) Chronic restraint stress induces changes in synapse morphology in stratum lacunosum-moleculare CA1 rat hippocampus: a stereological and three-dimensional ultrastructural study. Neuroscience 140(2):597–606PubMedGoogle Scholar
  216. 216.
    Shors TJ (2006) Significant life events and the shape of memories to come: a hypothesis. Neurobiol Learn Mem 85:103–115PubMedGoogle Scholar
  217. 217.
    Dalla C, Whetstone AS, Hodes GE, Shors TJ (2009) Stressful experience has opposite effects on dendritic spines in the hippocampus of cycling versus masculinized females. Neurosci Lett 449(1):52–56PubMedGoogle Scholar
  218. 218.
    Diamond DM, Campbell AM, Park CR, Woodson JC, Conrad CD, Bachstetter AD, Mervis R (2006) Influence of predator stress on the consolidation versus retrieval of long-term spatial memory and hippocampal spinogenesis. Hippocampus 16:571–576PubMedGoogle Scholar
  219. 219.
    Cerqueira JJ, Almeida OF, Sousa N (2008) The stressed prefrontal cortex. Left? Right!. Brain Behav Immun 22(5):630–638PubMedGoogle Scholar
  220. 220.
    Holmes A, Wellman CL (2009) Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev 33(6):773–783PubMedGoogle Scholar
  221. 221.
    Singewald N (2007) Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neurosci Biobehav Rev 31(1):18–40PubMedGoogle Scholar
  222. 222.
    Del Arco A, Segovia G, Garrido P, de Blas M, Mora F (2007) Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behav Brain Res 176(2):267–273PubMedGoogle Scholar
  223. 223.
    Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T (2000) Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 20(4):1568–1574PubMedGoogle Scholar
  224. 224.
    Moghaddam B (1993) Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 60:1650–1557PubMedGoogle Scholar
  225. 225.
    Miner LH, Jedema HP, Moore FW, Blakely RD, Grace AA, Sesack SR (2006) Chronic stress increases the plasmalemmal distribution of the norepinephrine transporter and the coexpression of tyrosine hydroxylase in norepinephrine axons in the prefrontal cortex. J Neurosci 26(5):1571–1578PubMedGoogle Scholar
  226. 226.
    Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29(8):1201–1213PubMedGoogle Scholar
  227. 227.
    Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26(30):7870–7874PubMedGoogle Scholar
  228. 228.
    Garrett JE, Wellman CL (2009) Chronic stress effects on dendritic morphology in medial prefrontal cortex: sex differences and estrogen dependence. Neuroscience 162(1):195–207PubMedGoogle Scholar
  229. 229.
    Izquierdo A, Wellman CL, Holmes A (2006) Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci 26(21):5733–5738PubMedGoogle Scholar
  230. 230.
    Seib LM, Wellman CL (2003) Daily injections alter spine density in rat medial prefrontal cortex. Neurosci Lett 337(1):29–32PubMedGoogle Scholar
  231. 231.
    Czéh B, Perez-Cruz C, Fuchs E, Flügge G (2008) Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: does hemisphere location matter? Behav Brain Res 190(1):1–13PubMedGoogle Scholar
  232. 232.
    Cerqueira JJ, Pego JM, Taipa R, Bessa JM, Almeida OF, Sousa N (2005) Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 25(34):7792–7800PubMedGoogle Scholar
  233. 233.
    Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N (2007) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 27(11):2781–2787PubMedGoogle Scholar
  234. 234.
    Grootendorst J, de Kloet ER, Vossen C, Dalm S, Oitzl MS (2001) Repeated exposure to rats has persistent genotype-dependent effects on learning and locomotor activity of apolipoprotein E knockout and C57Bl/6 mice. Behav Brain Res 125(1–2):249–259PubMedGoogle Scholar
  235. 235.
    Grootendorst J, de Kloet ER, Dalm S, Oitzl MS (2001) Reversal of cognitive deficit of apolipoprotein E knockout mice after repeated exposure to a common environmental experience. Neuroscience 108(2):237–247PubMedGoogle Scholar
  236. 236.
    Schwabe L, Dalm S, Schachinger H, Oitzl MS (2008) Chronic stress modulates the use of spatial and stimulus-response learning strategies in mice and man. Neurobiol Learn Mem 90(3):495–503PubMedGoogle Scholar
  237. 237.
    Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. Brain Res 828:127–134Google Scholar
  238. 238.
    Cerqueira JJ, Taipa R, Uylings HB, Almeida OF, Sousa N (2007) Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens. Cereb Cortex 17(9):1998–2006PubMedGoogle Scholar
  239. 239.
    Wang VC, Sable HJ, Ju YH, Allred CD, Helferich WG, Korol DL, Schantz SL (2008) Effects of chronic estradiol treatment on delayed spatial alternation and differential reinforcement of low rates of responding. Behav Neurosci 122(4):794–804PubMedGoogle Scholar
  240. 240.
    Cahill L, Babinsky R, Markowitsch HJ, McGaugh JL (1995) The amygdala and emotional memory. Nature 377:295–296PubMedGoogle Scholar
  241. 241.
    Sarter M, Markowitsch HJ (1985) Involvement of the amygdala in learning and memory: a critical review, with emphasis on anatomical relations. Behav Neurosci 99(2):342–380PubMedGoogle Scholar
  242. 242.
    McGaugh JL, Roozendaal B (2002) Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12:205–210PubMedGoogle Scholar
  243. 243.
    Roozendaal B (2002) Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol Learn Mem 78:578–595PubMedGoogle Scholar
  244. 244.
    Roozendaal B, Portillo-Marquez G, McGaugh JL (1996) Basolateral amygdala lesions block glucocorticoid-induced modulation of memory for spatial learning. Behav Neurosci 110(5):1074–1083PubMedGoogle Scholar
  245. 245.
    Roozendaal B, McGaugh JL (1997) Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur J NeuroSci 9:76–83PubMedGoogle Scholar
  246. 246.
    Rodriguez Manzanares PA, Isoardi NA, Carrer HF, Molina VA (2005) Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J Neurosci 25(38):8725–8734PubMedGoogle Scholar
  247. 247.
    Roozendaal B, McReynolds JR, McGaugh JL (2004) The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J Neurosci 24(6):1385–1392PubMedGoogle Scholar
  248. 248.
    Anglada-Figueroa D, Quirk GJ (2005) Lesions of the basal amygdala block expression of conditioned fear but not extinction. J Neurosci 25(42):9680–9685PubMedGoogle Scholar
  249. 249.
    Conrad CD, Mauldin-Jourdain ML, Hobbs RJ (2001) Metyrapone reveals that previous chronic stress differentially impairs hippocampal-dependent memory. Stress 4(4):305–318PubMedCrossRefGoogle Scholar
  250. 250.
    Vyas A, Pillai AG, Chattarji S (2004) Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128(4):667–673PubMedGoogle Scholar
  251. 251.
    Jackson ED, Payne JD, Nadel L, Jacobs WJ (2006) Stress differentially modulates fear conditioning in healthy men and women. Biol Psychiatry 59(6):516–522PubMedGoogle Scholar
  252. 252.
    Zorawski M, Blanding NQ, Kuhn CM, LaBar KS (2006) Effects of stress and sex on acquisition and consolidation of human fear conditioning. Learn Mem 13(4):441–450PubMedGoogle Scholar
  253. 253.
    Shors TJ, Weiss C, Thompson RF (1992) Stress-induced facilitation of classical conditioning. Science 257:537–539PubMedGoogle Scholar
  254. 254.
    Bangasser DA, Shors TJ (2004) Acute stress impairs trace eyeblink conditioning in females without altering the unconditional response. Neurobiol Learn Mem 82:57–60PubMedGoogle Scholar
  255. 255.
    Wood GE, Shors TJ (1998) Stress facilitates classical conditioning in males, but impairs classical conditioning in females through activational effects of ovarian hormones. Proc Natl Acad Sci U S A 95(7):4066–4071PubMedGoogle Scholar
  256. 256.
    Shors TJ (2001) Acute stress rapidly and persistently enhances memory formation in the male rat. Neurobiol Learn Mem 75:10–29PubMedGoogle Scholar
  257. 257.
    Waddell J, Bangasser DA, Shors TJ (2008) The basolateral nucleus of the amygdala is necessary to induce the opposing effects of stressful experience on learning in males and females. J Neurosci 28(20):5290–5294PubMedGoogle Scholar
  258. 258.
    Turner BB (1997) Influence of gonadal steroids on brain corticosteroid receptors: a minireview. Neurochem Res 22(11):1375–1385PubMedGoogle Scholar
  259. 259.
    Karandrea D, Kittas C, Kitraki E (2000) Contribution of sex and cellular context in the regulation of brain corticosteroid receptors following restraint stress. Neuroendocrinology 71:343–353PubMedGoogle Scholar
  260. 260.
    Alves SE, Hoskin E, Lee SJ, Brake WG, Ferguson D, Luine V, Allen PB, Greengard P, McEwen BS (2002) Serotonin mediates CA1 spine density but is not crucial for ovarian steroid regulation of synaptic plasticity in the adult rat dorsal hippocampus. Synapse 45(2):143–151PubMedGoogle Scholar
  261. 261.
    Beck KD, Luine VN (2002) Sex differences in behavioral and neurochemical profiles after chronic stress: role of housing conditions. Physiol Behav 75:661–673PubMedGoogle Scholar
  262. 262.
    Inoue T, Li XB, Abekawa T, Kitaichi Y, Izumi T, Nakagawa S, Koyama T (2004) Selective serotonin reuptake inhibitor reduces conditioned fear through its effect in the amygdala. Eur J Pharmacol 497(3):311–316PubMedGoogle Scholar
  263. 263.
    Mitsushima D, Yamada K, Takase K, Funabashi T, Kimura F (2006) Sex differences in the basolateral amygdala: the extracellular levels of serotonin and dopamine, and their responses to restraint stress in rats. Eur J NeuroSci 24(11):3245–3254PubMedGoogle Scholar
  264. 264.
    Conrad CD (2008) Chronic stress-induced hippocampal vulnerability: the glucocorticoid vulnerability hypothesis. Rev Neurosci 19(6):395–412PubMedGoogle Scholar
  265. 265.
    Conrad CD, Wright RL, McLaughlin KJ (2009) Stress and vulnerability to brain damage. In: Squire LR (ed) Encyclopedia of neuroscience. Academic, Oxford, pp 481–488Google Scholar
  266. 266.
    Foy MR, Baudry M, Briton RD, Thompson RF (2008) Estrogen and hippocampal plasticity in rodent models. J Alzheim Dis 15:589–603Google Scholar
  267. 267.
    Foy MR, Baudry M, Foy JG, Thompson RF (2008) 17b-estradiol modifies stress-induced and age-related changes in hippocampal synaptic plasticity. Behav Neurosci 122(2):301–309PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Katie J. McLaughlin
    • 1
  • Sarah E. Baran
    • 2
  • Cheryl D. Conrad
    • 3
  1. 1.Department of PsychologyLoras CollegeDubuqueUSA
  2. 2.Department of PsychologyUniversity of MichiganAnn ArborUSA
  3. 3.Department of PsychologyArizona State UniversityTempeUSA

Personalised recommendations