Advertisement

Molecular Neurobiology

, 39:24 | Cite as

Targeting the Hippocampal Mossy Fiber Synapse for the Treatment of Psychiatric Disorders

  • Katsunori Kobayashi
Article

Abstract

It is widely known that new neurons are continuously generated in the dentate gyrus of the hippocampus in the adult mammalian brain. This neurogenesis has been implicated in depression and antidepressant treatments. Recent evidence also suggests that the dentate gyrus is involved in the neuropathology and pathophysiology of schizophrenia and other related psychiatric disorders. Especially, abnormal neuronal development in the dentate gyrus may be a plausible risk factor for the diseases. The synapse made by the mossy fiber, the output fiber of the dentate gyrus, plays a critical role in regulating neuronal activity in its target CA3 area. The mossy fiber synapse is characterized by remarkable activity-dependent short-term synaptic plasticity that is established during the postnatal development and is supposed to be central to the functional role of the mossy fiber. Any defects, including developmental abnormalities, in the dentate gyrus and drugs acting on the dentate gyrus can modulate the mossy fiber-CA3 synaptic transmission, which may eventually affect hippocampal functions. In this paper, I review recent evidence for involvement of the dentate gyrus and mossy fiber synapse in psychiatric disorders and discuss potential importance of drugs targeting the mossy fiber synapse either directly or indirectly in the therapeutic treatments of psychiatric disorders.

Keywords

Psychiatric disorder Antidepressant Schizophrenia Hippocampus Mossy fiber Dentate gyrus Neuronal maturation 

Notes

Acknowledgements

I thank Drs. Hidenori Suzuki and Tsuyoshi Miyakawa for critical reading of the manuscript.

References

  1. 1.
    Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172:110–120PubMedGoogle Scholar
  2. 2.
    Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957–1966PubMedGoogle Scholar
  3. 3.
    Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA (2006) Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 188:510–518PubMedGoogle Scholar
  4. 4.
    Shergill SS, Brammer MJ, Williams SCR, Murray RM, McGuire PK (2000) Mapping auditory hallucinations in schizophrenia using functional magnetic resonance imaging. Arch Gen Psychiatry 57:1033–1038PubMedGoogle Scholar
  5. 5.
    Oertel V, Rotarska-Jagiela A, van de Ven VG, Haenschel C, Maurer K, Linden DEJ (2007) Visual hallucinations in schizophrenia investigated with functional magnetic resonance imaging. Psychiatry Res 156:269–273PubMedGoogle Scholar
  6. 6.
    Takao K, Yamasaki N, Miyakawa T (2007) Impact of brain-behavior phenotypying of genetically-engineered mice on research of neuropsychiatric disorders. Neurosci Res 58:124–132PubMedGoogle Scholar
  7. 7.
    Zeng H, Chattarji S, Barbarosie M, Rondi-Reig L, Philpot BD, Miyakawa T, Bear MF, Tonegawa S (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107:617–629PubMedGoogle Scholar
  8. 8.
    Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, Caron MG, Tonegawa S (2003) Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci USA 100:8987–8992PubMedGoogle Scholar
  9. 9.
    Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M, Tonegawa S (2003) Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci USA 100:8993–8998PubMedGoogle Scholar
  10. 10.
    Horiuchi Y, Ishiguro H, Koga M, Inada T, Iwata N, Ozaki N, Ujike H, Muratake T, Someya T, Arinami T (2007) Support for association of the PPP3CC gene with schizophrenia. Mol Psychiatry 12:891–893PubMedGoogle Scholar
  11. 11.
    Liu YL, Fann CSJ, Liu CM, Chang CC, Yang WC, Hung SI, Yu SL, Hwang TJ, Hsieh MH, Liu CC, Tsuang MM, Wu JY, Jou YS, Faraone SV, Tsuang MT, Chen WJ, Hwu H-G (2007) More evidence supports the association of PPP3CC with schizophrenia. Mol Psychiatry 12:966–974PubMedGoogle Scholar
  12. 12.
    O’Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661–682PubMedGoogle Scholar
  13. 13.
    Kesner RP, Gilbert PE, Wallenstein GV (2000) Testing neural network models of memory with behavioral experiments. Curr Opin Neurobiol 10:260–265PubMedGoogle Scholar
  14. 14.
    Gilbert PE, Kesner RP, Lee I (2001) Dissociating hippocampal subregions: a double dissociation between dentate gyrus and CA1. Hippocampus 11:626–636PubMedGoogle Scholar
  15. 15.
    Leutgeb JK, Leutgeb S, Moser M-B, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966PubMedGoogle Scholar
  16. 16.
    Jung MW, McNaughton BL (1993) Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3:165–182PubMedGoogle Scholar
  17. 17.
    Liu X-S, Tilwalli S, Ye G-l, Lio PA, Pasternak JF, Trommer BL (2000) Morphologic and electrophysiologic maturation in developing dentate gyrus granule cells. Brain Res 856:202–212PubMedGoogle Scholar
  18. 18.
    Ambrogini P, Lattanzi D, Ciuffoli S, Agostini D, Bertini L, Stocchi V, Santi S, Cuppini R (2004) Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res 1017:21–31PubMedGoogle Scholar
  19. 19.
    Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187PubMedGoogle Scholar
  20. 20.
    Yamasaki N, Maekawa M, Kobayashi K, Kajii Y, Maeda J, Soma M, Takao K, Tanda K, Ohira K, Toyama K, Kanzaki K, Fukunaga K, Sudo Y, Ichinose H, Ikeda M, Iwata N, Ozaki N, Suzuki H, Higuchi M, Suhara T, Yuasa S, Miyakawa T (2008) Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain 1:6PubMedGoogle Scholar
  21. 21.
    Amaral DG, Dent JA (1981) Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J Comp Neurol 195:51–86PubMedGoogle Scholar
  22. 22.
    McNaughton BL, Morris RGM (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10:408–415Google Scholar
  23. 23.
    Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, New York, pp 95–135Google Scholar
  24. 24.
    Kobayashi K, Manabe T, Takahashi T (1996) Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273:648–650PubMedGoogle Scholar
  25. 25.
    Salin PA, Scanziani M, Malenka RC, Nicoll RA (1996) Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc Natl Acad Sci USA 93:13304–13309PubMedGoogle Scholar
  26. 26.
    Mori-Kawakami F, Kobayashi K, Takahashi T (2003) Developmental decrease in synaptic facilitation at the mouse hippocampal mossy fibre synapse. J Physiol 553:37–48PubMedGoogle Scholar
  27. 27.
    Marchal C, Mulle C (2004) Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: a potential role for kainate receptors. J Physiol 561:27–37PubMedGoogle Scholar
  28. 28.
    Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405PubMedGoogle Scholar
  29. 29.
    Henze DA, Wittner L, Buzsáki G (2002) Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 5:790–795PubMedGoogle Scholar
  30. 30.
    Kobayashi K, Poo M-m (2004) Spike train timing-dependent associative modification of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41:445–454PubMedGoogle Scholar
  31. 31.
    Claiborne BJ, Amaral DG, Cowan WM (1986) A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 246:435–458PubMedGoogle Scholar
  32. 32.
    Scharfman HE, Kunkel DD, Schwartzkroin PA (1990) Synaptic connections of dentate granule cells and hilar neurons: results of paired intracellular recordings and intracellular horseradish peroxidase injections. Neuroscience 37:693–707PubMedGoogle Scholar
  33. 33.
    Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–914PubMedGoogle Scholar
  34. 34.
    Scharfman HE (1995) Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. J Neurophysiol 74:179–194PubMedGoogle Scholar
  35. 35.
    Lysetskiy M, Földy C, Soltesz I (2005) Long- and short-term plasticity at mossy fiber synapses on mossy cells in the rat dentate gyrus. Hippocampus 15:691–696PubMedGoogle Scholar
  36. 36.
    Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527PubMedGoogle Scholar
  37. 37.
    Harris EW, Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett 70:132–137PubMedGoogle Scholar
  38. 38.
    Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248:1619–1624PubMedGoogle Scholar
  39. 39.
    Ito I, Sugiyama H (1991) Roles of glutamate receptors in long-term potentiation at hippocampal mossy fiber synapses. Neuroreport 2:333–336PubMedGoogle Scholar
  40. 40.
    Castillo PE, Weisskopf MG, Nicoll RA (1994) The role of Ca2+channels in hippocampal mossy fiber synaptic transmission and long-term potentiation. Neuron 12:261–269PubMedGoogle Scholar
  41. 41.
    Jaffe D, Johnston D (1990) Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a Hebbian rule. J Neurophysiol 64:948–960PubMedGoogle Scholar
  42. 42.
    Urban NN, Barrionuevo G (1996) Induction of Hebbian and non-Hebbian mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation. J Neurosci 16:4293–4299PubMedGoogle Scholar
  43. 43.
    Yeckel MF, Kapur A, Johnston D (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci 2:625–633PubMedGoogle Scholar
  44. 44.
    Tzounopoulos T, Janz R, Südhof TC, Nicoll RA, Malenka RC (1998) A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 21:837–845PubMedGoogle Scholar
  45. 45.
    Lei S, Pelkey KA, Topolnik L, Congar P, Lacaille J-C, McBain CJ (2003) Depolarization-induced long-term depression at hippocampal mossy fiber-CA3 pyramidal neuron synapses. J Neurosci 23:9786–9795PubMedGoogle Scholar
  46. 46.
    Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G, Shigemoto R, Ohishi H, Nomura S, Nakamura K, Nakao K, Katsuki M, Nakanishi S (1996) Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 273:645–647PubMedGoogle Scholar
  47. 47.
    Scanziani M, Salin PA, Vogt KE, Malenka RC, Nicoll RA (1997) Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 385:630–634PubMedGoogle Scholar
  48. 48.
    Schmitz D, Mellor J, Nicoll RA (2001) Presynaptic kainate receptor mediation of frequency facilitation at hippocampal mossy fiber synapses. Science 291:1972–1976PubMedGoogle Scholar
  49. 49.
    Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876PubMedGoogle Scholar
  50. 50.
    Weisskopf MG, Zalutsky RA, Nicoll RA (1993) The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 362:423–427PubMedGoogle Scholar
  51. 51.
    Harrison JM, Allen RG, Pellegrino MJ, Williams JT, Manzoni OJ (2002) Chronic morphine treatment alters endogenous opioid control of hippocampal mossy fiber synaptic transmission. J Neurophysiol 87:2464–2470PubMedGoogle Scholar
  52. 52.
    Moore KA, Nicoll RA, Schmitz D (2003) Adenosine gates synaptic plasticity at hippocampal mossy fiber synapses. Proc Natl Acad Sci USA 100:14397–14402PubMedGoogle Scholar
  53. 53.
    Kukley M, Schwan M, Fredholm BB, Dietrich D (2005) The role of extracellular adenosine in regulating mossy fiber synaptic plasticity. J Neurosci 25:2832–2837PubMedGoogle Scholar
  54. 54.
    Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55PubMedGoogle Scholar
  55. 55.
    Alle H, Geiger JRP (2006) Combined analog and action potential coding in hippocampal mossy fibers. Science 311:1290–1293PubMedGoogle Scholar
  56. 56.
    Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87:2624–2628PubMedGoogle Scholar
  57. 57.
    Kobayashi K, Ikeda Y, Suzuki H (2006) Locomotor activity correlates with modifications of hippocampal mossy fibre synaptic transmission. Eur J Neurosci 24:1867–1873PubMedGoogle Scholar
  58. 58.
    Kobayashi K, Suzuki H (2007) Dopamine selectively potentiates hippocampal mossy fiber to CA3 synaptic transmission. Neuropharmacology 52:552–561PubMedGoogle Scholar
  59. 59.
    Kobayashi K, Ikeda Y, Haneda E, Suzuki H (2008) Chronic fluoxetine bidirectionally modulates potentiating effects of serotonin on the hippocampal mossy fiber synaptic transmission. J Neurosci 28:6272–6280PubMedGoogle Scholar
  60. 60.
    Hopkins WF, Johnston D (1988) Noradrenergic enhancement of long-term potentiation at mossy fiber synapses in the hippocampus. J Neurophysiol 59:667–687PubMedGoogle Scholar
  61. 61.
    Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265:1878–1882PubMedGoogle Scholar
  62. 62.
    O’Donnell JM, Zhang H-T (2004) Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4). Trends Pharmacol Sci 25:158–163PubMedGoogle Scholar
  63. 63.
    Maxwell CR, Kanes SJ, Abel T, Siegel SJ (2004) Phosphodiesterase inhibitors: a novel mechanism for receptor-independent antipsychotic medications. Neuroscience 129:101–107PubMedGoogle Scholar
  64. 64.
    Siuciak JA, Chapin DS, McCarthy SA, Martin AN (2007) Antipsychotic profile of rolipram: efficacy in rats and reduced sensitivity in mice deficient in the phosphodiesterase-4B (PDE4B) enzyme. Psychopharmacology (Berl) 192:415–424Google Scholar
  65. 65.
    Gould E, Tanapat P, Hastings NB, Shors TJ (1999) Neurogenesis in adulthood: a possible role in learning. Trends Cogn Sci 3:186–192PubMedGoogle Scholar
  66. 66.
    van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034PubMedGoogle Scholar
  67. 67.
    Jessberger S, Kempermann G (2003) Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci 18:2707–2712PubMedGoogle Scholar
  68. 68.
    Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE, Gage FH, Schinder AF (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11:901–907PubMedGoogle Scholar
  69. 69.
    Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110PubMedGoogle Scholar
  70. 70.
    Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809PubMedGoogle Scholar
  71. 71.
    Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819–823PubMedGoogle Scholar
  72. 72.
    Wang J-W, David DJ, Monckton JE, Battaglia F, Hen R (2008) Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 28:1374–1384PubMedGoogle Scholar
  73. 73.
    Warner-Schmidt JL, Duman RS (2006) Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16:239–249PubMedGoogle Scholar
  74. 74.
    Surget A, Saxe M, Leman S, Ibarguen-Vargas Y, Chalon S, Griebel G, Hen R, Belzung C (2008) Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal. Biol Psychiatry 64:293–301PubMedGoogle Scholar
  75. 75.
    Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, Lesch K-P (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522PubMedGoogle Scholar
  76. 76.
    Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127PubMedGoogle Scholar
  77. 77.
    Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313PubMedGoogle Scholar
  78. 78.
    Smith MA, Zhang L-X, Lyons WE, Mamounas LA (1997) Anterograde transport of endogenous brain-derived neurotrophic factor in hippocampal mossy fibers. Neuroreport 8:1829–1834PubMedGoogle Scholar
  79. 79.
    Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM (2008) Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642–649PubMedGoogle Scholar
  80. 80.
    Chen B, Dowlatshahi D, MacQueen GM, Wang J-F, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50:260–265PubMedGoogle Scholar
  81. 81.
    Altar CA, Whitehead RE, Chen R, Wörtwein G, Madsen TM (2003) Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 54:703–709PubMedGoogle Scholar
  82. 82.
    Jacobsen JPR, Mørk A (2004) The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 1024:183–192PubMedGoogle Scholar
  83. 83.
    Balu DT, Hoshaw BA, Malberg JE, Rosenzweig-Lipson S, Schechter LE, Lucki I (2008) Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res 1211:37–43PubMedGoogle Scholar
  84. 84.
    De Foubert G, Carney SL, Robinson CS, Destexhe EJ, Tomlinson R, Hicks CA, Murray TK, Gaillard JP, Deville C, Xhenseval V, Thomas CE, O’Neill MJ, Zetterström TSC (2004) Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 128:597–604PubMedGoogle Scholar
  85. 85.
    Xu H, Richardson JS, Li X-M (2003) Dose-related effects of chronic antidepressants on neuroprotective proteins BDNF, Bcl-2 and Cu/Zn-SOD in rat hippocampus. Neuropsychopharmacology 28:53–62PubMedGoogle Scholar
  86. 86.
    Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948PubMedGoogle Scholar
  87. 87.
    Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen Z-Y, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463PubMedGoogle Scholar
  88. 88.
    Woo NH, Teng HK, Siao C-J, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077PubMedGoogle Scholar
  89. 89.
    Gombos Z, Spiller A, Cottrell GA, Racine RJ, Burnham WM (1999) Mossy fiber sprouting induced by repeated electroconvulsive shock seizures. Brain Res 844:28–33PubMedGoogle Scholar
  90. 90.
    Vaidya VA, Siuciak JA, Du F, Duman RS (1999) Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neuroscience 89:157–166PubMedGoogle Scholar
  91. 91.
    Lamont SR, Paulls A, Stewart CA (2001) Repeated electroconvulsive stimulation, but not antidepressant drugs, induces mossy fibre sprouting in the rat hippocampus. Brain Res 893:53–58PubMedGoogle Scholar
  92. 92.
    Pagnin D, de Queiroz V, Pini S, Cassano GB (2004) Efficacy of ECT in depression: a meta-analytic review. J ECT 20:13–20PubMedGoogle Scholar
  93. 93.
    Tokarski K, Bijak M (1996) Antidepressant-induced adaptive changes in the effects of 5-HT, 5-HT1A and 5-HT4 agonists on the population spike recorded in hippocampal CA1 cells do not involve presynaptic effects on excitatory synaptic transmission. Pol J Pharmacol 48:565–573PubMedGoogle Scholar
  94. 94.
    Bijak M, Tokarski K, Maj J (1997) Repeated treatment with antidepressant drugs induces subsensitivity to the excitatory effect of 5-HT4 receptor activation in the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol 355:14–19PubMedGoogle Scholar
  95. 95.
    Stahl SM (1998) Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 51:215–235PubMedGoogle Scholar
  96. 96.
    Vaswani M, Linda FK, Ramesh S (2003) Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 27:85–102PubMedGoogle Scholar
  97. 97.
    Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, Frazer A (1999) Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19:10494–10501PubMedGoogle Scholar
  98. 98.
    Benmansour S, Owens WA, Cecchi M, Morilak DA, Frazer A (2002) Serotonin clearance in vivo is altered to a greater extent by antidepressant-induced downregulation of the serotonin transporter than by acute blockade of this transporter. J Neurosci 22:6766–6772PubMedGoogle Scholar
  99. 99.
    Miller BH, Schultz LE, Gulati A, Cameron MD, Pletcher MT (2008) Genetic regulation of behavioral and neuronal responses to fluoxetine. Neuropsychopharmacology 33:1312–1322PubMedGoogle Scholar
  100. 100.
    Sillaber I, Panhuysen M, Henniger MSH, Ohl F, Kühne C, Pütz B, Pohl T, Deussing JM, Paez-Pereda M, Holsboer F (2008) Profiling of behavioral changes and hippocampal gene expression in mice chronically treated with the SSRI paroxetine. Psychopharmacology (Berl) 200:557–572Google Scholar
  101. 101.
    Ge S, Yang C-h, Hsu K-s, Ming G-l, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54:559–566PubMedGoogle Scholar
  102. 102.
    Stewart CA, Reid IC (2000) Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacology (Berl) 148:217–223Google Scholar
  103. 103.
    Chan JP, Cordeira J, Calderon GA, Iyer LK, Rios M (2008) Depletion of central BDNF in mice impedes terminal differentiation of new granule neurons in the adult hippocampus. Mol Cell Neurosci 39:372–383PubMedGoogle Scholar
  104. 104.
    Scharfman HE (1997) Hyperexcitability in combined entorhinal/hippocampal slices of adult rat after exposure to brain-derived neurotrophic factor. J Neurophysiol 78:1082–1095PubMedGoogle Scholar
  105. 105.
    Kobayashi K, Ikeda Y, Sakai A, Suzuki H (2008) Chronic SSRI changes the maturation state of dentate granule cells. FENS Abstr 4:181.22Google Scholar
  106. 106.
    Weinberger DR (1999) Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry 45:395–402PubMedGoogle Scholar
  107. 107.
    Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174:151–162Google Scholar
  108. 108.
    Bast T, Feldon J (2003) Hippocampal modulation of sensorimotor processes. Prog Neurobiol 70:319–345PubMedGoogle Scholar
  109. 109.
    Joyce EM, Roiser JP (2007) Cognitive heterogeneity in schizophrenia. Curr Opin Psychiatry 20:268–272PubMedGoogle Scholar
  110. 110.
    Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR (2007) Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull 33:69–94PubMedGoogle Scholar
  111. 111.
    Jeltsch H, Bertrand F, Lazarus C, Cassel J-C (2001) Cognitive performances and locomotor activity following dentate granule cell damage in rats: role of lesion extent and type of memory tested. Neurobiol Learn Mem 76:81–105PubMedGoogle Scholar
  112. 112.
    Hernández-Rabaza V, Barcia JA, Llorens-Martín M, Trejo JL, Canales JJ (2007) Spared place and object-place learning but limited spatial working memory capacity in rats with selective lesions of the dentate gyrus. Brain Res Bull 72:315–323PubMedGoogle Scholar
  113. 113.
    Benes FM, Khan Y, Vincent SL, Wickramasinghe R (1996) Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse 22:338–349PubMedGoogle Scholar
  114. 114.
    Klimek V, Rajkowska G, Luker SN, Dilley G, Meltzer HY, Overholser JC, Stockmeier CA, Ordway GA (1999) Brain noradrenergic receptors in major depression and schizophrenia. Neuropsychopharmacology 21:69–81PubMedGoogle Scholar
  115. 115.
    Kerwin R, Patel S, Meldrum B (1990) Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 39:25–32PubMedGoogle Scholar
  116. 116.
    Eastwood SL, McDonald B, Burnet PWJ, Beckwith JP, Kerwin RW, Harrison PJ (1995) Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Brain Res Mol Brain Res 29:211–223PubMedGoogle Scholar
  117. 117.
    Porter RHP, Eastwood SL, Harrison PJ (1997) Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res 751:217–231PubMedGoogle Scholar
  118. 118.
    Gao X-M, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA (2000) Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 157:1141–1149PubMedGoogle Scholar
  119. 119.
    Mizukami K, Sasaki M, Ishikawa M, Iwakiri M, Hidaka S, Shiraishi H, Iritani S (2000) Immunohistochemical localization of γ-aminobutyric acidB receptor in the hippocampus of subjects with schizophrenia. Neurosci Lett 283:101–104PubMedGoogle Scholar
  120. 120.
    Law AJ, Deakin JFW (2001) Asymmetrical reductions of hippocampal NMDAR1 glutamate receptor mRNA in the psychoses. Neuroreport 12:2971–2974PubMedGoogle Scholar
  121. 121.
    Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psychiatry 38:22–33PubMedGoogle Scholar
  122. 122.
    Crook JM, Tomaskovic-Crook E, Copolov DL, Dean B (2000) Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation. Biol Psychiatry 48:381–388PubMedGoogle Scholar
  123. 123.
    Eastwood SL, Harrison PJ (1995) Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience 69:339–343PubMedGoogle Scholar
  124. 124.
    Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG (1998) SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 8:261–268PubMedGoogle Scholar
  125. 125.
    Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, Young TA, Bullard J, Yokoe H, Webster MJ, Knable MB, Brockman JA (2005) Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 58:85–96PubMedGoogle Scholar
  126. 126.
    Kolomeets NS, Orlovskaya DD, Rachmanova VI, Uranova NA (2005) Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: a postmortem morphometric study. Synapse 57:47–55PubMedGoogle Scholar
  127. 127.
    Kolomeets NS, Orlovskaya DD, Uranova NA (2007) Decreased numerical density of CA3 hippocampal mossy fiber synapses in schizophrenia. Synapse 61:615–621PubMedGoogle Scholar
  128. 128.
    Nowakowski C, Kaufmann WA, Adlassnig C, Maier H, Salimi K, Jellinger KA, Marksteiner J (2002) Reduction of chromogranin B-like immunoreactivity in distinct subregions of the hippocampus from individuals with schizophrenia. Schizophr Res 58:43–53PubMedGoogle Scholar
  129. 129.
    Weickert CS, Rothmond DA, Hyde TM, Kleinman JE, Straub RE (2008) Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients. Schizophr Res 98:105–110PubMedGoogle Scholar
  130. 130.
    O’Tuathaigh CMP, Babovic D, O’Meara G, Clifford JJ, Croke DT, Waddington JL (2007) Susceptibility genes for schizophrenia: characterisation of mutant mouse models at the level of phenotypic behaviour. Neurosci Biobehav Rev 31:60–78PubMedGoogle Scholar
  131. 131.
    Takao K, Toyama K, Nakanishi K, Hattori S, Takamura H, Takeda M, Miyakawa T, Hashimoto R (2008) Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia. Mol Brain 1:11PubMedGoogle Scholar
  132. 132.
    Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N, Ozaki N, Taguchi T, Tatsumi M, Kamijima K, Straub RE, Weinberger DR, Kunugi H, Hashimoto R (2004) Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 13:2699–2708PubMedGoogle Scholar
  133. 133.
    Chen X-W, Feng Y-Q, Hao C-J, Guo X-L, He X, Zhou Z-Y, Guo N, Huang H-P, Xiong W, Zheng H, Zuo P-L, Zhang CX, Li W, Zhou Z (2008) DTNBP1, a schizophrenia susceptibility gene, affects kinetics of transmitter release. J Cell Biol 181:791–801PubMedGoogle Scholar
  134. 134.
    Benson MA, Newey SE, Martin-Rendon E, Hawkes R, Blake DJ (2001) Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J Biol Chem 276:24232–24241PubMedGoogle Scholar
  135. 135.
    Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn C-G, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113:1353–1363PubMedGoogle Scholar
  136. 136.
    Fatemi SH, Earle JA, McMenomy T (2000) Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5:654–663PubMedGoogle Scholar
  137. 137.
    Eastwood SL, Harrison PJ (2006) Cellular basis of reduced cortical reelin expression in schizophrenia. Am J Psychiatry 163:540–542PubMedGoogle Scholar
  138. 138.
    Rioux L, Arnold SE (2005) The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res 133:13–21PubMedGoogle Scholar
  139. 139.
    Arnold SE, Talbot K, Hahn C-G (2005) Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog Brain Res 147:319–345PubMedGoogle Scholar
  140. 140.
    Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW (2003) Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet 40:325–332PubMedGoogle Scholar
  141. 141.
    Erbel-Sieler C, Dudley C, Zhou Y, Wu X, Estill SJ, Han T, Diaz-Arrastia R, Brunskill EW, Potter SS, McKnight SL (2004) Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci USA 101:13648–13653PubMedGoogle Scholar
  142. 142.
    Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC, Reece-Fincanon S, Dudley CA, Richardson JA, Brat DJ, McKnight SL (2005) The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci USA 102:14052–14057PubMedGoogle Scholar
  143. 143.
    Meyer KD, Morris JA (2008) Immunohistochemical analysis of Disc1 expression in the developing and adult hippocampus. Gene Expr Patterns 8:494–501PubMedGoogle Scholar
  144. 144.
    Austin CP, Ky B, Ma L, Morris JA, Shughrue PJ (2004) Expression of Disrupted-In-Schizophrenia-1, a schizophrenia-associated gene, is prominent in the mouse hippocampus throughout brain development. Neuroscience 124:3–10PubMedGoogle Scholar
  145. 145.
    Miyoshi K, Honda A, Baba K, Taniguchi M, Oono K, Fujita T, Kuroda S, Katayama T, Tohyama M (2003) Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry 8:685–694PubMedGoogle Scholar
  146. 146.
    Austin CP, Ma L, Ky B, Morris JA, Shughrue PJ (2003) DISC1 (Disrupted in Schizophrenia-1) is expressed in limbic regions of the primate brain. Neuroreport 14:951–954PubMedGoogle Scholar
  147. 147.
    James R, Adams RR, Christie S, Buchanan SR, Porteous DJ, Millar JK (2004) Disrupted in Schizophrenia 1 (DISC1) is a multicompartmentalized protein that predominantly localizes to mitochondria. Mol Cell Neurosci 26:112–122PubMedGoogle Scholar
  148. 148.
    Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu X-b, Yang C-H, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng H-J, Ming G-l, Lu B, Song H (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130:1146–1158PubMedGoogle Scholar
  149. 149.
    Lauer M, Beckmann H, Senitz D (2003) Increased frequency of dentate granule cells with basal dendrites in the hippocampal formation of schizophrenics. Psychiatry Res 122:89–97PubMedGoogle Scholar
  150. 150.
    Faulkner RL, Jang M-H, Liu X-B, Duan X, Sailor KA, Kim JY, Ge S, Jones EG, Ming G-l, Song H, Cheng H-J (2008) Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA 105:14157–14162PubMedGoogle Scholar
  151. 151.
    Kvajo M, McKellar H, Arguello PA, Drew LJ, Moore H, MacDermott AB, Karayiorgou M, Gogos JA (2008) A mutation in mouse Disc1 that models a schizophrenia risk allele leads to specific alterations in neuronal architecture and cognition. Proc Natl Acad Sci USA 105:7076–7081PubMedGoogle Scholar
  152. 152.
    Contractor A, Swanson G, Heinemann SF (2001) Kainate receptors are involved in short- and long-term plasticity at mossy fiber synapses in the hippocampus. Neuron 29:209–216PubMedGoogle Scholar
  153. 153.
    Breustedt J, Schmitz D (2004) Assessing the role of GLUK5 and GLUK6 at hippocampal mossy fiber synapses. J Neurosci 24:10093–10098PubMedGoogle Scholar
  154. 154.
    Shaltiel G, Maeng S, Malkesman O, Pearson B, Schloesser RJ, Tragon T, Rogawski M, Gasior M, Luckenbaugh D, Chen G, Manji HK (2008) Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 13:858–872PubMedGoogle Scholar
  155. 155.
    Seress L, Mrzljak L (1987) Basal dendrites of granule cells are normal features of the fetal and adult dentate gyrus of both monkey and human hippocampal formations. Brain Res 405:169–174PubMedGoogle Scholar
  156. 156.
    Blaabjerg M, Zimmer J (2007) The dentate mossy fibers: structural organization, development and plasticity. Prog Brain Res 163:85–107PubMedGoogle Scholar
  157. 157.
    Urban NN, Henze DA, Lewis DA, Barrionuevo G (1996) Properties of LTP induction in the CA3 region of the primate hippocampus. Learn Mem 3:86–95PubMedGoogle Scholar
  158. 158.
    St John JL, Rosene DL, Luebke JI (1997) Morphology and electrophysiology of dentate granule cells in the rhesus monkey: comparison with the rat. J Comp Neurol 387:136–147PubMedGoogle Scholar
  159. 159.
    Ariwodola OJ, Crowder TL, Grant KA, Daunais JB, Friedman DP, Weiner JL (2003) Ethanol modulation of excitatory and inhibitory synaptic transmission in rat and monkey dentate granule neurons. Alcohol Clin Exp Res 27:1632–1639PubMedGoogle Scholar
  160. 160.
    Bai O, Chlan-Fourney J, Bowen R, Keegan D, Li X-M (2003) Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 71:127–131PubMedGoogle Scholar
  161. 161.
    Barr AM, Young CE, Phillips AG, Honer WG (2006) Selective effects of typical antipsychotic drugs on SNAP-25 and synaptophysin in the hippocampal trisynaptic pathway. Int J Neuropsychopharmacol 9:457–463PubMedGoogle Scholar
  162. 162.
    Newton SS, Duman RS (2007) Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 21:715–725PubMedGoogle Scholar
  163. 163.
    Halim ND, Weickert CS, McClintock BW, Weinberger DR, Lipska BK (2004) Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology 29:1063–1069PubMedGoogle Scholar
  164. 164.
    Kodama M, Fujioka T, Duman RS (2004) Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 56:570–580PubMedGoogle Scholar
  165. 165.
    Schmitt A, Weber S, Jatzko A, Braus DF, Henn FA (2004) Hippocampal volume and cell proliferation after acute and chronic clozapine or haloperidol treatment. J Neural Transm 111:91–100PubMedGoogle Scholar
  166. 166.
    Green W, Patil P, Marsden CA, Bennett GW, Wigmore PM (2006) Treatment with olanzapine increases cell proliferation in the subventricular zone and prefrontal cortex. Brain Res 1070:242–245PubMedGoogle Scholar
  167. 167.
    Wakade CG, Mahadik SP, Waller JL, Chiu F-c (2002) Atypical neuroleptics stimulate neurogenesis in adult rat brain. J Neurosci Res 69:72–79PubMedGoogle Scholar
  168. 168.
    Wang H-D, Dunnavant FD, Jarman T, Deutch AY (2004) Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat. Neuropsychopharmacology 29:1230–1238PubMedGoogle Scholar
  169. 169.
    Kippin TE, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25:5815–5823PubMedGoogle Scholar
  170. 170.
    Dawirs RR, Hildebrandt K, Teuchert-Noodt G (1998) Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm 105:317–327PubMedGoogle Scholar
  171. 171.
    Möller H-J (2003) Management of the negative symptoms of schizophrenia: new treatment options. CNS Drugs 17:793–823PubMedGoogle Scholar
  172. 172.
    Strange PG (2001) Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. Pharmacol Rev 53:119–133PubMedGoogle Scholar
  173. 173.
    Hiramoto T, Kanda Y, Satoh Y, Takishima K, Watanabe Y (2007) Dopamine D2 receptor stimulation promotes the proliferation of neural progenitor cells in adult mouse hippocampus. Neuroreport 18:659–664PubMedGoogle Scholar
  174. 174.
    Yang P, Arnold SA, Habas A, Hetman M, Hagg T (2008) Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J Neurosci 28:2231–2241PubMedGoogle Scholar
  175. 175.
    Müller N, Schwarz M (2006) Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res 10:131–148PubMedCrossRefGoogle Scholar
  176. 176.
    Cartmell J, Monn JA, Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 291:161–170PubMedGoogle Scholar
  177. 177.
    Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102–1107PubMedGoogle Scholar
  178. 178.
    Kamiya H, Shinozaki H, Yamamoto C (1996) Activation of metabotropic glutamate receptor type 2/3 suppresses transmission at rat hippocampal mossy fibre synapses. J Physiol 493:447–455PubMedGoogle Scholar
  179. 179.
    Macek TA, Winder DG, Gereau RW IV, Ladd CO, Conn PJ (1996) Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses. J Neurophysiol 76:3798–3806PubMedGoogle Scholar
  180. 180.
    Olincy A, Stevens KE (2007) Treating schizophrenia symptoms with an alpha7 nicotinic agonist, from mice to men. Biochem Pharmacol 74:1192–1201PubMedGoogle Scholar
  181. 181.
    Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, Allensworth D, Guzman-Bonilla A, Clement B, Ball MP, Kutnick J, Pender V, Martin LF, Stevens KE, Wagner BD, Zerbe GO, Soti F, Kem WR (2008) Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 165:1040–1047PubMedGoogle Scholar
  182. 182.
    Leonard S, Freedman R (2006) Genetics of chromosome 15q13-q14 in schizophrenia. Biol Psychiatry 60:115–122PubMedGoogle Scholar
  183. 183.
    Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M, Sullivan B, Demasters BK, Freedman R, Leonard S (1997) Comparison of the regional expression of nicotinic acetylcholine receptor α7 mRNA and [125I]- α-bungarotoxin binding in human postmortem brain. J Comp Neurol 387:385–398PubMedGoogle Scholar
  184. 184.
    Young JW, Crawford N, Kelly JS, Kerr LE, Marston HM, Spratt C, Finlayson K, Sharkey J (2007) Impaired attention is central to the cognitive deficits observed in alpha 7 deficient mice. Eur Neuropsychopharmacol 17:145–155PubMedGoogle Scholar
  185. 185.
    Fernandes C, Hoyle E, Dempster E, Schalkwyk LC, Collier DA (2006) Performance deficit of α7 nicotinic receptor knockout mice in a delayed matching-to-place task suggests a mild impairment of working/episodic-like memory. Genes Brain Behav 5:433–440PubMedGoogle Scholar
  186. 186.
    Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA (1996) Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature 383:713–716PubMedGoogle Scholar
  187. 187.
    Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38:929–939PubMedGoogle Scholar
  188. 188.
    Sharma G, Grybko M, Vijayaraghavan S (2008) Action potential-independent and nicotinic receptor-mediated concerted release of multiple quanta at hippocampal CA3-mossy fiber synapses. J Neurosci 28:2563–2575PubMedGoogle Scholar
  189. 189.
    Vogt KE, Regehr WG (2001) Cholinergic modulation of excitatory synaptic transmission in the CA3 area of the hippocampus. J Neurosci 21:75–83PubMedGoogle Scholar
  190. 190.
    van Neerven S, Kampmann E, Mey J (2008) RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog Neurobiol 85:433–451PubMedGoogle Scholar
  191. 191.
    Webster MJ, Knable MB, O’Grady J, Orthmann J, Weickert CS (2002) Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 7:985–994PubMedGoogle Scholar
  192. 192.
    Perlman WR, Tomaskovic-Crook E, Montague DM, Webster MJ, Rubinow DR, Kleinman JE, Weickert CS (2005) Alteration in estrogen receptor α mRNA levels in frontal cortex and hippocampus of patients with major mental illness. Biol Psychiatry 58:812–824PubMedGoogle Scholar
  193. 193.
    Barbeau D, Liang JJ, Robitalille Y, Quirion R, Srivastava LK (1995) Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc Natl Acad Sci USA 92:2785–2789PubMedGoogle Scholar
  194. 194.
    Dean B, Opeskin K, Pavey G, Hill C, Keks N (1997) Changes in protein kinase C and adenylate cyclase in the temporal lobe from subjects with schizophrenia. J Neural Transm 104:1371–1381PubMedGoogle Scholar
  195. 195.
    Tian SY, Wang J-F, Bezchlibnyk YB, Young LT (2007) Immunoreactivity of 43 kDa growth-associated protein is decreased in post mortem hippocampus of bipolar disorder and schizophrenia. Neurosci Lett 411:123–127PubMedGoogle Scholar
  196. 196.
    Goldsmith SK, Joyce JN (1995) Alterations in hippocampal mossy fiber pathway in schizophrenia and Alzheimer’s disease. Biol Psychiatry 37:122–126PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Department of PharmacologyNippon Medical SchoolTokyoJapan
  2. 2.Japan Science and Technology Agency, CRESTSaitamaJapan

Personalised recommendations