Molecular Neurobiology

, Volume 38, Issue 2, pp 153–166 | Cite as

Regulation of Synaptic Transmission by Presynaptic CaMKII and BK Channels

  • Zhao-Wen WangEmail author


Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the BK channel are enriched at the presynaptic nerve terminal, where CaMKII associates with synaptic vesicles whereas the BK channel colocalizes with voltage-sensitive Ca2+ channels in the plasma membrane. Mounting evidence suggests that these two proteins play important roles in controlling neurotransmitter release. Presynaptic BK channels primarily serve as a negative regulator of neurotransmitter release. In contrast, presynaptic CaMKII either enhances or inhibits neurotransmitter release and synaptic plasticity depending on experimental or physiological conditions and properties of specific synapses. The different functions of presynaptic CaMKII appear to be mediated by distinct downstream proteins, including the BK channel.


Calcium/calmodulin-dependent protein kinase II (CaMKII) Neurotransmitter release BK channel Slo Slo1 SLO-1 Maxi-K channel Synapsin CaV2.1 Calcium channel Ryanodine receptor Synaptotagmin SNARE 



This work was supported by the National Science Foundation (0619427) and National Institute Health (GM083049). I thank my son Kaijie Jeffrey Wang for helping with the figures.


  1. 1.
    Kolodziej SJ, Hudmon A, Waxham MN, Stoops JK (2000) Three-dimensional reconstructions of calcium/calmodulin-dependent (CaM) kinase IIα and truncated CaM kinase IIα reveal a unique organization for its structural core and functional domains. J Biol Chem 275:14354–14359PubMedGoogle Scholar
  2. 2.
    Morris EP, Torok K (2001) Oligomeric structure of α-calmodulin-dependent protein kinase II. J Mol Biol 308:1–8PubMedGoogle Scholar
  3. 3.
    Brocke L, Chiang LW, Wagner PD, Schulman H (1999) Functional implications of the subunit composition of neuronal CaM kinase II. J Biol Chem 274:22713–22722PubMedGoogle Scholar
  4. 4.
    Griffith LC (2008) CaMKII: new tricks for an old dog. Cell 133:397–399PubMedGoogle Scholar
  5. 5.
    Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190PubMedGoogle Scholar
  6. 6.
    Rich RC, Schulman H (1998) Substrate-directed function of calmodulin in autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 273:28424–28429PubMedGoogle Scholar
  7. 7.
    Miller SG, Patton BL, Kennedy MB (1988) Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity. Neuron 1:593–604PubMedGoogle Scholar
  8. 8.
    Fong YL, Taylor WL, Means AR, Soderling TR (1989) Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II. Mutation of threonine 286 to alanine and aspartate. J Biol Chem 264:16759–16763PubMedGoogle Scholar
  9. 9.
    Hanson PI, Kapiloff MS, Lou LL, Rosenfeld MG, Schulman H (1989) Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron 3:59–70PubMedGoogle Scholar
  10. 10.
    Waxham MN, Aronowski J, Westgate SA, Kelly PT (1990) Mutagenesis of Thr-286 in monomeric Ca2+/calmodulin-dependent protein kinase II eliminates Ca2+/calmodulin-independent activity. Proc Natl Acad Sci U S A 87:1273–1277PubMedGoogle Scholar
  11. 11.
    Ohsako S, Nakazawa H, Sekihara S, Ikai A, Yamauchi T (1991) Role of threonine-286 as autophosphorylation site for appearance of Ca2+-independent activity of calmodulin-dependent protein kinase II α subunit. J Biochem 109:137–143PubMedGoogle Scholar
  12. 12.
    Colbran RJ, Soderling TR (1990) Calcium/calmodulin-independent autophosphorylation sites of calcium/calmodulin-dependent protein kinase II. Studies on the effect of phosphorylation of threonine 305/306 and serine 314 on calmodulin binding using synthetic peptides. J Biol Chem 265:11213–11219PubMedGoogle Scholar
  13. 13.
    Patton BL, Miller SG, Kennedy MB (1990) Activation of type II calcium/calmodulin-dependent protein kinase by Ca2+/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain. J Biol Chem 265:11204–11212PubMedGoogle Scholar
  14. 14.
    Benfenati F, Onofri F, Czernik AJ, Valtorta F (1996) Biochemical and functional characterization of the synaptic vesicle-associated form of Ca2+/calmodulin-dependent protein kinase II. Brain Res Mol Brain Res 40:297–309PubMedGoogle Scholar
  15. 15.
    Gorelick FS, Wang JK, Lai Y, Nairn AC, Greengard P (1988) Autophosphorylation and activation of Ca2+/calmodulin-dependent protein kinase II in intact nerve terminals. J Biol Chem 263:17209–17212PubMedGoogle Scholar
  16. 16.
    Shields SM, Ingebritsen TS, Kelly PT (1985) Identification of protein phosphatase 1 in synaptic junctions: dephosphorylation of endogenous calmodulin-dependent kinase II and synapse-enriched phosphoproteins. J Neurosci 5:3414–3422PubMedGoogle Scholar
  17. 17.
    Fukunaga K, Kobayashi T, Tamura S, Miyamoto E (1993) Dephosphorylation of autophosphorylated Ca2+/calmodulin-dependent protein kinase II by protein phosphatase 2C. J Biol Chem 268:133–137PubMedGoogle Scholar
  18. 18.
    Strack S, Barban MA, Wadzinski BE, Colbran RJ (1997) Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J Neurochem 68:2119–2128PubMedGoogle Scholar
  19. 19.
    Erickson JR, Joiner M-lA, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman KLH-J, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474PubMedGoogle Scholar
  20. 20.
    Walaas SI, Gorelick FS, Greengard P (1989) Presence of calcium/calmodulin-dependent protein kinase II in nerve terminals of rat brain. Synapse 3:356–362PubMedGoogle Scholar
  21. 21.
    Ouimet CC, McGuinness TL, Greengard P (1984) Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain. Proc Natl Acad Sci U S A 81:5604–5608PubMedGoogle Scholar
  22. 22.
    Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846PubMedGoogle Scholar
  23. 23.
    Llinas R, McGuinness TL, Leonard CS, Sugimori M, Greengard P (1985) Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci U S A 82:3035–3039PubMedGoogle Scholar
  24. 24.
    Llinas R, Gruner JA, Sugimori M, McGuinness TL, Greengard P (1991) Regulation by synapsin I and Ca2+-calmodulin-dependent protein kinase II of the transmitter release in squid giant synapse. J Physiol 436:257–282PubMedGoogle Scholar
  25. 25.
    Nichols RA, Sihra TS, Czernik AJ, Nairn AC, Greengard P (1990) Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343:647–651PubMedGoogle Scholar
  26. 26.
    Waxham MN, Malenka RC, Kelly PT, Mauk MD (1993) Calcium/calmodulin-dependent protein kinase II regulates hippocampal synaptic transmission. Brain Res 609:1–8PubMedGoogle Scholar
  27. 27.
    Shakiryanova D, Klose MK, Zhou Y, Gu T, Deitcher DL, Atwood HL, Hewes RS, Levitan ES (2007) Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release. J Neurosci 27:7799–7806PubMedGoogle Scholar
  28. 28.
    He X, Yang F, Xie Z, Lu B (2000) Intracellular Ca2+ and Ca2+/calmodulin-dependent kinase II mediate acute potentiation of neurotransmitter release by neurotrophin-3. J Cell Biol 149:783–792PubMedGoogle Scholar
  29. 29.
    Ninan I, Arancio O (2004) Presynaptic CaMKII is necessary for synaptic plasticity in cultured hippocampal neurons. Neuron 42:129–141PubMedGoogle Scholar
  30. 30.
    Jin I, Hawkins RD (2003) Presynaptic and postsynaptic mechanisms of a novel form of homosynaptic potentiation at Aplysia sensory-motor neuron synapses. J Neurosci 23:7288–7297PubMedGoogle Scholar
  31. 31.
    Lu FM, Hawkins RD (2006) Presynaptic and postsynaptic Ca2+ and CaMKII contribute to long-term potentiation at synapses between individual CA3 neurons. Proc Natl Acad Sci U S A 103:4264–4269PubMedGoogle Scholar
  32. 32.
    Hinds HL, Goussakov I, Nakazawa K, Tonegawa S, Bolshakov VY (2003) Essential function of α-calcium/calmodulin-dependent protein kinase II in neurotransmitter release at a glutamatergic central synapse. Proc Natl Acad Sci U S A 100:4275–4280PubMedGoogle Scholar
  33. 33.
    Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405PubMedGoogle Scholar
  34. 34.
    von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of held. Nat Rev Neurosci 3:53–64Google Scholar
  35. 35.
    Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212PubMedGoogle Scholar
  36. 36.
    Xu J, He L, Wu LG (2007) Role of Ca2+ channels in short-term synaptic plasticity. Curr Opin Neurobiol 17:352–359PubMedGoogle Scholar
  37. 37.
    Hojjati MR, van Woerden GM, Tyler WJ, Giese KP, Silva AJ, Pozzo-Miller L, Elgersma Y (2007) Kinase activity is not required for αCaMKII-dependent presynaptic plasticity at CA3–CA1 synapses. Nat Neurosci 10:1125–1127PubMedGoogle Scholar
  38. 38.
    Margrie TW, Rostas JA, Sah P (1998) Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII. Nat Neurosci 1:378–383PubMedGoogle Scholar
  39. 39.
    Stanton PK, Gage AT (1996) Distinct synaptic loci of Ca2+/calmodulin-dependent protein kinase II necessary for long-term potentiation and depression. J Neurophysiol 76:2097–2101PubMedGoogle Scholar
  40. 40.
    Chapman PF, Frenguelli BG, Smith A, Chen CM, Silva AJ (1995) The α-Ca2+/calmodulin kinase II: a bidirectional modulator of presynaptic plasticity. Neuron 14:591–597PubMedGoogle Scholar
  41. 41.
    Liu Q, Chen B, Ge Q, Wang ZW (2007) Presynaptic Ca2+/calmodulin-dependent protein kinase II modulates neurotransmitter release by activating BK channels at Caenorhabditis elegans neuromuscular junction. J Neurosci 27:10404–10413PubMedGoogle Scholar
  42. 42.
    Ledoux J, Chartier D, Leblanc N (1999) Inhibitors of calmodulin-dependent protein kinase are nonspecific blockers of voltage-dependent K+ channels in vascular myocytes. J Pharmacol Exp Ther 290:1165–1174PubMedGoogle Scholar
  43. 43.
    Nichols RA, Chilcote TJ, Czernik AJ, Greengard P (1992) Synapsin I regulates glutamate release from rat brain synaptosomes. J Neurochem 58:783–785PubMedGoogle Scholar
  44. 44.
    Chin LS, Li L, Ferreira A, Kosik KS, Greengard P (1995) Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc Natl Acad Sci U S A 92:9230–9234PubMedGoogle Scholar
  45. 45.
    Ferreira A, Kao HT, Feng J, Rapoport M, Greengard P (2000) Synapsin III: developmental expression, subcellular localization, and role in axon formation. J Neurosci 20:3736–3744PubMedGoogle Scholar
  46. 46.
    Czernik AJ, Pang DT, Greengard P (1987) Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proc Natl Acad Sci U S A 84:7518–7522PubMedGoogle Scholar
  47. 47.
    Huttner WB, Schiebler W, Greengard P, De Camilli P (1983) Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96:1374–1388PubMedGoogle Scholar
  48. 48.
    Valtorta F, Villa A, Jahn R, De Camilli P, Greengard P, Ceccarelli B (1988) Localization of synapsin I at the frog neuromuscular junction. Neuroscience 24:593–603PubMedGoogle Scholar
  49. 49.
    Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–785PubMedGoogle Scholar
  50. 50.
    De Camilli P, Harris SM Jr, Huttner WB, Greengard P (1983) Synapsin I (Protein I), a nerve terminal-specific phosphoprotein. II. Its specific association with synaptic vesicles demonstrated by immunocytochemistry in agarose-embedded synaptosomes. J Cell Biol 96:1355–1373PubMedGoogle Scholar
  51. 51.
    Bahler M, Greengard P (1987) Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature 326:704–707PubMedGoogle Scholar
  52. 52.
    Schiebler W, Jahn R, Doucet JP, Rothlein J, Greengard P (1986) Characterization of synapsin I binding to small synaptic vesicles. J Biol Chem 261:8383–8390PubMedGoogle Scholar
  53. 53.
    Benfenati F, Valtorta F, Rubenstein JL, Gorelick FS, Greengard P, Czernik AJ (1992) Synaptic vesicle-associated Ca2+/calmodulin-dependent protein kinase II is a binding protein for synapsin I. Nature 359:417–420PubMedGoogle Scholar
  54. 54.
    Chi P, Greengard P, Ryan TA (2001) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187–1193PubMedGoogle Scholar
  55. 55.
    Li L, Chin LS, Shupliakov O, Brodin L, Sihra TS, Hvalby O, Jensen V, Zheng D, McNamara JO, Greengard P et al (1995) Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proc Natl Acad Sci U S A 92:9235–9239PubMedGoogle Scholar
  56. 56.
    Baldelli P, Fassio A, Valtorta F, Benfenati F (2007) Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. J Neurosci 27:13520–13531PubMedGoogle Scholar
  57. 57.
    Ryan TA, Li L, Chin LS, Greengard P, Smith SJ (1996) Synaptic vesicle recycling in synapsin I knock-out mice. J Cell Biol 134:1219–1227PubMedGoogle Scholar
  58. 58.
    Rosahl TW, Geppert M, Spillane D, Herz J, Hammer RE, Malenka RC, Sudhof TC (1993) Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75:661–670PubMedGoogle Scholar
  59. 59.
    Sun J, Bronk P, Liu X, Han W, Sudhof TC (2006) Synapsins regulate use-dependent synaptic plasticity in the calyx of Held by a Ca2+/calmodulin-dependent pathway. Proc Natl Acad Sci U S A 103:2880–2885PubMedGoogle Scholar
  60. 60.
    Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ (2004) Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 24:11368–11380PubMedGoogle Scholar
  61. 61.
    Muller M, Madan D, Levitan IB (1996) State-dependent modulation of mSlo, a cloned calcium-dependent potassium channel. Neuropharmacology 35:877–886PubMedGoogle Scholar
  62. 62.
    Zhou Y, Schopperle WM, Murrey H, Jaramillo A, Dagan D, Griffith LC, Levitan IB (1999) A dynamically regulated 14–3–3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron 22:809–818PubMedGoogle Scholar
  63. 63.
    Sansom SC, Ma R, Carmines PK, Hall DA (2000) Regulation of Ca2+-activated K+ channels by multifunctional Ca2+/calmodulin-dependent protein kinase. Am J Physiol Renal Physiol 279:F283–F288PubMedGoogle Scholar
  64. 64.
    Nelson AB, Gittis AH, du Lac S (2005) Decreases in CaMKII activity trigger persistent potentiation of intrinsic excitability in spontaneously firing vestibular nucleus neurons. Neuron 46:623–631PubMedGoogle Scholar
  65. 65.
    Jiang Y, Pico A, Cadene M, Chait BT, MacKinnon R (2001) Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29:593–601PubMedGoogle Scholar
  66. 66.
    Wang ZW, Chen B, Ge Q (2008) Roles and sources of calcium in synaptic exocytosis. In: Wang ZW (ed) In molecular mechanisms of neurotransmitter release. Humana, Totowa, pp 61–84Google Scholar
  67. 67.
    Jiang X, Lautermilch NJ, Watari H, Westenbroek RE, Scheuer T, Catterall WA (2008) Modulation of CaV2.1 channels by Ca2+/calmodulin-dependent protein kinase II bound to the C-terminal domain. Proc Natl Acad Sci U S A 105:341–346PubMedGoogle Scholar
  68. 68.
    Furuichi T, Furutama D, Hakamata Y, Nakai J, Takeshima H, Mikoshiba K (1994) Multiple types of ryanodine receptor/Ca2+ release channels are differentially expressed in rabbit brain. J Neurosci 14:4794–4805PubMedGoogle Scholar
  69. 69.
    Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V (1995) The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol 128:893–904PubMedGoogle Scholar
  70. 70.
    Ouyang Y, Martone ME, Deerinck TJ, Airey JA, Sutko JL, Ellisman MH (1997) Differential distribution and subcellular localization of ryanodine receptor isoforms in the chicken cerebellum during development. Brain Res 775:52–62PubMedGoogle Scholar
  71. 71.
    De Crescenzo V, Fogarty KE, Zhuge R, Tuft RA, Lifshitz LM, Carmichael J, Bellve KD, Baker SP, Zissimopoulos S, Lai FA, Lemos JR, Walsh JV Jr (2006) Dihydropyridine receptors and type 1 ryanodine receptors constitute the molecular machinery for voltage-induced Ca2+ release in nerve terminals. J Neurosci 26:7565–7574PubMedGoogle Scholar
  72. 72.
    Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38:929–939PubMedGoogle Scholar
  73. 73.
    Llano I, Gonzalez J, Caputo C, Lai FA, Blayney LM, Tan YP, Marty A (2000) Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat Neurosci 3:1256–1265PubMedGoogle Scholar
  74. 74.
    Liu Q, Chen B, Yankova M, Morest DK, Maryon E, Hand AR, Nonet ML, Wang ZW (2005) Presynaptic ryanodine receptors are required for normal quantal size at the Caenorhabditis elegans neuromuscular junction. J Neurosci 25:6745–6754PubMedGoogle Scholar
  75. 75.
    Galante M, Marty A (2003) Presynaptic ryanodine-sensitive calcium stores contribute to evoked neurotransmitter release at the basket cell–Purkinje cell synapse. J Neurosci 23:11229–11234PubMedGoogle Scholar
  76. 76.
    Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29:197–208PubMedGoogle Scholar
  77. 77.
    Unni VK, Zakharenko SS, Zablow L, DeCostanzo AJ, Siegelbaum SA (2004) Calcium release from presynaptic ryanodine-sensitive stores is required for long-term depression at hippocampal CA3-CA3 pyramidal neuron synapses. J Neurosci 24:9612–9622PubMedGoogle Scholar
  78. 78.
    Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26PubMedGoogle Scholar
  79. 79.
    Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR (1991) Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266:11144–11152PubMedGoogle Scholar
  80. 80.
    Rodriguez P, Bhogal MS, Colyer J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine 2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem 278:38593–38600PubMedGoogle Scholar
  81. 81.
    Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70PubMedGoogle Scholar
  82. 82.
    Geppert M, Goda Y, Hammer RE, Li C, Rosahl TW, Stevens CF, Sudhof TC (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79:717–727PubMedGoogle Scholar
  83. 83.
    Nishiki T, Augustine GJ (2004) Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. J Neurosci 24:6127–6132PubMedGoogle Scholar
  84. 84.
    Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE (2002) The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418:340–344PubMedGoogle Scholar
  85. 85.
    Yoshihara M, Littleton JT (2002) Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 36:897–908PubMedGoogle Scholar
  86. 86.
    Maximov A, Sudhof TC (2005) Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron 48:547–554PubMedGoogle Scholar
  87. 87.
    Loewen C, Reist N (2008) Synaptotagmin: transducing Ca2+-binding to vesicle fusion. In: Wang ZW (ed) In molecular mechanisms of neurotransmitter release. Humana, Totowa, pp 107–134Google Scholar
  88. 88.
    Sudhof TC, Rizo J (1996) Synaptotagmins: C2-domain proteins that regulate membrane traffic. Neuron 17:379–388PubMedGoogle Scholar
  89. 89.
    Hilfiker S, Pieribone VA, Nordstedt C, Greengard P, Czernik AJ (1999) Regulation of synaptotagmin I phosphorylation by multiple protein kinases. J Neurochem 73:921–932PubMedGoogle Scholar
  90. 90.
    Verona M, Zanotti S, Schafer T, Racagni G, Popoli M (2000) Changes of synaptotagmin interaction with t-SNARE proteins in vitro after calcium/calmodulin-dependent phosphorylation. J Neurochem 74:209–221PubMedGoogle Scholar
  91. 91.
    Nagy G, Kim JH, Pang ZP, Matti U, Rettig J, Sudhof TC, Sorensen JB (2006) Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation. J Neurosci 26:632–643PubMedGoogle Scholar
  92. 92.
    Palfreyman MT, Jorgensen EM (2008) Roles of SNARE proteins in synaptic vesicle fusion. In: Wang ZW (ed) In molecular mechanisms of neurotransmitter release. Humana, Totowa, pp 35–59Google Scholar
  93. 93.
    Nielander HB, Onofri F, Valtorta F, Schiavo G, Montecucco C, Greengard P, Benfenati F (1995) Phosphorylation of VAMP/synaptobrevin in synaptic vesicles by endogenous protein kinases. J Neurochem 65:1712–1720PubMedCrossRefGoogle Scholar
  94. 94.
    Hirling H, Scheller RH (1996) Phosphorylation of synaptic vesicle proteins: modulation of the α SNAP interaction with the core complex. Proc Natl Acad Sci U S A 93:11945–11949PubMedGoogle Scholar
  95. 95.
    Ohyama A, Hosaka K, Komiya Y, Akagawa K, Yamauchi E, Taniguchi H, Sasagawa N, Kumakura K, Mochida S, Yamauchi T, Igarashi M (2002) Regulation of exocytosis through Ca2+ /ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A. J Neurosci 22:3342–3351PubMedGoogle Scholar
  96. 96.
    Rubenstein JL, Greengard P, Czernik AJ (1993) Calcium-dependent serine phosphorylation of synaptophysin. Synapse 13:161–172PubMedGoogle Scholar
  97. 97.
    Fykse EM, Li C, Sudhof TC (1995) Phosphorylation of rabphilin-3A by Ca2+/calmodulin- and cAMP-dependent protein kinases in vitro. J Neurosci 15:2385–2395PubMedGoogle Scholar
  98. 98.
    Salkoff L, Butler A, Ferreira G, Santi C, Wei A (2006) High-conductance potassium channels of the SLO family. Nat Rev Neurosci 7:921–931PubMedGoogle Scholar
  99. 99.
    Adelman JP, Shen KZ, Kavanaugh MP, Warren RA, Wu YN, Lagrutta A, Bond CT, North RA (1992) Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9:209–216PubMedGoogle Scholar
  100. 100.
    Atkinson NS, Robertson GA, Ganetzky B (1991) A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253:551–555PubMedGoogle Scholar
  101. 101.
    Elkins T, Ganetzky B, Wu CF (1986) A Drosophila mutation that eliminates a calcium-dependent potassium current. Proc Natl Acad Sci U S A 83:8415–8419PubMedGoogle Scholar
  102. 102.
    Meera P, Wallner M, Song M, Toro L (1997) Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0-S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proc Natl Acad Sci U S A 94:14066–14071PubMedGoogle Scholar
  103. 103.
    Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L (1993) mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261:221–224PubMedGoogle Scholar
  104. 104.
    Schreiber M, Salkoff L (1997) A novel calcium-sensing domain in the BK channel. Biophys J 73:1355–1363PubMedGoogle Scholar
  105. 105.
    Yusifov T, Savalli N, Gandhi CS, Ottolia M, Olcese R (2008) The RCK2 domain of the human BKCa channel is a calcium sensor. Proc Natl Acad Sci U S A 105:376–381PubMedGoogle Scholar
  106. 106.
    Krishnamoorthy G, Shi J, Sept D, Cui J (2005) The NH2 terminus of RCK1 domain regulates Ca2+-dependent BKCa channel gating. J Gen Physiol 126:227–241PubMedGoogle Scholar
  107. 107.
    Xia XM, Zeng X, Lingle CJ (2002) Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature 418:880–884PubMedGoogle Scholar
  108. 108.
    Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, McKenna E, Austin CP, Bennett PB, Swanson R (2000) Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. J Biol Chem 275:23211–23218PubMedGoogle Scholar
  109. 109.
    Knaus HG, Garcia-Calvo M, Kaczorowski GJ, Garcia ML (1994) Subunit composition of the high conductance calcium-activated potassium channel from smooth muscle, a representative of the mSlo and slowpoke family of potassium channels. J Biol Chem 269:3921–3924PubMedGoogle Scholar
  110. 110.
    Xia XM, Ding JP, Lingle CJ (1999) Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci 19:5255–5264PubMedGoogle Scholar
  111. 111.
    Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW (2000) Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem 275:6453–6461PubMedGoogle Scholar
  112. 112.
    McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ (1995) Functional role of the β subunit of high conductance calcium-activated potassium channels. Neuron 14:645–650PubMedGoogle Scholar
  113. 113.
    Xia XM, Ding JP, Zeng XH, Duan KL, Lingle CJ (2000) Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. J Neurosci 20:4890–4903PubMedGoogle Scholar
  114. 114.
    Meera P, Wallner M, Toro L (2000) A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 97:5562–5567PubMedGoogle Scholar
  115. 115.
    Farley J, Rudy B (1988) Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes. Biophys J 53:919–934PubMedCrossRefGoogle Scholar
  116. 116.
    Lindgren CA, Moore JW (1989) Identification of ionic currents at presynaptic nerve endings of the lizard. J Physiol 414:201–222PubMedGoogle Scholar
  117. 117.
    Tabti N, Bourret C, Mallart A (1989) Three potassium currents in mouse motor nerve terminals. Pflugers Arch 413:395–400PubMedGoogle Scholar
  118. 118.
    Morita K, Barrett EF (1990) Evidence for two calcium-dependent potassium conductances in lizard motor nerve terminals. J Neurosci 10:2614–2625PubMedGoogle Scholar
  119. 119.
    Sivaramakrishnan S, Bittner GD, Brodwick MS (1991) Calcium-activated potassium conductance in presynaptic terminals at the crayfish neuromuscular junction. J Gen Physiol 98:1161–1179PubMedGoogle Scholar
  120. 120.
    Wangemann P, Takeuchi S (1993) Maxi-K+ channel in single isolated cochlear efferent nerve terminals. Hear Res 66:123–129PubMedGoogle Scholar
  121. 121.
    Katz E, Ferro PA, Cherksey BD, Sugimori M, Llinas R, Uchitel OD (1995) Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction. J Physiol 486(Pt 3):695–706PubMedGoogle Scholar
  122. 122.
    Sun XP, Schlichter LC, Stanley EF (1999) Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal. J Physiol 518(Pt 3):639–651PubMedGoogle Scholar
  123. 123.
    Yazejian B, DiGregorio DA, Vergara JL, Poage RE, Meriney SD, Grinnell AD (1997) Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve-muscle synapses. J Neurosci 17:2990–3001PubMedGoogle Scholar
  124. 124.
    Issa NP, Hudspeth AJ (1994) Clustering of Ca2+ channels and Ca2+-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. Proc Natl Acad Sci U S A 91:7578–7582PubMedGoogle Scholar
  125. 125.
    Sun XP, Yazejian B, Grinnell AD (2004) Electrophysiological properties of BK channels in Xenopus motor nerve terminals. J Physiol 557:207–228PubMedGoogle Scholar
  126. 126.
    Trussell LO, Roberts MT (2008) The role of potassium channels in the regulation of neurotransmitter release. In: Wang ZW (ed) In molecular mechanisms of neurotransmitter release. Humana, Totowa, pp 171–185Google Scholar
  127. 127.
    Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca2+-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16:955–963PubMedGoogle Scholar
  128. 128.
    Misonou H, Menegola M, Buchwalder L, Park EW, Meredith A, Rhodes KJ, Aldrich RW, Trimmer JS (2006) Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Comp Neurol 496:289–302PubMedGoogle Scholar
  129. 129.
    Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP (1993) Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron 11:645–655PubMedGoogle Scholar
  130. 130.
    Hu H, Shao LR, Chavoshy S, Gu N, Trieb M, Behrens R, Laake P, Pongs O, Knaus HG, Ottersen OP, Storm JF (2001) Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci 21:9585–9597PubMedGoogle Scholar
  131. 131.
    Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684PubMedGoogle Scholar
  132. 132.
    Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40:331–346PubMedGoogle Scholar
  133. 133.
    Yazejian B, Sun XP, Grinnell AD (2000) Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels. Nat Neurosci 3:566–571PubMedGoogle Scholar
  134. 134.
    Marrion NV, Tavalin SJ (1998) Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395:900–905PubMedGoogle Scholar
  135. 135.
    Davies PJ, Ireland DR, McLachlan EM (1996) Sources of Ca2+ for different Ca2+-activated K+ conductances in neurones of the rat superior cervical ganglion. J Physiol 495(Pt 2):353–366PubMedGoogle Scholar
  136. 136.
    Womack MD, Chevez C, Khodakhah K (2004) Calcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons. J Neurosci 24:8818–8822PubMedGoogle Scholar
  137. 137.
    Edgerton JR, Reinhart PH (2003) Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J Physiol 548:53–69PubMedGoogle Scholar
  138. 138.
    Smith MR, Nelson AB, Du Lac S (2002) Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. J Neurophysiol 87:2031–2042PubMedGoogle Scholar
  139. 139.
    Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, Klugbauer N, Reisinger E, Bischofberger J, Oliver D, Knaus HG, Schulte U, Fakler B (2006) BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314:615–620PubMedGoogle Scholar
  140. 140.
    Koyano K, Abe T, Nishiuchi Y, Sakakibara S (1987) Effects of synthetic ω-conotoxin on synaptic transmission. Eur J Pharmacol 135:337–343PubMedGoogle Scholar
  141. 141.
    Kerr LM, Yoshikami D (1984) A venom peptide with a novel presynaptic blocking action. Nature 308:282–284PubMedGoogle Scholar
  142. 142.
    Robitaille R, Adler EM, Charlton MP (1990) Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses. Neuron 5:773–779PubMedGoogle Scholar
  143. 143.
    Robitaille R, Charlton MP (1992) Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J Neurosci 12:297–305PubMedGoogle Scholar
  144. 144.
    Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528PubMedGoogle Scholar
  145. 145.
    Deisseroth K, Bito H, Tsien RW (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16:89–101PubMedGoogle Scholar
  146. 146.
    Neher E (1986) In calcium electrogenesis and neuronal functioning. In: Heinemann U (ed) Experimental brain research series, vol. 14. Springer, Berlin, pp 1659–1663Google Scholar
  147. 147.
    Raffaelli G, Saviane C, Mohajerani MH, Pedarzani P, Cherubini E (2004) BK potassium channels control transmitter release at CA3–CA3 synapses in the rat hippocampus. J Physiol 557:147–157PubMedGoogle Scholar
  148. 148.
    Regehr WG, Delaney KR, Tank DW (1994) The role of presynaptic calcium in short-term enhancement at the hippocampal mossy fiber synapse. J Neurosci 14:523–537PubMedGoogle Scholar
  149. 149.
    Schulz PE, Cook EP, Johnston D (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci 14:5325–5337PubMedGoogle Scholar
  150. 150.
    Shao LR, Halvorsrud R, Borg-Graham L, Storm JF (1999) The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521(Pt 1):135–146PubMedGoogle Scholar
  151. 151.
    Faber ES, Sah P (2003) Ca2+-activated K+ (BK) channel inactivation contributes to spike broadening during repetitive firing in the rat lateral amygdala. J Physiol 552:83–97Google Scholar
  152. 152.
    Loane DJ, Lima PA, Marrion NV (2007) Co-assembly of N-type Ca2+ and BK channels underlies functional coupling in rat brain. J Cell Sci 120:85–95Google Scholar
  153. 153.
    Wang ZW, Saifee O, Nonet ML, Salkoff L (2001) SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron 32:67–81Google Scholar
  154. 154.
    Salkoff L, Wei AD, Baban B, Butler A, Fawcett G, Ferreira G, Santi CM (2005) Potassium channels in C. elegans. In Wormbook, TheCelegansResearchCommunity, ed. (doi:/10.1895/wormbook.1.42.1,
  155. 155.
    Xu JW, laughter MM (2005) Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse. J Neurosci 25:660–668Google Scholar
  156. 156.
    Pattillo JM, Yazejian B, DiGregorio DA, Vergara JL, Grinnell AD, Meriney SD (2001) Contribution of presynaptic calcium-activated potassium currents to transmitter release regulation in cultured Xenopus nerve-muscle synapses. Neuroscience 102:29–40Google Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations