Advertisement

Molecular Neurobiology

, Volume 40, Issue 1, pp 15–32 | Cite as

Neuroinflammation and Memory: The Role of Prostaglandins

  • Amy M. Hein
  • M. Kerry O’Banion
Article

Abstract

Neuroinflammation is a complex response to brain injury involving the activation of glia, release of inflammatory mediators within the brain, and recruitment of peripheral immune cells. Interestingly, memory deficits have been observed following many inflammatory states including infection, traumatic brain injury (TBI), normal aging, and Alzheimer’s disease (AD). Prostaglandins (PGs), a class of lipid mediators which can have inflammatory actions, are upregulated by these inflammatory challenges and can impair memory. In this paper, we critically review the success of nonsteroidal anti-inflammatory drugs, which prevent the formation of PGs, in preventing neuroinflammation-induced memory deficits following lipopolysaccharide injection, TBI, aging, and experimental models of AD in rodents and propose a mechanism by which PGs could disrupt memory formation.

Keywords

Neuroinflammation Prostaglandins Learning Memory Hippocampus Cyclooxygenase NSAID Lipopolysaccharide Traumatic brain injury Aging Alzheimer’s disease 

References

  1. 1.
    Draper K, Ponsford J (2008) Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology 22(5):618–625PubMedGoogle Scholar
  2. 2.
    Sachdev PS, Brodaty H, Valenzuela MJ, Lorentz LM, Koschera A (2004) Progression of cognitive impairment in stroke patients. Neurology 63(9):1618–1623PubMedGoogle Scholar
  3. 3.
    Griffin WS, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL 3rd, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc Natl Acad Sci U S A 86(19):7611–7615PubMedGoogle Scholar
  4. 4.
    Griffin DE, Wesselingh SL, McArthur JC (1994) Elevated central nervous system prostaglandins in human immunodeficiency virus-associated dementia. Ann Neurol 35(5):592–597PubMedGoogle Scholar
  5. 5.
    Perrella O, Carrieri PB, Guarnaccia D, Soscia M (1992) Cerebrospinal fluid cytokines in AIDS dementia complex. J Neurol 239(7):387–388PubMedGoogle Scholar
  6. 6.
    Dantzer R, Kelley KW (2007) Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun 21(2):153–160PubMedGoogle Scholar
  7. 7.
    Katsuura G, Arimura A, Koves K, Gottschall P (1990) Involvement of organum vasculosum of lamina terminalis and preoptic area in interleukin 1 beta-induced ACTH release. Am J Physiol 258(1):163–171Google Scholar
  8. 8.
    Banks W, Ortiz L, Plotkin S, Kastin A (1991) Human interleukin (IL) 1 alpha, murine IL-1 alpha and murine IL-1 beta are transported from blood to brain in the mouse by a shared saturable mechanism. J Pharmacol Exp Ther 259(3):988–996PubMedGoogle Scholar
  9. 9.
    Watkins L, Goehler L, Relton J, Tartaglia N, Silbert L, Martin D, Maier S (1995) Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett 183(1–2):27–31PubMedGoogle Scholar
  10. 10.
    Fleshner M, Goehler L, Schwartz B, McGorry M, Martin D, Maier S, Watkins L (1998) Thermogenic and corticosterone responses to intravenous cytokines (IL-1beta and TNF-alpha) are attenuated by subdiaphragmatic vagotomy. J Neuroimmunol 86(2):134–141PubMedGoogle Scholar
  11. 11.
    Watkins L, Maier S, Goehler L (1995) Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life Sci 57(11):1011–1026PubMedGoogle Scholar
  12. 12.
    Shaftel SS, Kyrkanides S, Olschowka JA, Miller JN, Johnson RE, O’Banion MK (2007) Sustained hippocampal IL-1 beta overexpression mediates chronic neuroinflammation and ameliorates Alzheimer plaque pathology. J Clin Invest 117(6):1595–1604PubMedGoogle Scholar
  13. 13.
    O’Banion MK, Miller JC, Chang JW, Kaplan MD, Coleman PD (1996) Interleukin-1 beta induces prostaglandin G/H synthase-2 (cyclooxygenase-2) in primary murine astrocyte cultures. J Neurochem 66(6):2532–2540PubMedCrossRefGoogle Scholar
  14. 14.
    Ristimaki A, Garfinkel S, Wessendorf J, Maciag T, Hla T (1994) Induction of cyclooxygenase-2 by interleukin-1 alpha. Evidence for post-transcriptional regulation. J Biol Chem 269(16):11769–11775PubMedGoogle Scholar
  15. 15.
    Shaftel SS, Carlson TJ, Olschowka JA, Kyrkanides S, Matousek SB, O’Banion MK (2007) Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J Neurosci 27(35):9301–9309PubMedGoogle Scholar
  16. 16.
    Avitsur R, Pollak Y, Yirmiya R (1997) Administration of interleukin-1 into the hypothalamic paraventricular nucleus induces febrile and behavioral effects. Neuroimmunomodulation 4(5–6):258–265PubMedGoogle Scholar
  17. 17.
    Bretdibat J, Bluthe R, Kent S, Kelley K, Dantzer R (1995) Lipopolysaccharide and interleukin-1 depress food-motivated behavior in mice by a vagal-mediated mechanism. Brain Behav Immun 9(3):242–246Google Scholar
  18. 18.
    Kent S, Bluthe R, Dantzer R, Hardwick A, Kelley K, Rothwell N, Vannice J (1992) Different receptor mechanisms mediate the pyrogenic and behavioral effects of interleukin 1. Proceedings of the National Academy of Sciences 89(19):9117–9120Google Scholar
  19. 19.
    Oitzl M, Van Oers H, Schobitz B, Ron de Kloet E (1993) Interleukin-1 ß, but not interleukin-6, impairs spatial navigation learning. Brain Res 613(1):160–163PubMedGoogle Scholar
  20. 20.
    Gibertini M, Newton C, Friedman H, Klein T (1995) Spatial learning impairment in mice infected with Legionella pneumophila or administered exogenous interleukin-1-ß. Brain Behav Immun 9(2):113–128PubMedGoogle Scholar
  21. 21.
    Casadesus G, Smith MA, Basu S, Hua J, Capobianco DE, Siedlak SL, Zhu X, Perry G (2007) Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Mol Neurodegener 2:2PubMedGoogle Scholar
  22. 22.
    Montine TJ, Sidell KR, Crews BC, Markesbery WR, Marnett LJ, Roberts LJ 2nd, Morrow JD (1999) Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 53(7):1495–1498PubMedGoogle Scholar
  23. 23.
    Barrientos RM, Higgins EA, Sprunger DB, Watkins LR, Rudy JW, Maier SF (2002) Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behav Brain Res 134(1–2):291–298PubMedGoogle Scholar
  24. 24.
    Pugh CR, Nguyen KT, Gonyea JL, Fleshner M, Wakins LR, Maier SF, Rudy JW (1999) Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav Brain Res 106(1–2):109–118PubMedGoogle Scholar
  25. 25.
    Pugh CR, Kumagawa K, Fleshner M, Watkins LR, Maier SF, Rudy JW (1998) Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain Behav Immun 12(3):212–229PubMedGoogle Scholar
  26. 26.
    Hein AM, Stutzman DL, Bland ST, Barrientos RM, Watkins LR, Rudy JW, Maier SF (2007) Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1 beta injections into the dorsal hippocampus. Neuroscience 150(4):754–763PubMedGoogle Scholar
  27. 27.
    Song C, Horrobin D (2004) Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1beta administration. J Lipid Res 45(6):1112–1121PubMedGoogle Scholar
  28. 28.
    Pugh CR, Johnson JD, Martin D, Rudy JW, Maier SF, Watkins LR (2000) Human immunodeficiency virus-1 coat protein gp120 impairs contextual fear conditioning: a potential role in AIDS related learning and memory impairments. Brain Res 861(1):8–15PubMedGoogle Scholar
  29. 29.
    Hein AM, Stasko, MR, Matousek SB, Walter JR, Scott-McKean JJ, Watkins LR, SF, Costa ACS, O’Banion MK (2008) Chronic hippocampal IL-1β overexpression impairs contextual but not auditory fear memory, in Proc Soc Neurosci. Washington D.C.Google Scholar
  30. 30.
    Pugh RC, Fleshner M, Watkins LR, Maier SF, Rudy JW (2001) The immune system and memory consolidation: a role for the cytokine IL-1beta. Neurosci Biobehav Rev 25(1):29–41Google Scholar
  31. 31.
    Mark KS, Trickler WJ, Miller DW (2001) Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297(3):1051–1058PubMedGoogle Scholar
  32. 32.
    Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A 90(15):7240–7244PubMedGoogle Scholar
  33. 33.
    Kuraishi Y, Ushikubi F (2001) Pain, fever and prostanoids. Nippon Yakurigaku Zasshi 117(4):248–254PubMedGoogle Scholar
  34. 34.
    Dinarello CA, Gatti S, Bartfai T (1999) Fever: links with an ancient receptor. Curr Biol 9(4):R147–R150PubMedGoogle Scholar
  35. 35.
    Swiergiel AH, Dunn AJ (2002) Distinct roles for cyclooxygenases 1 and 2 in interleukin-1-induced behavioral changes. J Pharmacol Exp Ther 302(3):1031–1036PubMedGoogle Scholar
  36. 36.
    Pecchi E, Dallaporta M, Thirion S, Salvat C, Berenbaum F, Jean A, Troadec JD (2006) Involvement of central microsomal prostaglandin E synthase-1 in IL-1beta-induced anorexia. Physiol Genomics 25(3):485–492PubMedGoogle Scholar
  37. 37.
    De La Garza R II, Asnis GM, Fabrizio KR, Pedrosa E (2005) Acute diclofenac treatment attenuates lipopolysaccharide-induced alterations to basic reward behavior and HPA axis activation in rats. Psychopharmacology 179(2):356–365Google Scholar
  38. 38.
    Crestani F, Seguy F, Dantzer R (1991) Behavioural effects of peripherally injected interleukin-1: role of prostaglandins. Brain Res 542(2):330–335PubMedGoogle Scholar
  39. 39.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60PubMedGoogle Scholar
  40. 40.
    Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):274–285PubMedGoogle Scholar
  41. 41.
    Hodges H (1996) Maze procedures: the radial-arm and water maze compared. Brain Res Cogn Brain Res 3(3–4):167–181PubMedGoogle Scholar
  42. 42.
    Gerlai R (2001) Behavioral tests of hippocampal function: simple paradigms complex problems. Behav Brain Res 125(1–2):269–277PubMedGoogle Scholar
  43. 43.
    McDonald R, Hong N, Devan B (2004) The challenges of understanding mammalian cognition and memory-based behaviours: an interactive learning and memory systems approach. Neurosci Biobehav Rev 28(7):719–745PubMedGoogle Scholar
  44. 44.
    Chen C, Magee JC, Bazan NG (2002) Cyclooxygenase-2 regulates prostaglandin E2 signaling in hippocampal long-term synaptic plasticity. J Neurophysiol 87(6):2851–2857PubMedGoogle Scholar
  45. 45.
    Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R (2007) A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32(8–10):1106–1115PubMedGoogle Scholar
  46. 46.
    Cowley TR, Fahey B, O’Mara SM (2008) COX-2, but not COX-1, activity is necessary for the induction of perforant path long-term potentiation and spatial learning in vivo. Eur J NeuroSci 27(11):2999–3008PubMedGoogle Scholar
  47. 47.
    Teather LA, Packard MG, Bazan NG (2002) Post-training cyclooxygenase-2 (COX-2) inhibition impairs memory consolidation. Learn Memory 9(1):41–47Google Scholar
  48. 48.
    Rall JM, Mach SA, Dash PK (2003) Intrahippocampal infusion of a cyclooxygenase-2 inhibitor attenuates memory acquisition in rats. Brain Res 968(2):273–276PubMedGoogle Scholar
  49. 49.
    Sharifzadeh M, Naghdi N, Khosrovani S, Ostad SN, Sharifzadeh K, Roghani A (2005) Post-training intrahippocampal infusion of the COX-2 inhibitor celecoxib impaired spatial memory retention in rats. Eur J Pharmacol 511(2–3):159–166PubMedGoogle Scholar
  50. 50.
    Shaw KN, Commins S, O’Mara SM (2003) Deficits in spatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurotrophic factor. Eur J NeuroSci 17(11):2438–2446PubMedGoogle Scholar
  51. 51.
    Larson SJ, Hartle KD, Ivanco TL (2007) Acute administration of interleukin-1beta disrupts motor learning. Behav Neurosci 121(6):1415–1420PubMedGoogle Scholar
  52. 52.
    Fiore M, Angelucci F, Alleva E, Branchi I, Probert L, Aloe L (2000) Learning performances, brain NGF distribution and NPY levels in transgenic mice expressing TNF-alpha. Behav Brain Res 112(1–2):165–175PubMedGoogle Scholar
  53. 53.
    Heyser C, Masliah E, Samimi A, Campbell I, Gold L (1997) Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain. National Acad Sciences. p. 1500–1505.Google Scholar
  54. 54.
    Bjugstad K, Flitter W, Garland W, Su G, Arendash G (1998) Preventive actions of a synthetic antioxidant in a novel animal model of AIDS dementia. Brain Res 795(1–2):349–357PubMedGoogle Scholar
  55. 55.
    Song C, Leonard BE, Horrobin DF (2004) Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress 7(1):43–54PubMedCrossRefGoogle Scholar
  56. 56.
    Lupien S, de Leon M, de Santi S, Convit A, Tarshish C, Nair N, Thakur M, McEwen B, Hauger R, Meaney M (1998) Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci 1(1):69–73PubMedGoogle Scholar
  57. 57.
    O’Banion MK (1999) Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol 13(1):45–82PubMedGoogle Scholar
  58. 58.
    Tanabe T, Tohnai N (2002) Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat 68–69:95–114PubMedGoogle Scholar
  59. 59.
    Bliss, SP, Shaftel SS, Olschowka JA, Kyrkanides S, O’Banion MK (2007) Chronic hippocampal IL-1β expression elevates PGE2 production in a cyclooxygenase I dependent manner, in Proc Soc Neurosci. San Diego, CA.Google Scholar
  60. 60.
    Shaftel SS, Olschowka JA, Hurley SD, Moore AH, O’Banion MK (2003) COX-3: a splice variant of cyclooxygenase-1 in mouse neural tissue and cells. Brain Res Mol Brain Res 119(2):213–215PubMedGoogle Scholar
  61. 61.
    Chandrasekharan NV, Dai H, Roos KL, Evanson NK, Tomsik J, Elton TS, Simmons DL (2002) COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci U S A 99(21):13926–13931PubMedGoogle Scholar
  62. 62.
    Kis B, Snipes JA, Gaspar T, Lenzser G, Tulbert CD, Busija DW (2006) Cloning of cyclooxygenase-1b (putative COX-3) in mouse. Inflammation Res 55(7):274–278Google Scholar
  63. 63.
    Quan N, Whiteside M, Herkenham M (1998) Cyclooxygenase 2 mRNA expression in rat brain after peripheral injection of lipopolysaccharide. Brain Res 802(1–2):189–197PubMedGoogle Scholar
  64. 64.
    Gopez JJ, Yue H, Vasudevan R, Malik AS, Fogelsanger LN, Lewis S, Panikashvili D, Shohami E, Jansen SA, Narayan RK, Strauss KI (2005) Cyclooxygenase-2-specific inhibitor improves functional outcomes, provides neuroprotection, and reduces inflammation in a rat model of traumatic brain injury. Neurosurgery 56(3):590–604PubMedGoogle Scholar
  65. 65.
    Casolini P, Catalani A, Zuena AR, Angelucci L (2002) Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res 68(3):337–343PubMedGoogle Scholar
  66. 66.
    Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79(4):1193–1226PubMedGoogle Scholar
  67. 67.
    Sugimoto Y, Namba T, Honda A, Hayashi Y, Negishi M, Ichikawa A, Narumiya S (1992) Cloning and expression of a cDNA for mouse prostaglandin E receptor EP3 subtype. J Biol Chem 267(10):6463–6466PubMedGoogle Scholar
  68. 68.
    Zhu P, Genc A, Zhang X, Zhang J, Bazan NG, Chen C (2005) Heterogeneous expression and regulation of hippocampal prostaglandin E2 receptors. J Neurosci Res 81(6):817–826PubMedGoogle Scholar
  69. 69.
    Weidenfeld J, Crumeyrolle-Arias M, Haour F (1995) Effect of bacterial endotoxin and interleukin-1 on prostaglandin biosynthesis by the hippocampus of mouse brain: role of interleukin-1 receptors and glucocorticoids. Neuroendocrinology 62(1):39–46PubMedGoogle Scholar
  70. 70.
    Deak T, Bellamy C, Bordner KA (2005) Protracted increases in core body temperature and interleukin-1 following acute administration of lipopolysaccharide: implications for the stress response. Physiol Behav 85(3):296–307PubMedGoogle Scholar
  71. 71.
    Jain NK, Patil CS, Kulkarni SK, Singh A (2002) Modulatory role of cyclooxygenase inhibitors in aging- and scopolamine or lipopolysaccharide-induced cognitive dysfunction in mice. Behav Brain Res 133(2):369–376PubMedGoogle Scholar
  72. 72.
    Shaw KN, Commins S, O’Mara SM (2005) Cyclooxygenase inhibition attenuates endotoxin-induced spatial learning deficits, but not an endotoxin-induced blockade of long-term potentiation. Brain Res 1038(2):231–237PubMedGoogle Scholar
  73. 73.
    Ma TC, Zhu XZ (1997) Suppression of lipopolysaccharide-induced impairment of active avoidance and interleukin-6-induced increase of prostaglandin E2 release in rats by indometacin. Arzneimittelforschung 47(5):595–597PubMedGoogle Scholar
  74. 74.
    Hauss-Wegrzyniak B, Vraniak P, Wenk G (1999) The effects of a novel NSAID on chronic neuroinflammation are age dependent. Neurobiol Aging 20(3):305–313PubMedGoogle Scholar
  75. 75.
    Jin D, Sung J, Hwang Y, Kwon K, Han S, Min S, Han J (2008) Dexibuprofen (S (+)-isomer ibuprofen) reduces microglial activation and impairments of spatial working memory induced by chronic lipopolysaccharide infusion. Pharmacol Biochem Behav 89(3):404–411PubMedGoogle Scholar
  76. 76.
    Cernak I, O’Connor C, Vink R (2002) Inhibition of cyclooxygenase 2 by nimesulide improves cognitive outcome more than motor outcome following diffuse traumatic brain injury in rats. Exp Brain Res 147(2):193–199PubMedGoogle Scholar
  77. 77.
    Dash P, Mach S, Moore A (2000) Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. J Neurotrauma 17(1):69–81PubMedGoogle Scholar
  78. 78.
    Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF (2006) mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging 27(5):717–722PubMedGoogle Scholar
  79. 79.
    Mesches MH, Gemma C, Veng LM, Allgeier C, Young DA, Browning MD, Bickford PC (2004) Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiol Aging 25(3):315–324PubMedGoogle Scholar
  80. 80.
    Bishnoi M, Patil CS, Kumar A, Kulkarni SK (2005) Protective effects of nimesulide (COX Inhibitor), AKBA (5-LOX Inhibitor), and their combination in aging-associated abnormalities in mice. Methods Find Exp Clin Pharmacol 27(7):465–470PubMedGoogle Scholar
  81. 81.
    Joo Y, Kim H, Woo R, Park C, Shin K, Lee J, Chang K, Kim S, Suh Y (2006) Mefenamic acid shows neuroprotective effects and improves cognitive impairment in in vitro and in vivo Alzheimer’s disease models. Mol Pharmacol 69(1):76–84PubMedGoogle Scholar
  82. 82.
    Cakala M, Malik A, Strosznajder J (2007) Inhibitor of cyclooxygenase-2 protects against amyloid b peptide-evoked memory impairment in mice. Pharmacol Rep 59(2):164–172PubMedGoogle Scholar
  83. 83.
    Kawarabayashi T, Younkin L, Saido T, Shoji M, Ashe K, Younkin S (2001) Age-dependent changes in brain, CSF, and plasma amyloid beta protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21(2):372PubMedGoogle Scholar
  84. 84.
    Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274(5284):99–102PubMedGoogle Scholar
  85. 85.
    Westerman M, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin L, Carlson G, Younkin S, Ashe K (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22(5):1858PubMedGoogle Scholar
  86. 86.
    Kotilinek L, Westerman M, Wang Q, Panizzon K, Lim G, Simonyi A, Lesne S, Falinska A, Younkin L, Younkin S (2008) Cyclooxygenase-2 inhibition improves amyloid-[beta]-mediated suppression of memory and synaptic plasticity. Brain 131(3):651PubMedGoogle Scholar
  87. 87.
    Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13(2):159–170PubMedGoogle Scholar
  88. 88.
    Trinchese F, Liu S, Battaglia F, Walter S, Mathews PM, Arancio O (2004) Progressive age-related development of Alzheimer-like pathology in APP/PS1 mice. Ann Neurol 55(6):801–814PubMedGoogle Scholar
  89. 89.
    Melnikova T, Savonenko A, Wang Q, Liang X, Hand T, Wu L, Kaufmann WE, Vehmas A, Andreasson KI (2006) Cycloxygenase-2 activity promotes cognitive deficits but not increased amyloid burden in a model of Alzheimer’s disease in a sex-dimorphic pattern. Neuroscience 141(3):1149–1162PubMedGoogle Scholar
  90. 90.
    Oddo S, Caccamo A, Shepherd J, Murphy M, Golde T, Kayed R, Metherate R, Mattson M, Akbari Y, LaFerla F (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles intracellular Aß and synaptic dysfunction. Neuron 39(3):409–421PubMedGoogle Scholar
  91. 91.
    Oddo S, Caccamo A, Kitazawa M, Tseng B, LaFerla F (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24(8):1063–1070PubMedGoogle Scholar
  92. 92.
    McKee A, Carreras I, Hossain L, Ryu H, Klein W, Oddo S, LaFerla F, Jenkins B, Kowall N, Dedeoglu A (2008) Ibuprofen reduces Aß, hyperphosphorylated tau and memory deficits in Alzheimer mice. Brain Res 1207:225–236PubMedGoogle Scholar
  93. 93.
    Barrientos RM, Sprunger DB, Campeau S, Watkins LR, Rudy JW, Maier SF (2004) BDNF mRNA expression in rat hippocampus following contextual learning is blocked by intrahippocampal IL-1beta administration. J Neuroimmunol 155(1–2):119–126PubMedGoogle Scholar
  94. 94.
    Matsumoto Y, Yamaguchi T, Watanabe S, Yamamoto T (2004) Involvement of arachidonic acid cascade in working memory impairment induced by interleukin-1 beta. Neuropharmacology 46(8):1195–1200PubMedGoogle Scholar
  95. 95.
    Andreasson KI, Savonenko A, Vidensky S, Goellner JJ, Zhang Y, Shaffer A, Kaufmann WE, Worley PF, Isakson P, Markowska AL (2001) Age-dependent cognitive deficits and neuronal apoptosis in cyclooxygenase-2 transgenic mice. J Neurosci 21(20):8198–8209PubMedGoogle Scholar
  96. 96.
    Fedulov V, Rex CS, Simmons DA, Palmer L, Gall CM, Lynch G (2007) Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. J Neurosci 27(30):8031–8039PubMedGoogle Scholar
  97. 97.
    Vereker E, Campbell V, Roche E, McEntee E, Lynch MA (2000) Lipopolysaccharide inhibits long term potentiation in the rat dentate gyrus by activating caspase-1. J Biol Chem 275(34):26252–26258PubMedGoogle Scholar
  98. 98.
    Cunningham AJ, Murray CA, O’Neill LA, Lynch MA, O’Connor JJ (1996) Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 203(1):17–20PubMedGoogle Scholar
  99. 99.
    Miyazaki S, Katayama Y, Lyeth B, Jenkins L, DeWitt D, Goldberg S, Newlon P, Hayes R (1992) Enduring suppression of hippocampal long-term potentiation following traumatic brain injury in rat. Brain Res 585(1–2):335–339PubMedGoogle Scholar
  100. 100.
    Murray C, Lynch M (1998) Dietary supplementation with vitamin E reverses the age-related deficit in long term potentiation in dentate gyrus. J Biol Chem 273(20):12161–12168PubMedGoogle Scholar
  101. 101.
    Rage F, Silhol M, Tapia-Arancibia L (2006) IL-1beta regulation of BDNF expression in rat cultured hypothalamic neurons depends on the presence of glial cells. Neurochem Int 49(5):433–441PubMedGoogle Scholar
  102. 102.
    Waschbisch A, Fiebich B, Akundi R, Schmitz M, Hoozemans J, Candelario-Jalil E, Virtainen N, Veerhuis R, Slawik H, Yrjanheikki J (2006) Interleukin-1 beta-induced expression of the prostaglandin E2-receptor subtype EP3 in U373 astrocytoma cells depends on protein kinase C and nuclear factor-kappaB. J Neurochem 96(3):680PubMedGoogle Scholar
  103. 103.
    Alonso M, Vianna MR, Depino AM, Mello e Souza T, Pereira P, Szapiro G, Viola H, Pitossi F, Izquierdo I, Medina JH (2002) BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12(4):551–560PubMedGoogle Scholar
  104. 104.
    Gobbo OL, O’Mara SM (2004) Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav Brain Res 152(2):231–241PubMedGoogle Scholar
  105. 105.
    Griesbach GS, Hovda DA, Molteni R, Wu A, Gomez-Pinilla F (2004) Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 125(1):129–139PubMedGoogle Scholar
  106. 106.
    Ma YL, Wang HL, Wu HC, Wei CL, Lee EH (1998) Brain-derived neurotrophic factor antisense oligonucleotide impairs memory retention and inhibits long-term potentiation in rats. Neuroscience 82(4):957–967PubMedGoogle Scholar
  107. 107.
    Mu JS, Li WP, Yao ZB, Zhou XF (1999) Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res 835(2):259–265PubMedGoogle Scholar
  108. 108.
    Gorski JA, Balogh SA, Wehner JM, Jones KR (2003) Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice. Neuroscience 121(2):341–354PubMedGoogle Scholar
  109. 109.
    Heldt SA, Stanek L, Chhatwal JP, Ressler KJ (2007) Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol Psychiatry 12(7):656–670PubMedGoogle Scholar
  110. 110.
    Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6):1137–1145PubMedGoogle Scholar
  111. 111.
    Pozzo-Miller L, Gottschalk W, Zhang L, McDermott K, Du J, Gopalakrishnan R, Oho C, Sheng Z, Lu B (1999) Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice. J Neurosci 19(12):4972–4983PubMedGoogle Scholar
  112. 112.
    Jia JM, Jia JP, Jia L, Shen Y, Pollock M (2003) Relationship between learning ability and memory and free radical in hippocampus of old rats. Zhonghua yi xue za zhi 83(9):796–798PubMedGoogle Scholar
  113. 113.
    Murray CA, Lynch MA (1998) Dietary supplementation with vitamin E reverses the age-related deficit in long term potentiation in dentate gyrus. J Biol Chem 273(20):12161–12168PubMedGoogle Scholar
  114. 114.
    Liu R, Liu IY, Bi X, Thompson RF, Doctrow SR, Malfroy B, Baudry M (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics. Proc Natl Acad Sci U S A 100(14):8526–8531PubMedGoogle Scholar
  115. 115.
    Levin ED, Christopher NC, Lateef S, Elamir BM, Patel M, Liang LP, Crapo JD (2002) Extracellular superoxide dismutase overexpression protects against aging-induced cognitive impairment in mice. Behav Genet 32(2):119–125PubMedGoogle Scholar
  116. 116.
    Levin ED, Christopher NC, Crapo JD (2005) Memory decline of aging reduced by extracellular superoxide dismutase overexpression. Behav Genet 35(4):447–453PubMedGoogle Scholar
  117. 117.
    Levin ED (2005) Extracellular superoxide dismutase (EC-SOD) quenches free radicals and attenuates age-related cognitive decline: opportunities for novel drug development in aging. Curr Alzheimer Res 2(2):191–196PubMedGoogle Scholar
  118. 118.
    Quick KL, Ali SS, Arch R, Xiong C, Wozniak D, Dugan LL (2008) A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging 29(1):117–128PubMedGoogle Scholar
  119. 119.
    Kamsler A, Avital A, Greenberger V, Segal M (2007) Aged SOD overexpressing mice exhibit enhanced spatial memory while lacking hippocampal neurogenesis. Antioxid Redox Signal 9(2):181–189PubMedGoogle Scholar
  120. 120.
    Hu D, Serrano F, Oury TD, Klann E (2006) Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 26(15):3933–3941PubMedGoogle Scholar
  121. 121.
    Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3(4):431–443PubMedGoogle Scholar
  122. 122.
    Stuhlmeier KM, Li H, Kao JJ (1999) Ibuprofen: new explanation for an old phenomenon. Biochem Pharmacol 57(3):313–320PubMedGoogle Scholar
  123. 123.
    Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD (1999) Constitutive activation of IkappaB kinase alpha and NF-kappaB in prostate cancer cells is inhibited by ibuprofen. Oncogene 18(51):7389–7394PubMedGoogle Scholar
  124. 124.
    Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA (1997) Peroxisome proliferator-activated receptors alpha and gamma are activated by indomethacin and other non-steroidal anti-inflammatory drugs. J Biol Chem 272(6):3406–3410PubMedGoogle Scholar
  125. 125.
    Schoonjans K, Staels B, Auwerx J (1996) The peroxisome proliferator activated receptors (PPARS) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302(2):93–109PubMedGoogle Scholar
  126. 126.
    Weggen S, Erikson J, Das P, Sagi S, Wang R, Pietrzik C, Findlay K, Smith T, Murphy M, Bulter T, Kang D, Marquez-Sterling N, Golde T, Koo E (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414(6860):212–216PubMedGoogle Scholar
  127. 127.
    Tegeder I, Pfeilschifter J, Geisslinger G (2001) Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J 15(12):2057–2072PubMedGoogle Scholar
  128. 128.
    Zhao W, Payne V, Tommasi E, Diz D, Hsu F, Robbins M (2007) Administration of the peroxisomal proliferator-activated receptor gamma agonist pioglitazone during fractionated brain irradiation prevents radiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys 67(1):6–9PubMedGoogle Scholar
  129. 129.
    Pathan A, Gaikwad A, Viswanad B, Ramarao P (2008) Rosiglitazone attenuates the cognitive deficits induced by high fat diet feeding in rats. Eur J Pharmacol 589(1–3):176–179PubMedGoogle Scholar
  130. 130.
    Kukar T, Prescott S, Eriksen J, Holloway V, Murphy M, Koo E, Golde T, Nicolle M (2007) Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci 8:54PubMedGoogle Scholar
  131. 131.
    McGeer PL, McGeer EG (2007) NSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies. Neurobiol Aging 28(5):639–647PubMedGoogle Scholar
  132. 132.
    Scharf S, Mander A, Ugoni A, Vajda F, Christophidis N (1999) A double-blind, placebo-controlled trial of diclofenac/misoprostol in Alzheimer’s disease. Neurology 53(1):197–197PubMedGoogle Scholar
  133. 133.
    Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, Zalinski J, Cofield M, Mansukhani L, Willson P (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43(8):1609–1611PubMedGoogle Scholar
  134. 134.
    Aisen P, Schafer K, Grundman M, Pfeiffer E, Sano M, Davis K, Farlow M, Jin S, Thomas R, Thal L (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289(21):2819–2826PubMedGoogle Scholar
  135. 135.
    Aisen P, Schmeidler J, Pasinetti G, PhD M (2002) Randomized pilot study of nimesulide treatment in Alzheimer’s disease. Neurology 58:1050–1054PubMedGoogle Scholar
  136. 136.
    Sainati SM, Ingram DM, Talwalker S, Geis GS (2000) Results of a doubleblind, placebo-controlled study of celecoxib for the progression of Alzheimer’s disease. In: Proceedings of the Sixth International Stockholm-Springfield Symposium of Advances in Alzheimer Therapy. p. 180Google Scholar
  137. 137.
    Reines S, Block G, Morris J, Liu G, Nessly M, Lines C, Norman B, Baranak C (2004) Rofecoxib: no effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology 62(1):66PubMedGoogle Scholar
  138. 138.
    Soininen H, West C, Robbins J, Niculescu L (2007) Long-term efficacy and safety of celecoxib in Alzheimer’s disease. Dement Geriatr Cogn Disord 23(1):8–21PubMedGoogle Scholar
  139. 139.
    Thal L, Ferris S, Kirby L, Block G, Lines C, Yuen E, Assaid C, Nessly M, Norman B, Baranak C (2005) A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology 30(6):1204–1215PubMedGoogle Scholar
  140. 140.
    ADAPT Research Group, Lyketsos C, Breitner J, Green R, Martin B, Meinert C, Piantadosi S, Sabbagh M (2007) Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology 68(21):1800–1808PubMedGoogle Scholar
  141. 141.
    Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58(9):1395–1402PubMedGoogle Scholar
  142. 142.
    Stein TD, Johnson JA (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 22(17):7380–7388PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Department of Psychology and NeuroscienceUniversity of Colorado at BoulderBoulderUSA
  2. 2.Department of Neurobiology and AnatomyUniversity of Rochester School of Medicine and DentistryRochesterUSA
  3. 3.Department of NeurologyUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations