Molecular Neurobiology

, Volume 39, Issue 2, pp 107–129 | Cite as

The Fragile X Mental Retardation Protein in Circadian Rhythmicity and Memory Consolidation

Article

Abstract

The control of new protein synthesis provides a means to locally regulate the availability of synaptic components necessary for dynamic neuronal processes. The fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, is a key player mediating appropriate synaptic protein synthesis in response to neuronal activity levels. Loss of FMRP causes fragile X syndrome (FraX), the most commonly inherited form of mental retardation and autism spectrum disorders. FraX-associated translational dysregulation causes wide-ranging neurological deficits including severe impairments of biological rhythms, learning processes, and memory consolidation. Dysfunction in cytoskeletal regulation and synaptic scaffolding disrupts neuronal architecture and functional synaptic connectivity. The understanding of this devastating disease and the implementation of meaningful treatment strategies require a thorough exploration of the temporal and spatial requirements for FMRP in establishing and maintaining neural circuit function.

Keywords

Fragile X syndrome Learning Memory Circadian rhythm Mushroom body Clock circuit Neuron Axon Dendrite Synapse Drosophila 

References

  1. 1.
    Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914PubMedCrossRefGoogle Scholar
  2. 2.
    Skinner M, Hooper S, Hatton DD, Roberts J, Mirrett P, Schaaf J, Sullivan K, Wheeler A, Bailey DB Jr (2005) Mapping nonverbal IQ in young boys with fragile X syndrome. Am J Med Genet A 132:25–32Google Scholar
  3. 3.
    Hall SS, Burns DD, Lightbody AA, Reiss AL (2008) Longitudinal changes in intellectual development in children with fragile X syndrome. J Abnorm Child Psychol 36:927–939PubMedCrossRefGoogle Scholar
  4. 4.
    Reddy KS (2005) Cytogenetic abnormalities and fragile-X syndrome in autism spectrum disorder. BMC Med Genet 6:3PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen D, Pichard N, Tordjman S, Baumann C, Burglen L, Excoffier E, Lazar G, Mazet P, Pinquier C, Verloes A, Heron D (2005) Specific genetic disorders and autism: clinical contribution towards their identification. J Autism Dev Disord 35:103–116PubMedCrossRefGoogle Scholar
  6. 6.
    Belmonte MK, Bourgeron T (2006) Fragile X syndrome and autism at the intersection of genetic and neural networks. Nat Neurosci 9:1221–1225PubMedCrossRefGoogle Scholar
  7. 7.
    Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ (2007) Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord 37:738–747PubMedCrossRefGoogle Scholar
  8. 8.
    Hall SS, Lightbody AA, Reiss AL (2008) Compulsive, self-injurious, and autistic behavior in children and adolescents with fragile x syndrome. Am J Ment Retard 113:44–53PubMedCrossRefGoogle Scholar
  9. 9.
    Bailey DB Jr, Hatton DD, Skinner M, Mesibov G (2001) Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. J Autism Dev Disord 31:165–174PubMedCrossRefGoogle Scholar
  10. 10.
    Hagerman R (2008) Commonalities in the neurobiology between autism and fragile X. J Intellect Disabil Res 52:817CrossRefGoogle Scholar
  11. 11.
    Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001) Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10:329–338PubMedCrossRefGoogle Scholar
  12. 12.
    Li Z, Zhang Y, Ku L, Wilkinson KD, Warren ST, Feng Y (2001) The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res 29:2276–2283PubMedCrossRefGoogle Scholar
  13. 13.
    Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, Oostra B, Bagni C (2003) The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112:317–327PubMedCrossRefGoogle Scholar
  14. 14.
    Qin M, Kang J, Burlin TV, Jiang C, Smith CB (2005) Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the FMR1 null mouse. J Neurosci 25:5087–5095PubMedCrossRefGoogle Scholar
  15. 15.
    Tessier CR, Broadie K (2008) Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning. Development 135:1547–1557PubMedCrossRefGoogle Scholar
  16. 16.
    Sung YJ, Dolzhanskaya N, Nolin SL, Brown T, Currie JR, Denman RB (2003) The fragile X mental retardation protein FMRP binds elongation factor 1A mRNA and negatively regulates its translation in vivo. J Biol Chem 278:15669–15678PubMedCrossRefGoogle Scholar
  17. 17.
    Lu R, Wang H, Liang Z, Ku L, O’Donnell WT, Li W, Warren ST, Feng Y (2004) The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc Natl Acad Sci USA 101:15201–15206PubMedCrossRefGoogle Scholar
  18. 18.
    Dictenberg JB, Swanger SA, Antar LN, Singer RH, Bassell GJ (2008) A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome. Dev Cell 14:926–939PubMedCrossRefGoogle Scholar
  19. 19.
    Estes PS, O’Shea M, Clasen S, Zarnescu DC (2008) Fragile X protein controls the efficacy of mRNA transport in Drosophila neurons. Mol Cell Neurosci 39:170–179PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang M, Wang Q, Huang Y (2007) Fragile X mental retardation protein FMRP and the RNA export factor NXF2 associate with and destabilize Nxf1 mRNA in neuronal cells. Proc Natl Acad Sci USA 104:10057–10062PubMedCrossRefGoogle Scholar
  21. 21.
    Zalfa F, Adinolfi S, Napoli I, Kuhn-Holsken E, Urlaub H, Achsel T, Pastore A, Bagni C (2005) Fragile X mental retardation protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif. J Biol Chem 280:33403–33410PubMedCrossRefGoogle Scholar
  22. 22.
    Ferrari F, Mercaldo V, Piccoli G, Sala C, Cannata S, Achsel T, Bagni C (2007) The fragile X mental retardation protein-RNP granules show an mGluR-dependent localization in the post-synaptic spines. Mol Cell Neurosci 34:343–354PubMedCrossRefGoogle Scholar
  23. 23.
    Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7:113–117PubMedCrossRefGoogle Scholar
  24. 24.
    Plante I, Davidovic L, Ouellet DL, Gobeil LA, Tremblay S, Khandjian EW, Provost P (2006) Dicer-derived microRNAs are utilized by the fragile X mental retardation protein for assembly on target RNAs. J Biomed Biotechnol 2006:64347PubMedGoogle Scholar
  25. 25.
    Xu XL, Li Y, Wang F, Gao FB (2008) The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. J Neurosci 28:11883–11889PubMedCrossRefGoogle Scholar
  26. 26.
    Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496PubMedCrossRefGoogle Scholar
  27. 27.
    Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16:2497–2508PubMedCrossRefGoogle Scholar
  28. 28.
    Lugli G, Larson J, Martone ME, Jones Y, Smalheiser NR (2005) Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. J Neurochem 94:896–905PubMedCrossRefGoogle Scholar
  29. 29.
    Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, Miyashiro K, Comery TA, Patel B, Eberwine J, Greenough WT (1997) Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci USA 94:5395–5400PubMedCrossRefGoogle Scholar
  30. 30.
    Greenough WT, Klintsova AY, Irwin SA, Galvez R, Bates KE, Weiler IJ (2001) Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci USA 98:7101–7106PubMedCrossRefGoogle Scholar
  31. 31.
    Irwin SA, Christmon CA, Grossman AW, Galvez R, Kim SH, Degrush BJ, Weiler IJ, Greenough WT (2005) Fragile X mental retardation protein levels increase following complex environment exposure in rat brain regions undergoing active synaptogenesis. Neurobiol Learn Mem 83:180–187PubMedCrossRefGoogle Scholar
  32. 32.
    Bolduc FV, Bell K, Cox H, Broadie KS, Tully T (2008) Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat Neurosci 11:1143–1145PubMedCrossRefGoogle Scholar
  33. 33.
    Weiler IJ, Spangler CC, Klintsova AY, Grossman AW, Kim SH, Bertaina-Anglade V, Khaliq H, de Vries FE, Lambers FA, Hatia F, Base CK, Greenough WT (2004) Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci USA 101:17504–17509PubMedCrossRefGoogle Scholar
  34. 34.
    Westmark CJ, Malter JS (2007) FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 5:e52PubMedCrossRefGoogle Scholar
  35. 35.
    Muddashetty RS, Kelic S, Gross C, Xu M, Bassell GJ (2007) Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 27:5338–5348PubMedCrossRefGoogle Scholar
  36. 36.
    Repicky SE, Broadie K (2008) Metabotropic glutamate receptor mediated use-dependent down-regulation of synaptic excitability involves the fragile X mental retardation protein. J Neurophysiol doi:10.1152/jn.90953.2008
  37. 37.
    Gibson JR, Bartley AF, Hays SA, Huber KM (2008) Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol 100:2615–2626PubMedCrossRefGoogle Scholar
  38. 38.
    Nosyreva ED, Huber KM (2006) Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol 95:3291–3295PubMedCrossRefGoogle Scholar
  39. 39.
    Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 99:7746–7750PubMedCrossRefGoogle Scholar
  40. 40.
    Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377PubMedCrossRefGoogle Scholar
  41. 41.
    Bailey DB Jr, Hatton DD, Tassone F, Skinner M, Taylor AK (2001) Variability in FMRP and early development in males with fragile X syndrome. Am J Ment Retard 106:16–27PubMedCrossRefGoogle Scholar
  42. 42.
    Kwon H, Menon V, Eliez S, Warsofsky IS, White CD, Dyer-Friedman J, Taylor AK, Glover GH, Reiss AL (2001) Functional neuroanatomy of visuospatial working memory in fragile X syndrome: relation to behavioral and molecular measures. Am J Psychiatry 158:1040–1051PubMedCrossRefGoogle Scholar
  43. 43.
    Cornish KM, Munir F, Cross G (2001) Differential impact of the FMR-1 full mutation on memory and attention functioning: a neuropsychological perspective. J Cogn Neurosci 13:144–150PubMedCrossRefGoogle Scholar
  44. 44.
    Munir F, Cornish KM, Wilding J (2000) Nature of the working memory deficit in fragile-X syndrome. Brain Cogn 44:387–401PubMedCrossRefGoogle Scholar
  45. 45.
    Lanfranchi S, Cornoldi C, Drigo S, Vianello R (2008) Working memory in individuals with fragile X syndrome. Child Neuropsychol doi:10.1080/09297040802112564
  46. 46.
    Gould EL, Loesch DZ, Martin MJ, Hagerman RJ, Armstrong SM, Huggins RM (2000) Melatonin profiles and sleep characteristics in boys with fragile X syndrome: a preliminary study. Am J Med Genet 95:307–315PubMedCrossRefGoogle Scholar
  47. 47.
    Miano S, Bruni O, Elia M, Scifo L, Smerieri A, Trovato A, Verrillo E, Terzano MG, Ferri R (2008) Sleep phenotypes of intellectual disability: a polysomnographic evaluation in subjects with Down syndrome and fragile-X syndrome. Clin Neurophysiol 119:1242–1247PubMedCrossRefGoogle Scholar
  48. 48.
    Musumeci SA, Hagerman RJ, Ferri R, Bosco P, Dalla Bernardina B, Tassinari CA, De Sarro GB, Elia M (1999) Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia 40:1092–1099PubMedCrossRefGoogle Scholar
  49. 49.
    Sabaratnam M, Vroegop PG, Gangadharan SK (2001) Epilepsy and EEG findings in 18 males with fragile X syndrome. Seizure 10:60–63PubMedCrossRefGoogle Scholar
  50. 50.
    Berry-Kravis E (2002) Epilepsy in fragile X syndrome. Dev Med Child Neurol 44:724–728PubMedCrossRefGoogle Scholar
  51. 51.
    Kluger G, Bohm I, Laub MC, Waldenmaier C (1996) Epilepsy and fragile X gene mutations. Pediatr Neurol 15:358–360PubMedCrossRefGoogle Scholar
  52. 52.
    Di Bonaventura C, Mari F, Pierallini A, Mecarelli O, Randi F, Manfredi M, Prencipe M, Giallonardo AT (2006) Status epilepticus in a patient with fragile X syndrome: electro-clinical features and peri-ictal neuroimaging. Epileptic Disord 8:195–199PubMedGoogle Scholar
  53. 53.
    Singh R, Sutherland GR, Manson J (1999) Partial seizures with focal epileptogenic electroencephalographic patterns in three related female patients with fragile-X syndrome. J Child Neurol 14:108–112PubMedCrossRefGoogle Scholar
  54. 54.
    Qiu LF, Hao YH, Li QZ, Xiong ZQ (2008) Fragile X syndrome and epilepsy. Neurosci Bull 24:338–344PubMedCrossRefGoogle Scholar
  55. 55.
    Hinton VJ, Brown WT, Wisniewski K, Rudelli RD (1991) Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet 41:289–294PubMedCrossRefGoogle Scholar
  56. 56.
    Rudelli RD, Brown WT, Wisniewski K, Jenkins EC, Laure-Kamionowska M, Connell F, Wisniewski HM (1985) Adult fragile X syndrome. Clinico-neuropathologic findings. Acta Neuropathol 67:289–295PubMedCrossRefGoogle Scholar
  57. 57.
    Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, Kooy F, Willems PJ, Cras P, Kozlowski PB, Swain RA, Weiler IJ, Greenough WT (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98:161–167PubMedCrossRefGoogle Scholar
  58. 58.
    Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD (1991) The Fra(X) syndrome: neurological, electrophysiological, and neuropathological abnormalities. Am J Med Genet 38:476–480PubMedCrossRefGoogle Scholar
  59. 59.
    Eberhart DE, Malter HE, Feng Y, Warren ST (1996) The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum Mol Genet 5:1083–1091PubMedCrossRefGoogle Scholar
  60. 60.
    Feng Y, Gutekunst CA, Eberhart DE, Yi H, Warren ST, Hersch SM (1997) Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci 17:1539–1547PubMedGoogle Scholar
  61. 61.
    Lai D, Sakkas D, Huang Y (2006) The fragile X mental retardation protein interacts with a distinct mRNA nuclear export factor NXF2. Rna 12:1446–1449PubMedCrossRefGoogle Scholar
  62. 62.
    Kim M, Bellini M, Ceman S (2008) Fragile X mental retardation protein FMRP binds mRNAs in the nucleus. Mol Cell Biol 29:214–228PubMedCrossRefGoogle Scholar
  63. 63.
    Ashley CT Jr, Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262:563–566PubMedCrossRefGoogle Scholar
  64. 64.
    Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G (1993) The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74:291–298PubMedCrossRefGoogle Scholar
  65. 65.
    Adinolfi S, Ramos A, Martin SR, Dal Piaz F, Pucci P, Bardoni B, Mandel JL, Pastore A (2003) The N-terminus of the fragile X mental retardation protein contains a novel domain involved in dimerization and RNA binding. Biochemistry 42:10437–10444PubMedCrossRefGoogle Scholar
  66. 66.
    Ramos A, Hollingworth D, Adinolfi S, Castets M, Kelly G, Frenkiel TA, Bardoni B, Pastore A (2006) The structure of the N-terminal domain of the fragile X mental retardation protein: a platform for protein–protein interaction. Structure 14:21–31PubMedCrossRefGoogle Scholar
  67. 67.
    Zanotti KJ, Lackey PE, Evans GL, Mihailescu MR (2006) Thermodynamics of the fragile X mental retardation protein RGG box interactions with G quartet forming RNA. Biochemistry 45:8319–8330PubMedCrossRefGoogle Scholar
  68. 68.
    Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB (2001) Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107:489–499PubMedCrossRefGoogle Scholar
  69. 69.
    Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD, Darnell RB, Warren ST (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487PubMedCrossRefGoogle Scholar
  70. 70.
    Chen L, Yun SW, Seto J, Liu W, Toth M (2003) The fragile X mental retardation protein binds and regulates a novel class of mRNAs containing U rich target sequences. Neuroscience 120:1005–1017PubMedCrossRefGoogle Scholar
  71. 71.
    Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, Carbonetto S, Weiler IJ, Greenough WT, Eberwine J (2003) RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37:417–431PubMedCrossRefGoogle Scholar
  72. 72.
    Zarnescu DC, Jin P, Betschinger J, Nakamoto M, Wang Y, Dockendorff TC, Feng Y, Jongens TA, Sisson JC, Knoblich JA, Warren ST, Moses K (2005) Fragile X protein functions with lgl and the par complex in flies and mice. Dev Cell 8:43–52PubMedCrossRefGoogle Scholar
  73. 73.
    Bittel DC, Kibiryeva N, Butler MG (2007) Whole genome microarray analysis of gene expression in subjects with fragile X syndrome. Genet Med 9:464–472PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang YQ, Friedman DB, Wang Z, Woodruff E 3rd, Pan L, O’Donnell J, Broadie K (2005) Protein expression profiling of the Drosophila fragile X mutant brain reveals up-regulation of monoamine synthesis. Mol Cell Proteomics 4:278–290PubMedCrossRefGoogle Scholar
  75. 75.
    Zou K, Liu J, Zhu N, Lin J, Liang Q, Brown WT, Shen Y, Zhong N (2008) Identification of FMRP-associated mRNAs using yeast three-hybrid system. Am J Med Genet B Neuropsychiatr Genet 147B:769–777PubMedCrossRefGoogle Scholar
  76. 76.
    Liao L, Park SK, Xu T, Vanderklish P, Yates JR 3rd (2008) Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proc Natl Acad Sci USA 105:15281–15286PubMedCrossRefGoogle Scholar
  77. 77.
    Aschrafi A, Cunningham BA, Edelman GM, Vanderklish PW (2005) The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Proc Natl Acad Sci USA 102:2180–2185PubMedCrossRefGoogle Scholar
  78. 78.
    Khandjian EW, Huot ME, Tremblay S, Davidovic L, Mazroui R, Bardoni B (2004) Biochemical evidence for the association of fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proc Natl Acad Sci USA 101:13357–13362PubMedCrossRefGoogle Scholar
  79. 79.
    Stefani G, Fraser CE, Darnell JC, Darnell RB (2004) Fragile X mental retardation protein is associated with translating polyribosomes in neuronal cells. J Neurosci 24:7272–7276PubMedCrossRefGoogle Scholar
  80. 80.
    Wang H, Dictenberg JB, Ku L, Li W, Bassell GJ, Feng Y (2008) Dynamic association of the fragile X mental retardation protein as a messenger ribonucleoprotein between microtubules and polyribosomes. Mol Biol Cell 19:105–114PubMedCrossRefGoogle Scholar
  81. 81.
    Antar LN, Dictenberg JB, Plociniak M, Afroz R, Bassell GJ (2005) Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 4:350–359PubMedCrossRefGoogle Scholar
  82. 82.
    Antar LN, Afroz R, Dictenberg JB, Carroll RC, Bassell GJ (2004) Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci 24:2648–2655PubMedCrossRefGoogle Scholar
  83. 83.
    Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, Speese SD, Rubin GM, Broadie K (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107:591–603PubMedCrossRefGoogle Scholar
  84. 84.
    Hummel T, Krukkert K, Roos J, Davis G, Klambt C (2000) Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26:357–370PubMedCrossRefGoogle Scholar
  85. 85.
    Roos J, Hummel T, Ng N, Klambt C, Davis GW (2000) Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26:371–382PubMedCrossRefGoogle Scholar
  86. 86.
    Bettencourt da Cruz A, Schwarzel M, Schulze S, Niyyati M, Heisenberg M, Kretzschmar D (2005) Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila. Mol Biol Cell 16:2433–2442PubMedCrossRefGoogle Scholar
  87. 87.
    Ruiz-Canada C, Ashley J, Moeckel-Cole S, Drier E, Yin J, Budnik V (2004) New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants. Neuron 42:567–580PubMedCrossRefGoogle Scholar
  88. 88.
    Gatto CL, Broadie K (2008) Temporal requirements of the fragile X mental retardation protein in the regulation of synaptic structure. Development 135:2637–2648PubMedCrossRefGoogle Scholar
  89. 89.
    Reeve SP, Bassetto L, Genova GK, Kleyner Y, Leyssen M, Jackson FR, Hassan BA (2005) The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr Biol 15:1156–1163PubMedCrossRefGoogle Scholar
  90. 90.
    Cooley L, Verheyen E, Ayers K (1992) Chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 69:173–184PubMedCrossRefGoogle Scholar
  91. 91.
    Birbach A (2008) Profilin, a multi-modal regulator of neuronal plasticity. Bioessays 30:994–1002PubMedCrossRefGoogle Scholar
  92. 92.
    Lee A, Li W, Xu K, Bogert BA, Su K, Gao FB (2003) Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 130:5543–5552PubMedCrossRefGoogle Scholar
  93. 93.
    Schenck A, Bardoni B, Langmann C, Harden N, Mandel JL, Giangrande A (2003) CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38:887–898PubMedCrossRefGoogle Scholar
  94. 94.
    Schenck A, Qurashi A, Carrera P, Bardoni B, Diebold C, Schejter E, Mandel JL, Giangrande A (2004) WAVE/SCAR, a multifunctional complex coordinating different aspects of neuronal connectivity. Dev Biol 274:260–270PubMedCrossRefGoogle Scholar
  95. 95.
    Le Clainche C, Carlier MF (2008) Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiol Rev 88:489–513PubMedCrossRefGoogle Scholar
  96. 96.
    Castets M, Schaeffer C, Bechara E, Schenck A, Khandjian EW, Luche S, Moine H, Rabilloud T, Mandel JL, Bardoni B (2005) FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Hum Mol Genet 14:835–844PubMedCrossRefGoogle Scholar
  97. 97.
    Ambach A, Saunus J, Konstandin M, Wesselborg S, Meuer SC, Samstag Y (2000) The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur J Immunol 30:3422–3431PubMedCrossRefGoogle Scholar
  98. 98.
    Viquez NM, Li CR, Wairkar YP, DiAntonio A (2006) The B’ protein phosphatase 2A regulatory subunit well-rounded regulates synaptic growth and cytoskeletal stability at the Drosophila neuromuscular junction. J Neurosci 26:9293–9303PubMedCrossRefGoogle Scholar
  99. 99.
    Gardoni F (2008) MAGUK proteins: new targets for pharmacological intervention in the glutamatergic synapse. Eur J Pharmacol 585:147–152PubMedCrossRefGoogle Scholar
  100. 100.
    Zalfa F, Eleuteri B, Dickson KS, Mercaldo V, De Rubeis S, di Penta A, Tabolacci E, Chiurazzi P, Neri G, Grant SG, Bagni C (2007) A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci 10:578–587PubMedCrossRefGoogle Scholar
  101. 101.
    Todd PK, Mack KJ, Malter JS (2003) The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proc Natl Acad Sci USA 100:14374–14378PubMedCrossRefGoogle Scholar
  102. 102.
    Hou L, Antion MD, Hu D, Spencer CM, Paylor R, Klann E (2006) Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51:441–454PubMedCrossRefGoogle Scholar
  103. 103.
    Koh YH, Popova E, Thomas U, Griffith LC, Budnik V (1999) Regulation of DLG localization at synapses by CaMKII-dependent phosphorylation. Cell 98:353–363PubMedCrossRefGoogle Scholar
  104. 104.
    Beumer K, Matthies HJ, Bradshaw A, Broadie K (2002) Integrins regulate DLG/FAS2 via a CaM kinase II-dependent pathway to mediate synapse elaboration and stabilization during postembryonic development. Development 129:3381–3391PubMedGoogle Scholar
  105. 105.
    Nakamoto M, Nalavadi V, Epstein MP, Narayanan U, Bassell GJ, Warren ST (2007) Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci USA 104:15537–15542PubMedCrossRefGoogle Scholar
  106. 106.
    Park S, Park JM, Kim S, Kim JA, Shepherd JD, Smith-Hicks CL, Chowdhury S, Kaufmann W, Kuhl D, Ryazanov AG, Huganir RL, Linden DJ, Worley PF (2008) Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59:70–83PubMedCrossRefGoogle Scholar
  107. 107.
    Waung MW, Pfeiffer BE, Nosyreva ED, Ronesi JA, Huber KM (2008) Rapid translation of Arc/Arg3.1 selectively mediates mGluR-dependent LTD through persistent increases in AMPAR endocytosis rate. Neuron 59:84–97PubMedCrossRefGoogle Scholar
  108. 108.
    Bilousova T, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2008) Minocycline promotes dendritic spine maturation and improves behavioral performance in the fragile X mouse model. J Med Genet doi:10.1136/jmg.2008.061796
  109. 109.
    De Diego Otero Y, Severijnen LA, van Cappellen G, Schrier M, Oostra B, Willemsen R (2002) Transport of fragile X mental retardation protein via granules in neurites of PC12 cells. Mol Cell Biol 22:8332–8341PubMedCrossRefGoogle Scholar
  110. 110.
    Ling SC, Fahrner PS, Greenough WT, Gelfand VI (2004) Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Proc Natl Acad Sci USA 101:17428–17433PubMedCrossRefGoogle Scholar
  111. 111.
    Kanai Y, Dohmae N, Hirokawa N (2004) Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43:513–525PubMedCrossRefGoogle Scholar
  112. 112.
    Davidovic L, Jaglin XH, Lepagnol-Bestel AM, Tremblay S, Simonneau M, Bardoni B, Khandjian EW (2007) The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules. Hum Mol Genet 16:3047–3058PubMedCrossRefGoogle Scholar
  113. 113.
    Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445PubMedCrossRefGoogle Scholar
  114. 114.
    Rook MS, Lu M, Kosik KS (2000) CaMKIIalpha 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J Neurosci 20:6385–6393PubMedGoogle Scholar
  115. 115.
    Weiler IJ, Greenough WT (1993) Metabotropic glutamate receptors trigger postsynaptic protein synthesis. Proc Natl Acad Sci USA 90:7168–7171PubMedCrossRefGoogle Scholar
  116. 116.
    Irwin SA, Swain RA, Christmon CA, Chakravarti A, Weiler IJ, Greenough WT (2000) Evidence for altered fragile-X mental retardation protein expression in response to behavioral stimulation. Neurobiol Learn Mem 73:87–93PubMedCrossRefGoogle Scholar
  117. 117.
    Todd PK, Mack KJ (2000) Sensory stimulation increases cortical expression of the fragile X mental retardation protein in vivo. Brain Res Mol Brain Res 80:17–25PubMedCrossRefGoogle Scholar
  118. 118.
    Gabel LA, Won S, Kawai H, McKinney M, Tartakoff AM, Fallon JR (2004) Visual experience regulates transient expression and dendritic localization of fragile X mental retardation protein. J Neurosci 24:10579–10583PubMedCrossRefGoogle Scholar
  119. 119.
    Bear MF (2005) Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain Behav 4:393–398PubMedCrossRefGoogle Scholar
  120. 120.
    Kim CH, Lee J, Lee JY, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86:1–10PubMedCrossRefGoogle Scholar
  121. 121.
    Job C, Eberwine J (2001) Identification of sites for exponential translation in living dendrites. Proc Natl Acad Sci USA 98:13037–13042PubMedCrossRefGoogle Scholar
  122. 122.
    Massey PV, Bashir ZI (2007) Long-term depression: multiple forms and implications for brain function. Trends Neurosci 30:176–184PubMedCrossRefGoogle Scholar
  123. 123.
    Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP (2005) Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49:1053–1066PubMedCrossRefGoogle Scholar
  124. 124.
    de Vrij FM, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI, Nelson DL, Oostra BA, Willemsen R (2008) Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 31:127–132PubMedCrossRefGoogle Scholar
  125. 125.
    Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S, Bear MF (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962PubMedCrossRefGoogle Scholar
  126. 126.
    Klann E, Dever TE (2004) Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci 5:931–942PubMedCrossRefGoogle Scholar
  127. 127.
    Kim SH, Markham JA, Weiler IJ, Greenough WT (2008) Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome. Proc Natl Acad Sci USA 105:4429–4434PubMedCrossRefGoogle Scholar
  128. 128.
    Ronesi JA, Huber KM (2008) Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation. J Neurosci 28:543–547PubMedCrossRefGoogle Scholar
  129. 129.
    Napoli I, Mercaldo V, Boyl PP, Eleuteri B, Zalfa F, De Rubeis S, Di Marino D, Mohr E, Massimi M, Falconi M, Witke W, Costa-Mattioli M, Sonenberg N, Achsel T, Bagni C (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134:1042–1054PubMedCrossRefGoogle Scholar
  130. 130.
    Narayanan U, Nalavadi V, Nakamoto M, Pallas DC, Ceman S, Bassell GJ, Warren ST (2007) FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J Neurosci 27:14349–14357PubMedCrossRefGoogle Scholar
  131. 131.
    Narayanan U, Nalavadi V, Nakamoto M, Thomas G, Ceman S, Bassell GJ, Warren ST (2008) S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J Biol Chem 283:18478–18482PubMedCrossRefGoogle Scholar
  132. 132.
    Wang H, Wu LJ, Kim SS, Lee FJ, Gong B, Toyoda H, Ren M, Shang YZ, Xu H, Liu F, Zhao MG, Zhuo M (2008) FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59:634–647PubMedCrossRefGoogle Scholar
  133. 133.
    Volk LJ, Pfeiffer BE, Gibson JR, Huber KM (2007) Multiple Gq-coupled receptors converge on a common protein synthesis-dependent long-term depression that is affected in fragile X syndrome mental retardation. J Neurosci 27:11624–11634PubMedCrossRefGoogle Scholar
  134. 134.
    Tucker B, Richards RI, Lardelli M (2006) Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Hum Mol Genet 15:3446–3458PubMedCrossRefGoogle Scholar
  135. 135.
    Mientjes EJ, Nieuwenhuizen I, Kirkpatrick L, Zu T, Hoogeveen-Westerveld M, Severijnen L, Rife M, Willemsen R, Nelson DL, Oostra BA (2006) The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo. Neurobiol Dis 21:549–555PubMedCrossRefGoogle Scholar
  136. 136.
    Bakker C, Verheij C, Willemsen R, van der Helm R (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 78:23–33Google Scholar
  137. 137.
    Dockendorff TC, Su HS, McBride SM, Yang Z, Choi CH, Siwicki KK, Sehgal A, Jongens TA (2002) Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron 34:973–984PubMedCrossRefGoogle Scholar
  138. 138.
    Michel CI, Kraft R, Restifo LL (2004) Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants. J Neurosci 24:5798–5809PubMedCrossRefGoogle Scholar
  139. 139.
    Morales J, Hiesinger PR, Schroeder AJ, Kume K, Verstreken P, Jackson FR, Nelson DL, Hassan BA (2002) Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34:961–972PubMedCrossRefGoogle Scholar
  140. 140.
    Wan L, Dockendorff TC, Jongens TA, Dreyfuss G (2000) Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol 20:8536–8547PubMedCrossRefGoogle Scholar
  141. 141.
    Inoue S, Shimoda M, Nishinokubi I, Siomi MC, Okamura M, Nakamura A, Kobayashi S, Ishida N, Siomi H (2002) A role for the Drosophila fragile X-related gene in circadian output. Curr Biol 12:1331–1335PubMedCrossRefGoogle Scholar
  142. 142.
    Tatsumori S, Terumi Y, Kunikatsu H, Haruhiko S, Lino S, Norio I, Masami S (2008) Circadian phenotypes of Drosophila fragile x mutants in alternative genetic backgrounds. Zoolog Sci 25:561–571CrossRefGoogle Scholar
  143. 143.
    McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, Sehgal A, Siwicki KK, Dockendorff TC, Nguyen HT, McDonald TV, Jongens TA (2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45:753–764PubMedCrossRefGoogle Scholar
  144. 144.
    Pan L, Zhang YQ, Woodruff E, Broadie K (2004) The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr Biol 14:1863–1870PubMedCrossRefGoogle Scholar
  145. 145.
    Pan L, Broadie KS (2007) Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A convergently regulate the synaptic ratio of ionotropic glutamate receptor subclasses. J Neurosci 27:12378–12389PubMedCrossRefGoogle Scholar
  146. 146.
    Pan L, Woodruff E 3rd, Liang P, Broadie K (2008) Mechanistic relationships between Drosophila fragile X mental retardation protein and metabotropic glutamate receptor A signaling. Mol Cell Neurosci 37:747–760PubMedCrossRefGoogle Scholar
  147. 147.
    Reeve SP, Lin X, Sahin BH, Jiang F, Yao A, Liu Z, Zhi H, Broadie K, Li W, Giangrande A, Hassan BA, Zhang YQ (2008) Mutational analysis establishes a critical role for the N terminus of fragile X mental retardation protein FMRP. J Neurosci 28:3221–3226PubMedCrossRefGoogle Scholar
  148. 148.
    Parmentier ML, Pin JP, Bockaert J, Grau Y (1996) Cloning and functional expression of a Drosophila metabotropic glutamate receptor expressed in the embryonic CNS. J Neurosci 16:6687–6694PubMedGoogle Scholar
  149. 149.
    Mitri C, Parmentier ML, Pin JP, Bockaert J, Grau Y (2004) Divergent evolution in metabotropic glutamate receptors. A new receptor activated by an endogenous ligand different from glutamate in insects. J Biol Chem 279:9313–9320PubMedCrossRefGoogle Scholar
  150. 150.
    Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237PubMedCrossRefGoogle Scholar
  151. 151.
    Bogdanik L, Mohrmann R, Ramaekers A, Bockaert J, Grau Y, Broadie K, Parmentier ML (2004) The Drosophila metabotropic glutamate receptor DmGluRA regulates activity-dependent synaptic facilitation and fine synaptic morphology. J Neurosci 24:9105–9116PubMedCrossRefGoogle Scholar
  152. 152.
    Featherstone DE, Rushton E, Rohrbough J, Liebl F, Karr J, Sheng Q, Rodesch CK, Broadie K (2005) An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J Neurosci 25:3199–3208PubMedCrossRefGoogle Scholar
  153. 153.
    Qin G, Schwarz T, Kittel RJ, Schmid A, Rasse TM, Kappei D, Ponimaskin E, Heckmann M, Sigrist SJ (2005) Four different subunits are essential for expressing the synaptic glutamate receptor at neuromuscular junctions of Drosophila. J Neurosci 25:3209–3218PubMedCrossRefGoogle Scholar
  154. 154.
    Schmid A, Hallermann S, Kittel RJ, Khorramshahi O, Frolich AM, Quentin C, Rasse TM, Mertel S, Heckmann M, Sigrist SJ (2008) Activity-dependent site-specific changes of glutamate receptor composition in vivo. Nat Neurosci 11:659–666PubMedCrossRefGoogle Scholar
  155. 155.
    Gallagher SM, Daly CA, Bear MF, Huber KM (2004) Extracellular signal-regulated protein kinase activation is required for metabotropic glutamate receptor-dependent long-term depression in hippocampal area CA1. J Neurosci 24:4859–4864PubMedCrossRefGoogle Scholar
  156. 156.
    Malherbe P, Kratochwil N, Zenner MT, Piussi J, Diener C, Kratzeisen C, Fischer C, Porter RH (2003) Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine. Mol Pharmacol 64:823–832PubMedCrossRefGoogle Scholar
  157. 157.
    Pagano A, Ruegg D, Litschig S, Stoehr N, Stierlin C, Heinrich M, Floersheim P, Prezeau L, Carroll F, Pin JP, Cambria A, Vranesic I, Flor PJ, Gasparini F, Kuhn R (2000) The non-competitive antagonists 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J Biol Chem 275:33750–33758PubMedCrossRefGoogle Scholar
  158. 158.
    Spooren WP, Gasparini F, Salt TE, Kuhn R (2001) Novel allosteric antagonists shed light on mglu(5) receptors and CNS disorders. Trends Pharmacol Sci 22:331–337PubMedCrossRefGoogle Scholar
  159. 159.
    Cirelli C, Bushey D (2008) Sleep and wakefulness in Drosophila melanogaster. Ann N Y Acad Sci 1129:323–329PubMedCrossRefGoogle Scholar
  160. 160.
    Sehgal A, Joiner W, Crocker A, Koh K, Sathyanarayanan S, Fang Y, Wu M, Williams JA, Zheng X (2007) Molecular analysis of sleep: wake cycles in Drosophila. Cold Spring Harb Symp Quant Biol 72:557–564PubMedCrossRefGoogle Scholar
  161. 161.
    Dubruille R, Emery P (2008) A plastic clock: how circadian rhythms respond to environmental cues in Drosophila. Mol Neurobiol 38:129–145PubMedCrossRefGoogle Scholar
  162. 162.
    Nitabach MN, Taghert PH (2008) Organization of the Drosophila circadian control circuit. Curr Biol 18:R84–R93PubMedCrossRefGoogle Scholar
  163. 163.
    Mineur YS, Sluyter F, de Wit S, Oostra BA, Crusio WE (2002) Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus 12:39–46PubMedCrossRefGoogle Scholar
  164. 164.
    Torrioli MG, Vernacotola S, Peruzzi L, Tabolacci E, Mila M, Militerni R, Musumeci S, Ramos FJ, Frontera M, Sorge G, Marzullo E, Romeo G, Vallee L, Veneselli E, Cocchi E, Garbarino E, Moscato U, Chiurazzi P, D’Iddio S, Calvani M, Neri G (2008) A double-blind, parallel, multicenter comparison of l-acetylcarnitine with placebo on the attention deficit hyperactivity disorder in fragile X syndrome boys. Am J Med Genet A 146:803–812PubMedGoogle Scholar
  165. 165.
    Sullivan K, Hatton D, Hammer J, Sideris J, Hooper S, Ornstein P, Bailey D Jr (2006) ADHD symptoms in children with FXS. Am J Med Genet A 140:2275–2288PubMedGoogle Scholar
  166. 166.
    Banerjee P, Nayar S, Hebbar S, Fox CF, Jacobs MC, Park JH, Fernandes JJ, Dockendorff TC (2007) Substitution of critical isoleucines in the KH domains of Drosophila fragile X protein results in partial loss-of-function phenotypes. Genetics 175:1241–1250PubMedCrossRefGoogle Scholar
  167. 167.
    Zhang J, Fang Z, Jud C, Vansteensel MJ, Kaasik K, Lee CC, Albrecht U, Tamanini F, Meijer JH, Oostra BA, Nelson DL (2008) Fragile X-related proteins regulate mammalian circadian behavioral rhythms. Am J Hum Genet 83:43–52PubMedCrossRefGoogle Scholar
  168. 168.
    Siomi MC, Siomi H, Sauer WH, Srinivasan S, Nussbaum RL, Dreyfuss G (1995) FXR1, an autosomal homolog of the fragile X mental retardation gene. Embo J 14:2401–2408PubMedGoogle Scholar
  169. 169.
    Zhang Y, O’Connor JP, Siomi MC, Srinivasan S, Dutra A, Nussbaum RL, Dreyfuss G (1995) The fragile X mental retardation syndrome protein interacts with novel homologs FXR1 and FXR2. Embo J 14:5358–5366PubMedGoogle Scholar
  170. 170.
    Chang DC (2006) Neural circuits underlying circadian behavior in Drosophila melanogaster. Behav Processes 71:211–225PubMedCrossRefGoogle Scholar
  171. 171.
    Helfrich-Forster C (2005) Neurobiology of the fruit fly’s circadian clock. Genes Brain Behav 4:65–76PubMedCrossRefGoogle Scholar
  172. 172.
    Park JH, Hall JC (1998) Isolation and chronobiological analysis of a neuropeptide pigment-dispersing factor gene in Drosophila melanogaster. J Biol Rhythms 13:219–228PubMedCrossRefGoogle Scholar
  173. 173.
    Park JH, Helfrich-Forster C, Lee G, Liu L, Rosbash M, Hall JC (2000) Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci USA 97:3608–3613PubMedCrossRefGoogle Scholar
  174. 174.
    Sofola O, Sundram V, Ng F, Kleyner Y, Morales J, Botas J, Jackson FR, Nelson DL (2008) The Drosophila FMRP and LARK RNA-binding proteins function together to regulate eye development and circadian behavior. J Neurosci 28:10200–10205PubMedCrossRefGoogle Scholar
  175. 175.
    Boothroyd CE, Young MW (2008) The in(put)s and out(put)s of the Drosophila circadian clock. Ann N Y Acad Sci 1129:350–357PubMedCrossRefGoogle Scholar
  176. 176.
    Grima B, Chelot E, Xia R, Rouyer F (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–873PubMedCrossRefGoogle Scholar
  177. 177.
    Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802PubMedCrossRefGoogle Scholar
  178. 178.
    Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868PubMedCrossRefGoogle Scholar
  179. 179.
    Schenck A, Bardoni B, Moro A, Bagni C, Mandel JL (2001) A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci USA 98:8844–8849PubMedCrossRefGoogle Scholar
  180. 180.
    Olson IR, Berryhill M (2008) Some surprising findings on the involvement of the parietal lobe in human memory. Neurobiol Learn Mem doi:10.1016/j.nlm.2008.09.006
  181. 181.
    Linden DE (2007) The working memory networks of the human brain. Neuroscientist 13:257–267PubMedCrossRefGoogle Scholar
  182. 182.
    D’Hooge R, Nagels G, Franck F, Bakker CE, Reyniers E, Storm K, Kooy RF, Oostra BA, Willems PJ, De Deyn PP (1997) Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 76:367–376PubMedCrossRefGoogle Scholar
  183. 183.
    Paradee W, Melikian HE, Rasmussen DL, Kenneson A, Conn PJ, Warren ST (1999) Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 94:185–192PubMedCrossRefGoogle Scholar
  184. 184.
    Van Dam D, D’Hooge R, Hauben E, Reyniers E, Gantois I, Bakker CE, Oostra BA, Kooy RF, De Deyn PP (2000) Spatial learning, contextual fear conditioning and conditioned emotional response in Fmr1 knockout mice. Behav Brain Res 117:127–136PubMedCrossRefGoogle Scholar
  185. 185.
    Dobkin C, Rabe A, Dumas R, El Idrissi A, Haubenstock H, Brown WT (2000) Fmr1 knockout mouse has a distinctive strain-specific learning impairment. Neuroscience 100:423–429PubMedCrossRefGoogle Scholar
  186. 186.
    Kooy RF, D’Hooge R, Reyniers E, Bakker CE, Nagels G, De Boulle K, Storm K, Clincke G, De Deyn PP, Oostra BA, Willems PJ (1996) Transgenic mouse model for the fragile X syndrome. Am J Med Genet 64:241–245PubMedCrossRefGoogle Scholar
  187. 187.
    Spencer CM, Serysheva E, Yuva-Paylor LA, Oostra BA, Nelson DL, Paylor R (2006) Exaggerated behavioral phenotypes in Fmr1/Fxr2 double knockout mice reveal a functional genetic interaction between fragile X-related proteins. Hum Mol Genet 15:1984–1994PubMedCrossRefGoogle Scholar
  188. 188.
    Koekkoek SK, Yamaguchi K, Milojkovic BA, Dortland BR, Ruigrok TJ, Maex R, De Graaf W, Smit AE, VanderWerf F, Bakker CE, Willemsen R, Ikeda T, Kakizawa S, Onodera K, Nelson DL, Mientjes E, Joosten M, De Schutter E, Oostra BA, Ito M, De Zeeuw CI (2005) Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome. Neuron 47:339–352PubMedCrossRefGoogle Scholar
  189. 189.
    Zhao MG, Toyoda H, Ko SW, Ding HK, Wu LJ, Zhuo M (2005) Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci 25:7385–7392PubMedCrossRefGoogle Scholar
  190. 190.
    Hayashi ML, Rao BS, Seo JS, Choi HS, Dolan BM, Choi SY, Chattarji S, Tonegawa S (2007) Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci USA 104:11489–11494PubMedCrossRefGoogle Scholar
  191. 191.
    Brennan FX, Albeck DS, Paylor R (2006) Fmr1 knockout mice are impaired in a lever press escape/avoidance task. Genes Brain Behav 5:467–471PubMedCrossRefGoogle Scholar
  192. 192.
    Greenspan RJ, Ferveur JF (2000) Courtship in Drosophila. Annu Rev Genet 34:205–232PubMedCrossRefGoogle Scholar
  193. 193.
    Hall JC (1994) The mating of a fly. Science 264:1702–1714PubMedCrossRefGoogle Scholar
  194. 194.
    Siegel RW, Hall JC (1979) Conditioned responses in courtship behavior of normal and mutant Drosophila. Proc Natl Acad Sci USA 76:3430–3434PubMedCrossRefGoogle Scholar
  195. 195.
    Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79:35–47PubMedCrossRefGoogle Scholar
  196. 196.
    Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A] 157:263–277CrossRefGoogle Scholar
  197. 197.
    Connolly JB, Tully T (1998) Behaviour, learning, and memory. In: Roberts DB (ed) Drosophila, a practical approach. Oxford University Press, Oxford, pp 265–318Google Scholar
  198. 198.
    Larson J, Kim D, Patel RC, Floreani C (2008) Olfactory discrimination learning in mice lacking the fragile X mental retardation protein. Neurobiol Learn Mem 90:90–102PubMedCrossRefGoogle Scholar
  199. 199.
    Villace P, Marion RM, Ortin J (2004) The composition of Staufen-containing RNA granules from human cells indicates their role in the regulated transport and translation of messenger RNAs. Nucleic Acids Res 32:2411–2420PubMedCrossRefGoogle Scholar
  200. 200.
    Johnson EM, Kinoshita Y, Weinreb DB, Wortman MJ, Simon R, Khalili K, Winckler B, Gordon J (2006) Role of Pur alpha in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J Neurosci Res 83:929–943PubMedCrossRefGoogle Scholar
  201. 201.
    Kohrmann M, Luo M, Kaether C, DesGroseillers L, Dotti CG, Kiebler MA (1999) Microtubule-dependent recruitment of Staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol Biol Cell 10:2945–2953PubMedGoogle Scholar
  202. 202.
    Dubnau J, Chiang AS, Grady L, Barditch J, Gossweiler S, McNeil J, Smith P, Buldoc F, Scott R, Certa U, Broger C, Tully T (2003) The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13:286–296PubMedCrossRefGoogle Scholar
  203. 203.
    Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205PubMedCrossRefGoogle Scholar
  204. 204.
    Irwin SA, Idupulapati M, Gilbert ME, Harris JB, Chakravarti AB, Rogers EJ, Crisostomo RA, Larsen BP, Mehta A, Alcantara CJ, Patel B, Swain RA, Weiler IJ, Oostra BA, Greenough WT (2002) Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 111:140–146PubMedCrossRefGoogle Scholar
  205. 205.
    McKinney BC, Grossman AW, Elisseou NM, Greenough WT (2005) Dendritic spine abnormalities in the occipital cortex of C57BL/6 Fmr1 knockout mice. Am J Med Genet B Neuropsychiatr Genet 136:98–102Google Scholar
  206. 206.
    Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94:5401–5404PubMedCrossRefGoogle Scholar
  207. 207.
    Ivanco TL, Greenough WT (2002) Altered mossy fiber distributions in adult Fmr1 (FVB) knockout mice. Hippocampus 12:47–54PubMedCrossRefGoogle Scholar
  208. 208.
    Grossman AW, Elisseou NM, McKinney BC, Greenough WT (2006) Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Res 1084:158–164PubMedCrossRefGoogle Scholar
  209. 209.
    Pfeiffer BE, Huber KM (2007) Fragile X mental retardation protein induces synapse loss through acute postsynaptic translational regulation. J Neurosci 27:3120–3130PubMedCrossRefGoogle Scholar
  210. 210.
    Braun K, Segal M (2000) FMRP involvement in formation of synapses among cultured hippocampal neurons. Cereb Cortex 10:1045–1052PubMedCrossRefGoogle Scholar
  211. 211.
    Antar LN, Li C, Zhang H, Carroll RC, Bassell GJ (2006) Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci 32:37–48PubMedCrossRefGoogle Scholar
  212. 212.
    Li J, Pelletier MR, Perez Velazquez JL, Carlen PL (2002) Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol Cell Neurosci 19:138–151PubMedCrossRefGoogle Scholar
  213. 213.
    Meredith RM, Holmgren CD, Weidum M, Burnashev N, Mansvelder HD (2007) Increased threshold for spike-timing-dependent plasticity is caused by unreliable calcium signaling in mice lacking fragile X gene FMR1. Neuron 54:627–638PubMedCrossRefGoogle Scholar
  214. 214.
    Wilson BM, Cox CL (2007) Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. Proc Natl Acad Sci USA 104:2454–2459PubMedCrossRefGoogle Scholar
  215. 215.
    Hu H, Qin Y, Bochorishvili G, Zhu Y, van Aelst L, Zhu JJ (2008) Ras signaling mechanisms underlying impaired GluR1-dependent plasticity associated with fragile X syndrome. J Neurosci 28:7847–7862PubMedCrossRefGoogle Scholar
  216. 216.
    Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15:R700–R713PubMedCrossRefGoogle Scholar
  217. 217.
    Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302PubMedCrossRefGoogle Scholar
  218. 218.
    Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–4076PubMedGoogle Scholar
  219. 219.
    Crittenden JR, Skoulakis EM, Han KA, Kalderon D, Davis RL (1998) Tripartite mushroom body architecture revealed by antigenic markers. Learn Mem 5:38–51PubMedGoogle Scholar
  220. 220.
    Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461PubMedCrossRefGoogle Scholar
  221. 221.
    Wu JS, Luo L (2006) A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nat Protoc 1:2583–2589PubMedCrossRefGoogle Scholar
  222. 222.
    Yan QJ, Asafo-Adjei PK, Arnold HM, Brown RE, Bauchwitz RP (2004) A phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav 3:337–359PubMedCrossRefGoogle Scholar
  223. 223.
    Musumeci SA, Bosco P, Calabrese G, Bakker C, De Sarro GB, Elia M, Ferri R, Oostra BA (2000) Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 41:19–23PubMedCrossRefGoogle Scholar
  224. 224.
    Chen L, Toth M (2001) Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103:1043–1050PubMedCrossRefGoogle Scholar
  225. 225.
    Galvez R, Greenough WT (2005) Sequence of abnormal dendritic spine development in primary somatosensory cortex of a mouse model of the fragile X mental retardation syndrome. Am J Med Genet A 135:155–160PubMedGoogle Scholar
  226. 226.
    Nimchinsky EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21:5139–5146PubMedGoogle Scholar
  227. 227.
    Bureau I, Shepherd GM, Svoboda K (2008) Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knock-out mice. J Neurosci 28:5178–5188PubMedCrossRefGoogle Scholar
  228. 228.
    Yun SW, Platholi J, Flaherty MS, Fu W, Kottmann AH, Toth M (2006) Fmrp is required for the establishment of the startle response during the critical period of auditory development. Brain Res 1110:159–165PubMedCrossRefGoogle Scholar
  229. 229.
    Larson J, Jessen RE, Kim D, Fine AK, du Hoffmann J (2005) Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. J Neurosci 25:9460–9469PubMedCrossRefGoogle Scholar
  230. 230.
    Singh K, Prasad S (2008) Differential expression of Fmr-1 mRNA and FMRP in female mice brain during aging. Mol Biol Rep 35:677–684PubMedCrossRefGoogle Scholar
  231. 231.
    Khandjian EW, Fortin A, Thibodeau A, Tremblay S, Cote F, Devys D, Mandel JL, Rousseau F (1995) A heterogeneous set of FMR1 proteins is widely distributed in mouse tissues and is modulated in cell culture. Hum Mol Genet 4:783–789PubMedCrossRefGoogle Scholar
  232. 232.
    Wang H, Ku L, Osterhout DJ, Li W, Ahmadian A, Liang Z, Feng Y (2004) Developmentally-programmed FMRP expression in oligodendrocytes: a potential role of FMRP in regulating translation in oligodendroglia progenitors. Hum Mol Genet 13:79–89PubMedCrossRefGoogle Scholar
  233. 233.
    Singh K, Gaur P, Prasad S (2007) Fragile x mental retardation (Fmr-1) gene expression is down regulated in brain of mice during aging. Mol Biol Rep 34:173–181PubMedCrossRefGoogle Scholar
  234. 234.
    McGuire SE, Roman G, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391PubMedCrossRefGoogle Scholar
  235. 235.
    Osterwalder T, Yoon KS, White BH, Keshishian H (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci USA 98:12596–12601PubMedCrossRefGoogle Scholar
  236. 236.
    Galvez R, Gopal AR, Greenough WT (2003) Somatosensory cortical barrel dendritic abnormalities in a mouse model of the fragile X mental retardation syndrome. Brain Res 971:83–89PubMedCrossRefGoogle Scholar
  237. 237.
    De Roo M, Klauser P, Garcia PM, Poglia L, Muller D (2008) Spine dynamics and synapse remodeling during LTP and memory processes. Prog Brain Res 169:199–207PubMedCrossRefGoogle Scholar
  238. 238.
    Muller D, Nikonenko I, Jourdain P, Alberi S (2002) LTP, memory and structural plasticity. Curr Mol Med 2:605–611PubMedCrossRefGoogle Scholar
  239. 239.
    Muller D, Toni N, Buchs PA (2000) Spine changes associated with long-term potentiation. Hippocampus 10:596–604PubMedCrossRefGoogle Scholar
  240. 240.
    Sutton MA, Schuman EM (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127:49–58PubMedCrossRefGoogle Scholar
  241. 241.
    Grossman AW, Aldridge GM, Weiler IJ, Greenough WT (2006) Local protein synthesis and spine morphogenesis: fragile X syndrome and beyond. J Neurosci 26:7151–7155PubMedCrossRefGoogle Scholar
  242. 242.
    Lardi-Studler B, Fritschy JM (2007) Matching of pre- and postsynaptic specializations during synaptogenesis. Neuroscientist 13:115–126PubMedCrossRefGoogle Scholar
  243. 243.
    Hanson JE, Madison DV (2007) Presynaptic FMR1 genotype influences the degree of synaptic connectivity in a mosaic mouse model of fragile X syndrome. J Neurosci 27:4014–4018PubMedCrossRefGoogle Scholar
  244. 244.
    Elliott DA, Brand AH (2008) The GAL4 system: a versatile system for the expression of genes. Methods Mol Biol 420:79–95PubMedCrossRefGoogle Scholar
  245. 245.
    Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28:11760–11767PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Department of Biological Sciences, Kennedy Center for Research on Human DevelopmentVanderbilt UniversityNashvilleUSA

Personalised recommendations