Advertisement

Molecular Neurobiology

, Volume 37, Issue 2–3, pp 171–186 | Cite as

Therapeutic Strategies for Alzheimer’s Disease

  • Donna M. Barten
  • Charles F. Albright
Article

Abstract

Therapeutic approaches for Alzheimer’s disease (AD) are guided by four disease characteristics: amyloid plaques, neurofibrillar tangles (NFT), neurodegeneration, and dementia. Amyloid plaques are composed largely of 4 kDa β-amyloid (Aβ) peptides, with the more amyloidogenic, 42 amino acid form (Aβ42) as the primary species. Because multiple, rare mutations that cause early-onset, familial AD lead to increased production or aggregation of Aβ42, amyloid therapeutics aim to reduce the amount of toxic Aβ42 aggregates. Amyloid-based therapies include γ-secretase inhibitors and modulators, BACE inhibitors, aggregation blockers, catabolism inducers, and anti-Aβ biologics. Tangles are composed of paired helical filaments of hyperphosphorylated tau protein. Tau-based therapeutics include kinase inhibitors, microtubule stabilizers, and catabolism inducers. Therapeutic strategies for neurodegeneration target multiple mechanisms, including excitotoxicity, mitochondrial dysfunction, oxidative damage, and inflammation or stimulation of neuronal viability. Although not disease modifying, cognition enhancers are important to treat the symptom of dementia. Strategies for cognition enhancement include cholinesterase inhibitors, and other approaches to enhance the signaling of cholinergic and glutamatergic neurons. In summary, plaques, tangles, neurodegeneration and dementia guide the development of multiple therapeutic approaches for AD and are the subject of this review.

Keywords

Alzheimer’s disease Therapeutics Amyloid Tau Dementia Cognition enhancement Secretase Neurodegeneration Plaque Tangle 

Notes

Acknowledgements

We would like to thank Jeremy Toyn, Thomas Blaettler, Angela Cacace, Robert Berman, Paul Wes, Gregory Rose, Sethu Sankaranarayanan, Richard Olson, and Jere Meredith for their helpful comments on the manuscript.

References

  1. 1.
    Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191PubMedGoogle Scholar
  2. 2.
    Giacobini E (2000) Cholinesterase inhibitors stabilize Alzheimer’s disease. Ann NY Acad Sci 920:321–327PubMedGoogle Scholar
  3. 3.
    Alzheimer’s Assn (2007) Alzheimer’s disease facts and figures. www.alz.org/alzheimers_disease_facts_figures.asp
  4. 4.
    Terry RD (2006) Alzheimer’s disease and the aging brain. J Geriatr Psychiatry Neurol 19:125–128PubMedGoogle Scholar
  5. 5.
    Powers JM (1997) Diagnostic criteria for the neuropathologic assessment of Alzheimer’s disease. Neurobiol Aging 18:S53–S54PubMedGoogle Scholar
  6. 6.
    Kazee AM, Johnson EM (1998) Alzheimer’s disease pathology in non-demented elderly. J Alzheimers Dis 1:81–89PubMedGoogle Scholar
  7. 7.
    Arriagada PV, Marzloff K, Hyman BT (1992) Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 42:1681–1688PubMedGoogle Scholar
  8. 8.
    Hansen RA, Gartlehner G, Lohr KN, Kaufer DI (2007) Functional outcomes of drug treatment in Alzheimer’s disease: a systematic review and meta-analysis. Drugs Aging 24:155–167PubMedGoogle Scholar
  9. 9.
    Wolfe MS (2006) The gamma-secretase complex: membrane-embedded proteolytic ensemble. Biochemistry 45:7931–7939PubMedGoogle Scholar
  10. 10.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMedGoogle Scholar
  11. 11.
    Knowles RB, Wyart C, Buldyrev SV, Cruz L, Urbanc B, Hasselmo ME, Stanley HE, Hyman BT (1999) Plaque-induced neurite abnormalities: implications for disruption of neural networks in Alzheimer’s disease. Proc Natl Acad Sci USA 96:5274–5279PubMedGoogle Scholar
  12. 12.
    Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, Koenigsknecht-Talboo J, Holtzman DM, Bacskai BJ, Hyman BT (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature 451:720–724PubMedGoogle Scholar
  13. 13.
    Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298PubMedGoogle Scholar
  14. 14.
    Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8:79–84PubMedGoogle Scholar
  15. 15.
    Wilson CA, Doms RW, Lee VM (2003) Distinct presenilin-dependent and presenilin-independent gamma-secretases are responsible for total cellular Abeta production. J Neurosci Res 74:361–369PubMedGoogle Scholar
  16. 16.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539PubMedGoogle Scholar
  17. 17.
    Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140PubMedGoogle Scholar
  18. 18.
    Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357PubMedGoogle Scholar
  19. 19.
    Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N, Puolivali J, Lesne S, Ashe KH, Muchowski PJ, Mucke L (2007) Accelerating Amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem 282:23818–23828PubMedGoogle Scholar
  20. 20.
    Townsend M, Cleary JP, Mehta T, Hofmeister J, Lesne S, O’Hare E, Walsh DM, Selkoe DJ (2006) Orally available compound prevents deficits in memory caused by the Alzheimer amyloid-beta oligomers. Annal Neurol 60:668–676PubMedGoogle Scholar
  21. 21.
    Barten DM, Meredith JE Jr, Zaczek R, Houston JG, Albright CF (2006) Gamma-secretase inhibitors for Alzheimer’s disease: balancing efficacy and toxicity. Drugs R D 7:87–97PubMedGoogle Scholar
  22. 22.
    Pollack SJ, Lewis H (2005) Secretase inhibitors for Alzheimer’s disease: challenges of a promiscuous protease. Curr Opin Investig Drugs 6:35–47PubMedGoogle Scholar
  23. 23.
    Searfoss GH, Jordan WH, Calligaro DO, Galbreath EJ, Schirtzinger LM, Berridge BR, Gao H, Higgins MA, May PC, Ryan TP (2003) Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma-secretase inhibitor. J Biol Chem 278:46107–46116PubMedGoogle Scholar
  24. 24.
    Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, Engstrom L, Pinzon-Ortiz M, Fine JS, Lee HJ, Zhang L, Higgins GA, Parker EM (2004) Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 279:12876–12882PubMedGoogle Scholar
  25. 25.
    Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, Jacobs RT, Zacco A, Greenberg B, Ciaccio PJ (2004) Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82:341–358PubMedGoogle Scholar
  26. 26.
    Comery TA, Martone RL, Aschmies S, Atchison KP, Diamantidis G, Gong X, Zhou H, Kreft AF, Pangalos MN, Sonnenberg-Reines J, Jacobsen JS, Marquis KL (2005) Acute gamma-secretase inhibition improves contextual fear conditioning in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 25:8898–8902PubMedGoogle Scholar
  27. 27.
    Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, Farlow M, Ness D, May PC (2005) Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clin Neuropharmacol 28:126–132PubMedGoogle Scholar
  28. 28.
    Siemers ER, Quinn JF, Kaye J, Farlow MR, Porsteinsson A, Tariot P, Zoulnouni P, Galvin JE, Holtzman DM, Knopman DS, Satterwhite J, Gonzales C, Dean RA, May PC (2006) Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 66:602–604PubMedGoogle Scholar
  29. 29.
    Rosen L, Stone J, Plump A, Yuan J, Harrison T, Flynn M, Dallob A, Matthews C, Stevenson D, Schmidt D, Palmieri T, Leibowitz M, Jhee S, Ereshefsky L, Salomon R, Winchell G, Shearman M, Murphy M, Gottesdiener K (2006) The gamma secretase inhibitor MK-0752 acutely and significantly reduces CSF Abeta40 concentrations in humans. Alzheimers Dement 2:S79Google Scholar
  30. 30.
    Citron M (2004) Beta-secretase inhibition for the treatment of Alzheimer’s disease–promise and challenge. Trends Pharmacol Sci 25:92–97PubMedGoogle Scholar
  31. 31.
    Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R (2001) Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 4:231–232PubMedGoogle Scholar
  32. 32.
    Ohno M, Chang L, Tseng W, Oakley H, Citron M, Klein WL, Vassar R, Disterhoft JF (2006) Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci 23:251–260PubMedGoogle Scholar
  33. 33.
    Ohno M, Sametsky EA, Younkin LH, Oakley H, Younkin SG, Citron M, Vassar R, Disterhoft JF (2004) BACE1 Deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41:27–33PubMedGoogle Scholar
  34. 34.
    Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang H-C, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee H-K, Wong PC (2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid-b amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 25:11693–11709PubMedGoogle Scholar
  35. 35.
    Dominguez D, Tournoy J, Hartmann D, Huth T, Cryns K, Deforce S, Serneels L, Camacho IE, Marjaux E, Craessaerts K, Roebroek AJ, Schwake M, D’Hooge R, Bach P, Kalinke U, Moechars D, Alzheimer C, Reiss K, Saftig P, De Strooper B (2005) Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J Biol Chem 280:30797–30806PubMedGoogle Scholar
  36. 36.
    Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, Yan R (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 9:1520–1525PubMedGoogle Scholar
  37. 37.
    Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, DeStrooper B, Saftig P, Birchmeier C, Haass C (2006) Control of peripheral nerve myelination by the b-secretase BACE1. Science 314:664–666PubMedGoogle Scholar
  38. 38.
    Sankaranarayanan S, Price EA, Wu G, Crouthamel MC, Shi XP, Tugusheva K, Tyler KX, Kahana J, Ellis J, Jin L, Steele T, Stachel S, Coburn C, Simon AJ (2008) In vivo beta-secretase 1 inhibition leads to brain Abeta lowering and increased alpha-secretase processing of amyloid precursor protein without effect on neuregulin-1. J Pharmacol Exp Ther 324:957–969PubMedGoogle Scholar
  39. 39.
    Asai M, Hattori C, Iwata N, Saido TC, Sasagawa N, Szabo B, Hashimoto Y, Maruyama K, Tanuma S-i, Kiso Y, Ishiura S (2006) The novel b-secretase inhibitor KMI-429 reduces amyloid b peptide production in amyloid precursor protein transgenic and wild-type mice. J Neurochem 96:533–540PubMedGoogle Scholar
  40. 40.
    Stachel SJ, Coburn CA, Sankaranarayanan S, Price EA, Wu G, Crouthamel M, Pietrak BL, Huang Q, Lineberger J, Espeseth AS, Jin L, Ellis J, Holloway MK, Munshi S, Allison T, Hazuda D, Simon AJ, Graham SL, Vacca JP (2006) Macrocyclic inhibitors of b-secretase: functional activity in an animal model. [Erratum to document cited in CA145:465146]. J Med Chem 49:7252Google Scholar
  41. 41.
    Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414:212–216PubMedGoogle Scholar
  42. 42.
    Clarke EE, Churcher I, Ellis S, Wrigley JD, Lewis HD, Harrison T, Shearman MS, Beher D (2006) Intra- or intercomplex binding to the gamma-secretase enzyme. A model to differentiate inhibitor classes. J Biol Chem 281:31279–31289PubMedGoogle Scholar
  43. 43.
    Czirr E, Weggen S (2006) Gamma-secretase modulation with Abeta42-lowering nonsteroidal anti-inflammatory drugs and derived compounds. Neuro-degenerative diseases 3:298–304PubMedGoogle Scholar
  44. 44.
    Geerts H (2007) Drug evaluation: (R)-flurbiprofen—an enantiomer of flurbiprofen for the treatment of Alzheimer’s disease. IDrugs 10:121–133PubMedGoogle Scholar
  45. 45.
    Pissarnitski D (2007) Advances in gamma-secretase modulation. Curr Opin Drug Discov Dev 10:392–402Google Scholar
  46. 46.
    Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu M, Azzi M, Lacombe D, Kong X, Aman A, Laurin J, Szarek WA, Tremblay P (2007) Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 28:537–547PubMedGoogle Scholar
  47. 47.
    Aisen PS, Saumier D, Briand R, Laurin J, Gervais F, Tremblay P, Garceau D (2006) A Phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease. Neurology 67:1757–1763PubMedGoogle Scholar
  48. 48.
    Kwon MO, Herrling P (2006) List of drugs in development for neurodegenerative diseases. Update June 2006. Neurodegener Dis 3:148–186PubMedGoogle Scholar
  49. 49.
    Bush AI, Tanzi RE (2002) The galvanization of beta-amyloid in Alzheimer’s disease. Proc Natl Acad Sci USA 99:7317–7319PubMedGoogle Scholar
  50. 50.
    Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676PubMedGoogle Scholar
  51. 51.
    Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691PubMedGoogle Scholar
  52. 52.
    Crouch PJ, Barnham KJ, Bush AI, White AR (2006) Therapeutic treatments for Alzheimer’s disease based on metal bioavailability. Drug News Perspect 19:469–474PubMedGoogle Scholar
  53. 53.
    McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE (2000) Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta -induced toxicity. J Biol Chem 275:18495–18502PubMedGoogle Scholar
  54. 54.
    McLaurin J, Kierstead ME, Brown ME, Hawkes CA, Lambermon MH, Phinney AL, Darabie AA, Cousins JE, French JE, Lan MF, Chen F, Wong SS, Mount HT, Fraser PE, Westaway D, St George-Hyslop P (2006) Cyclohexanehexol inhibitors of Abeta aggregation prevent and reverse Alzheimer phenotype in a mouse model. Nat Med 12:801–808PubMedGoogle Scholar
  55. 55.
    Estrada LD, Soto C (2007) Disrupting beta-amyloid aggregation for Alzheimer disease treatment. Curr Top Med Chem 7:115–126PubMedGoogle Scholar
  56. 56.
    Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, Van Gelder P, Hartmann D, D’Hooge R, De Strooper B, Schymkowitz J, Rousseau F (2008) Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27:224–233PubMedGoogle Scholar
  57. 57.
    Tanzi RE, Moir RD, Wagner SL (2004) Clearance of Alzheimer’s Abeta peptide: the many roads to perdition. Neuron 43:605–608PubMedGoogle Scholar
  58. 58.
    Pangalos MN, Jacobsen SJ, Reinhart PH (2005) Disease modifying strategies for the treatment of Alzheimer’s disease targeted at modulating levels of the beta-amyloid peptide. Biochem Soc Trans 33:553–558PubMedGoogle Scholar
  59. 59.
    Saito T, Iwata N, Tsubuki S, Takaki Y, Takano J, Huang SM, Suemoto T, Higuchi M, Saido TC (2005) Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation. Nat Med 11:434–439PubMedGoogle Scholar
  60. 60.
    Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177PubMedGoogle Scholar
  61. 61.
    Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61:46–54PubMedGoogle Scholar
  62. 62.
    Ferrer I, Boada Rovira M, Sanchez Guerra ML, Rey MJ, Costa-Jussa F (2004) Neuropathology and pathogenesis of encephalitis following amyloid-beta immunization in Alzheimer’s disease. Brain Pathol 14:11–20PubMedGoogle Scholar
  63. 63.
    Masliah E, Hansen L, Adame A, Crews L, Bard F, Lee C, Seubert P, Games D, Kirby L, Schenk D (2005) Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer disease. Neurology 64:129–131PubMedGoogle Scholar
  64. 64.
    Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452PubMedGoogle Scholar
  65. 65.
    Monsonego A, Imitola J, Petrovic S, Zota V, Nemirovsky A, Baron R, Fisher Y, Owens T, Weiner HL (2006) Abeta-induced meningoencephalitis is IFN-gamma-dependent and is associated with T cell-dependent clearance of Abeta in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103:5048–5053PubMedGoogle Scholar
  66. 66.
    Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Rovira MB, Forette F, Orgogozo JM (2005) Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 64:1553–1562PubMedGoogle Scholar
  67. 67.
    Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, Koller M (2005) Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology 64:1563–1572PubMedGoogle Scholar
  68. 68.
    Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T (2000) Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 6:916–919PubMedGoogle Scholar
  69. 69.
    Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci 5:452–457PubMedGoogle Scholar
  70. 70.
    Bard F, Barbour R, Cannon C, Carretto R, Fox M, Games D, Guido T, Hoenow K, Hu K, Johnson-Wood K, Khan K, Kholodenko D, Lee C, Lee M, Motter R, Nguyen M, Reed A, Schenk D, Tang P, Vasquez N, Seubert P, Yednock T (2003) Epitope and isotype specificities of antibodies to beta -amyloid peptide for protection against Alzheimer’s disease-like neuropathology. Proc Natl Acad Sci USA 100:2023–2028PubMedGoogle Scholar
  71. 71.
    Pfeifer M, Boncristiano S, Bondolfi L, Stalder A, Deller T, Staufenbiel M, Mathews PM, Jucker M (2002) Cerebral hemorrhage after passive anti-Abeta immunotherapy. Science 298:1379PubMedGoogle Scholar
  72. 72.
    Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, Piroozi KS, Jordan WH, Brown DD, Hoffman WP, Holtzman DM, Bales KR, Gitter BD, May PC, Paul SM, DeMattos RB (2005) Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci 25:629–636PubMedGoogle Scholar
  73. 73.
    Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, Morgan D (2004) Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflammation 1:24PubMedGoogle Scholar
  74. 74.
    Burbach GJ, Vlachos A, Ghebremedhin E, Del Turco D, Coomaraswamy J, Staufenbiel M, Jucker M, Deller T (2007) Vessel ultrastructure in APP23 transgenic mice after passive anti-Abeta immunotherapy and subsequent intracerebral hemorrhage. Neurobiol Aging 28:202–212PubMedGoogle Scholar
  75. 75.
    Wilcock DM, Alamed J, Gottschall PE, Grimm J, Rosenthal A, Pons J, Ronan V, Symmonds K, Gordon MN, Morgan D (2006) Deglycosylated anti-amyloid-beta antibodies eliminate cognitive deficits and reduce parenchymal amyloid with minimal vascular consequences in aged amyloid precursor protein transgenic mice. J Neurosci 26:5340–5346PubMedGoogle Scholar
  76. 76.
    Lace GL, Wharton SB, Ince PG (2007) A brief history of tau: the evolving view of the microtubule-associated protein tau in neurodegenerative diseases. Clin Neuropathol 26:43–58PubMedGoogle Scholar
  77. 77.
    Li B, Chohan MO, Grundke-Iqbal I, Iqbal K (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 113:501–511PubMedGoogle Scholar
  78. 78.
    Dermaut B, Kumar-Singh S, Rademakers R, Theuns J, Cruts M, Van Broeckhoven C (2005) Tau is central in the genetic Alzheimer–frontotemporal dementia spectrum. Trends Genet 21:664–672PubMedGoogle Scholar
  79. 79.
    Blurton-Jones M, Laferla FM (2006) Pathways by which Abeta facilitates tau pathology. CurrAlzheimer Res 3:437–448Google Scholar
  80. 80.
    Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491PubMedGoogle Scholar
  81. 81.
    Bolmont T, Clavaguera F, Meyer-Luehmann M, Herzig MC, Radde R, Staufenbiel M, Lewis J, Hutton M, Tolnay M, Jucker M (2007) Induction of tau pathology by intracerebral infusion of amyloid-beta-containing brain extract and by amyloid-beta deposition in APP × Tau transgenic mice. Am J Pathol 171:2012–2020PubMedGoogle Scholar
  82. 82.
    Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495PubMedGoogle Scholar
  83. 83.
    De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio E.H., Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL (2007) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Abeta oligomers. Neurobiol Aging, epub April 9, 2007Google Scholar
  84. 84.
    Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332PubMedGoogle Scholar
  85. 85.
    Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754PubMedGoogle Scholar
  86. 86.
    Lee HG, Perry G, Moreira PI, Garrett MR, Liu Q, Zhu X, Takeda A, Nunomura A, Smith MA (2005) Tau phosphorylation in Alzheimer’s disease: pathogen or protector? Trends Mol Med 11:164–169PubMedGoogle Scholar
  87. 87.
    Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58:188–197PubMedGoogle Scholar
  88. 88.
    Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25:5446–5454PubMedGoogle Scholar
  89. 89.
    Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481PubMedGoogle Scholar
  90. 90.
    Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, Wszolek Z, Ashe K, Knight J, Dickson D, Andorfer C, Rosenberry TL, Lewis J, Hutton M, Janus C (2007) Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci 27:3650–3662PubMedGoogle Scholar
  91. 91.
    Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A (2007) Granular tau oligomers as intermediates of tau filaments. Biochemistry 46:3856–3861PubMedGoogle Scholar
  92. 92.
    Skovronsky DM, Lee VM-Y, Trojanowski JQ (2006) Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol Mech Dis 1:151–170Google Scholar
  93. 93.
    Churcher I (2006) Tau therapeutic strategies for the treatment of Alzheimer’s disease. Curr Top Med Chem 6:579–595PubMedGoogle Scholar
  94. 94.
    Mazanetz MP, Fischer PM (2007) Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev 6:464–479CrossRefGoogle Scholar
  95. 95.
    Mi K, Johnson GV (2006) The role of tau phosphorylation in the pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 3:449–463PubMedGoogle Scholar
  96. 96.
    Engel T, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J, Hernandez F (2006) Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging 27:1258–1268PubMedGoogle Scholar
  97. 97.
    Jackson GR, Wiedau-Pazos M, Sang TK, Wagle N, Brown CA, Massachi S, Geschwind DH (2002) Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34:509–519PubMedGoogle Scholar
  98. 98.
    Ma QL, Lim GP, Harris-White ME, Yang F, Ambegaokar SS, Ubeda OJ, Glabe CG, Teter B, Frautschy SA, Cole GM (2006) Antibodies against beta-amyloid reduce Abeta oligomers, glycogen synthase kinase-3beta activation and tau phosphorylation in vivo and in vitro. J Neurosci Res 83:374–384PubMedGoogle Scholar
  99. 99.
    Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, Lafrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102:6990–6995PubMedGoogle Scholar
  100. 100.
    Nakashima H, Ishihara T, Suguimoto P, Yokota O, Oshima E, Kugo A, Terada S, Hamamura T, Trojanowski JQ, Lee VM, Kuroda S (2005) Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol 110:547–556PubMedGoogle Scholar
  101. 101.
    Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB, Crews L, Masliah E (2007) Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation. J Neurosci 27:1981–1991PubMedGoogle Scholar
  102. 102.
    Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res 32:577–595PubMedGoogle Scholar
  103. 103.
    Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S (2007) Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25:81–86PubMedGoogle Scholar
  104. 104.
    Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, Matthews P, Isaac JT, Bortolotto ZA, Wang YT, Collingridge GL (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53:703–717PubMedGoogle Scholar
  105. 105.
    Wada A, Yokoo H, Yanagita T, Kobayashi H (2005) Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. J Pharmacol Sci 99:307–321PubMedGoogle Scholar
  106. 106.
    Caricasole A, Bakker A, Copani A, Nicoletti F, Gaviraghi G, Terstappen GC (2005) Two sides of the same coin: Wnt signaling in neurodegeneration and neuro-oncology. Biosci Rep 25:309–327PubMedGoogle Scholar
  107. 107.
    Shakoori A, Ougolkov A, Yu ZW, Zhang B, Modarressi MH, Billadeau DD, Mai M, Takahashi Y, Minamoto T (2005) Deregulated GSK3beta activity in colorectal cancer: its association with tumor cell survival and proliferation. Biochem Biophys Res Commun 334:1365–1373PubMedGoogle Scholar
  108. 108.
    Kappes A, Vaccaro A, Kunnimalaiyaan M, Chen H (2007) Lithium ions: a novel treatment for pheochromocytomas and paragangliomas. Surgery 141:161–165, discussion 165PubMedGoogle Scholar
  109. 109.
    Cao Q, Lu X, Feng YJ (2006) Glycogen synthase kinase-3beta positively regulates the proliferation of human ovarian cancer cells. Cell Res 16:671–677PubMedGoogle Scholar
  110. 110.
    Bhat RV, Budd Haeberlein SL, Avila J (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 89:1313–1317PubMedGoogle Scholar
  111. 111.
    Meijer L, Flajolet M, Greengard P (2004) Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci 25:471–480PubMedGoogle Scholar
  112. 112.
    Stewart AJ, Fox A, Morimoto BH, Gozes I (2007) Looking for novel ways to treat the hallmarks of Alzheimer’s disease. Expert Opin Investig Drugs 16:1183–1196PubMedGoogle Scholar
  113. 113.
    Giacobini E, Becker RE (2007) One hundred years after the discovery of Alzheimer’s disease. A turning point for therapy? J Alzheimers Dis 12:37–52PubMedGoogle Scholar
  114. 114.
    Briefs N (2007) New Azlheimer’s clinical trials to be undertaken by NIA nationwide consortium. Am J Alzheimers Dis Other Dement 21:460–462Google Scholar
  115. 115.
    Steinhilb ML, Dias-Santagata D, Mulkearns EE, Shulman JM, Biernat J, Mandelkow EM, Feany MB (2007) S/P and T/P phosphorylation is critical for tau neurotoxicity in Drosophila. J Neurosci Res 85:1271–1278PubMedGoogle Scholar
  116. 116.
    Bian F, Nath R, Sobocinski G, Booher RN, Lipinski WJ, Callahan MJ, Pack A, Wang KK, Walker LC (2002) Axonopathy, tau abnormalities, and dyskinesia, but no neurofibrillary tangles in p25-transgenic mice. J Comp Neurol 446:257–266PubMedGoogle Scholar
  117. 117.
    Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, Coskran T, Carlo A, Seymour PA, Burkhardt JE, Nelson RB, McNeish JD (2000) Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci USA 97:2910–2915PubMedGoogle Scholar
  118. 118.
    Plattner F, Angelo M, Giese KP (2006) The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 281:25457–25465PubMedGoogle Scholar
  119. 119.
    Hallows JL, Chen K, DePinho RA, Vincent I (2003) Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. J Neurosci 23:10633–10644PubMedGoogle Scholar
  120. 120.
    Wen Y, Planel E, Herman M, Figueroa HY, Wang L, Liu L, Lau LF, Yu WH, Duff KE (2008) Interplay between cyclin-dependent kinase 5 and glycogen synthase kinase 3 beta mediated by neuregulin signaling leads to differential effects on tau phosphorylation and amyloid precursor protein processing. J Neurosci 28:2624–2632PubMedGoogle Scholar
  121. 121.
    Hawasli AH, Benavides DR, Nguyen C, Kansy JW, Hayashi K, Chambon P, Greengard P, Powell CM, Cooper DC, Bibb JA (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 10:880–886PubMedGoogle Scholar
  122. 122.
    Ahn JS, Radhakrishnan ML, Mapelli M, Choi S, Tidor B, Cuny GD, Musacchio A, Yeh LA, Kosik KS (2005) Defining Cdk5 ligand chemical space with small molecule inhibitors of tau phosphorylation. Chem Biol 12:811–823PubMedGoogle Scholar
  123. 123.
    Le Corre S, Klafki HW, Plesnila N, Hubinger G, Obermeier A, Sahagun H, Monse B, Seneci P, Lewis J, Eriksen J, Zehr C, Yue M, McGowan E, Dickson DW, Hutton M, Roder HM (2006) An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc Natl Acad Sci USA 103:9673–9678PubMedGoogle Scholar
  124. 124.
    Dickey CA, Eriksen J, Kamal A, Burrows F, Kasibhatla S, Eckman CB, Hutton M, Petrucelli L (2005) Development of a high throughput drug screening assay for the detection of changes in tau levels—proof of concept with HSP90 inhibitors. Curr Alzheimer Res 2:231–238PubMedGoogle Scholar
  125. 125.
    Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, Ash P, Shoraka S, Zlatkovic J, Eckman CB, Patterson C, Dickson DW, Nahman NS Jr, Hutton M, Burrows F, Petrucelli L (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117:648–658PubMedGoogle Scholar
  126. 126.
    Luo W, Dou F, Rodina A, Chip S, Kim J, Zhao Q, Moulick K, Aguirre J, Wu N, Greengard P, Chiosis G (2007) Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc Natl Acad Sci USA 104:9511–9516PubMedGoogle Scholar
  127. 127.
    Dickey CA, Ash P, Klosak N, Lee WC, Petrucelli L, Hutton M, Eckman CB (2006) Pharmacologic reductions of total tau levels; implications for the role of microtubule dynamics in regulating tau expression. Mol Neuropharmacol 1:6Google Scholar
  128. 128.
    Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM (2007) Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 27:9115–9129PubMedGoogle Scholar
  129. 129.
    Nixon RA (2006) Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends Neurosci 29:528–535PubMedGoogle Scholar
  130. 130.
    Boland B, Nixon RA (2006) Neuronal macroautophagy: from development to degeneration. Mol Aspects Med 27:503–519PubMedGoogle Scholar
  131. 131.
    Butler D, Nixon RA, Bahr BA (2006) Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases. Autophagy 2:234–237PubMedGoogle Scholar
  132. 132.
    Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O’Kane CJ, Schreiber SL, Rubinsztein DC (2007) Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat Chem Biol 3:331–338PubMedGoogle Scholar
  133. 133.
    Furukawa K, Mattson MP (1995) Taxol stabilizes [Ca2+]i and protects hippocampal neurons against excitotoxicity. Brain Res 689:141–146PubMedGoogle Scholar
  134. 134.
    Butler D, Bendiske J, Michaelis ML, Karanian DA, Bahr BA (2007) Microtubule-stabilizing agent prevents protein accumulation-induced loss of synaptic markers. Eur J Pharmacol 562:20–27PubMedGoogle Scholar
  135. 135.
    Michaelis ML, Ansar S, Chen Y, Reiff ER, Seyb KI, Himes RH, Audus KL, Georg GI (2005) {beta}-Amyloid-induced neurodegeneration and protection by structurally diverse microtubule-stabilizing agents. J Pharmacol Exp Ther 312:659–668PubMedGoogle Scholar
  136. 136.
    Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee EB, Xie SX, Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski JQ (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102:227–231PubMedGoogle Scholar
  137. 137.
    Postma TJ, Hoekman K, van Riel JMGH, Heimans JJ, Vermorken JB (1999) Peripheral neuropathy due to biweekly paclitaxel, epirubicin and cispatin in patients with advanced ovarian cancer. J Neuro-oncol 45:241–246Google Scholar
  138. 138.
    Trojanowski JQ, Smith AB, Huryn D, Lee VM (2005) Microtubule-stabilising drugs for therapy of Alzheimer’s disease and other neurodegenerative disorders with axonal transport impairments. Expert Opin Pharmacother 6:683–686PubMedGoogle Scholar
  139. 139.
    Gozes I (2007) Activity-dependent neuroprotective protein: from gene to drug candidate. Pharmacol Ther 114:146–154PubMedGoogle Scholar
  140. 140.
    Matsuoka Y, Jouroukhin Y, Gray AJ, Ma L, Hirata-Fukae C, Li HF, Feng L, Lecanu L, Walker BR, Planel E, Arancio O, Gozes I, Aisen PS (2008) A neuronal microtubule-interacting agent, NAPVSIPQ, reduces tau pathology and enhances cognitive function in a mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 325:146–153PubMedGoogle Scholar
  141. 141.
    Stark AK, Pelvig DP, Jorgensen AM, Andersen BB, Pakkenberg B (2005) Measuring morphological and cellular changes in Alzheimer’s dementia: a review emphasizing stereology. Curr Alzheimer Res 2:449–481PubMedGoogle Scholar
  142. 142.
    Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791PubMedGoogle Scholar
  143. 143.
    Elliott E, Ginzburg I (2006) The role of neurotrophins and insulin on tau pathology in Alzheimer’s disease. Rev Neurosci 17:635–642PubMedGoogle Scholar
  144. 144.
    Capsoni S, Cattaneo A (2006) On the molecular basis linking nerve growth factor (NGF) to Alzheimer’s disease. Cell Mol Neurobiol 26:619–633PubMedGoogle Scholar
  145. 145.
    Longo FM, Massa SM (2005) Neurotrophin receptor-based strategies for Alzheimer’s disease. Curr Alzheimer Res 2:167–169PubMedGoogle Scholar
  146. 146.
    Tuszynski MH (2007) Nerve growth factor gene delivery: animal models to clinical trials. Dev Neurobiol 67:1204–1215PubMedGoogle Scholar
  147. 147.
    Brinton RD, Wang JM (2006) Therapeutic potential of neurogenesis for prevention and recovery from Alzheimer’s disease: allopregnanolone as a proof of concept neurogenic agent. Curr Alzheimer Res 3:185–190PubMedGoogle Scholar
  148. 148.
    Longo FM, Yang T, Knowles JK, Xie Y, Moore LA, Massa SM (2007) Small molecule neurotrophin receptor ligands: novel strategies for targeting Alzheimer’s disease mechanisms. Curr Alzheimer Res 4:503–506PubMedGoogle Scholar
  149. 149.
    Craft S (2006) Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord 20:298–301PubMedGoogle Scholar
  150. 150.
    Li ZG, Zhang W, Sima AA (2007) Alzheimer-like changes in rat models of spontaneous diabetes. Diabetes 56:1817–1824PubMedGoogle Scholar
  151. 151.
    Roses AD, Saunders AM (2006) Perspective on a pathogenesis and treatment of Alzheimer’s disease. Alzheimers Dement 2:59–70PubMedGoogle Scholar
  152. 152.
    Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184:69–91PubMedGoogle Scholar
  153. 153.
    Hoozemans JJ, O’Banion MK (2005) The role of COX-1 and COX-2 in Alzheimer’s disease pathology and the therapeutic potentials of non-steroidal anti-inflammatory drugs. Curr Drug Targets CNS Neurol Disord 4:307–315PubMedGoogle Scholar
  154. 154.
    Ringheim GE, Szczepanik AM (2006) Brain inflammation, cholesterol, and glutamate as interconnected participants in the pathology of Alzheimer’s disease. Curr Pharm Des 12:719–738PubMedGoogle Scholar
  155. 155.
    Seabrook TJ, Jiang L, Maier M, Lemere CA (2006) Minocycline affects microglia activation, Abeta deposition, and behavior in APP-tg mice. Glia 53:776–782PubMedGoogle Scholar
  156. 156.
    Familian A, Eikelenboom P, Veerhuis R (2007) Minocycline does not affect amyloid beta phagocytosis by human microglial cells. Neurosci Lett 416:87–91PubMedGoogle Scholar
  157. 157.
    Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, Vinters HV, Tontonoz P (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci USA 104:10601–10606PubMedGoogle Scholar
  158. 158.
    Sparks DL, Sabbagh M, Connor D, Soares H, Lopez J, Stankovic G, Johnson-Traver S, Ziolkowski C, Browne P (2006) Statin therapy in Alzheimer’s disease. Acta Neurol Scand 185:78–86Google Scholar
  159. 159.
    Marchalant Y, Cerbai F, Brothers HM, Wenk GL (2007) Cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats. Neurobiol Aging, epub June 8, 2007Google Scholar
  160. 160.
    Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015PubMedGoogle Scholar
  161. 161.
    Morgan D, Gordon MN, Tan J, Wilcock D, Rojiani AM (2005) Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J Neuropathol Exp Neurol 64:743–753PubMedGoogle Scholar
  162. 162.
    Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351PubMedGoogle Scholar
  163. 163.
    Huber A, Stuchbury G, Burkle A, Burnell J, Munch G (2006) Neuroprotective therapies for Alzheimer’s disease. Curr Pharm Des 12:705–717PubMedGoogle Scholar
  164. 164.
    Sullivan PG, Brown MR (2005) Mitochondrial aging and dysfunction in Alzheimer’s disease. Prog Neuro-psychopharmacol Biol Psychiatry 29:407–410Google Scholar
  165. 165.
    Mandel S, Amit T, Bar-Am O, Youdim MB (2007) Iron dysregulation in Alzheimer’s disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog Neurobiol 82:348–360PubMedGoogle Scholar
  166. 166.
    Kanowski S, Hoerr R (2003) Ginkgo biloba extract EGb 761 in dementia: intent-to-treat analyses of a 24-week, multi-center, double-blind, placebo-controlled, randomized trial. Pharmacopsychiatry 36:297–303PubMedGoogle Scholar
  167. 167.
    Ames D, Ritchie C (2007) Antioxidants and Alzheimer’s disease: time to stop feeding vitamin E to dementia patients? Int Psychogeriatr/IPA 19:1–8Google Scholar
  168. 168.
    Freund-Levi Y, Basun H, Cederholm T, Faxen-Irving G, Garlind A, Grut M, Vedin I, Palmblad J, Wahlund LO, Eriksdotter-Jonhagen M (2008) Omega-3 supplementation in mild to moderate Alzheimer’s disease: effects on neuropsychiatric symptoms. Int J Geriatr Psychiatry 23:161–169PubMedGoogle Scholar
  169. 169.
    Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev 5:160–170Google Scholar
  170. 170.
    Wenk GL, Parsons CG, Danysz W (2006) Potential role of N-methyl-d-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine. Behav Pharmacol 17:411–424PubMedGoogle Scholar
  171. 171.
    Amatniek JC, Hauser WA, DelCastillo-Castaneda C, Jacobs DM, Marder K, Bell K, Albert M, Brandt J, Stern Y (2006) Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia 47:867–872PubMedGoogle Scholar
  172. 172.
    Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 291:317–324PubMedGoogle Scholar
  173. 173.
    Zoladz PR, Campbell AM, Park CR, Schaefer D, Danysz W, Diamond DM (2006) Enhancement of long-term spatial memory in adult rats by the noncompetitive NMDA receptor antagonists, memantine and neramexane. Pharmacol Biochem Behav 85:298–306PubMedGoogle Scholar
  174. 174.
    De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007) Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601PubMedGoogle Scholar
  175. 175.
    Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 55:697–711PubMedGoogle Scholar
  176. 176.
    Palop JJ, Chin J, Mucke L (2006) A network dysfunction perspective on neurodegenerative diseases. Nature 443:768–773PubMedGoogle Scholar
  177. 177.
    Kasa P, Rakonczay Z, Gulya K (1997) The cholinergic system in Alzheimer’s disease. Prog Neurobiol 52:511–535PubMedGoogle Scholar
  178. 178.
    Farlow M (2002) A clinical overview of cholinesterase inhibitors in Alzheimer’s disease. Int Psychogeriatr/IPA 14(Suppl 1):93–126Google Scholar
  179. 179.
    Raskind MA, Peskind ER, Wessel T, Yuan W (2000) Galantamine in AD: a 6-month randomized, placebo-controlled trial with a 6-month extension. The Galantamine USA-1 Study Group. Neurology 54:2261–2268PubMedGoogle Scholar
  180. 180.
    Decker M (2007) Recent advances in the development of hybrid molecules/designed multiple compounds with antiamnesic properties. Mini Rev Med Chem 7:221–229PubMedGoogle Scholar
  181. 181.
    Klein J (2007) Phenserine. Expert Opin Investig Drugs 16:1087–1097PubMedGoogle Scholar
  182. 182.
    Zhang HY, Yan H, Tang XC (2008) Non-cholinergic effects of huperzine a: beyond inhibition of acetylcholinesterase. Cell Mol Neurobiol 28:173–183PubMedGoogle Scholar
  183. 183.
    Bachurin S, Bukatina E, Lermontova N, Tkachenko S, Afanasiev A, Grigoriev V, Grigorieva I, Ivanov Y, Sablin S, Zefirov N (2001) Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer. Ann NY Acad Sci 939:425–435PubMedCrossRefGoogle Scholar
  184. 184.
    Bachurin SO, Shevtsova EP, Kireeva EG, Oxenkrug GF, Sablin SO (2003) Mitochondria as a target for neurotoxins and neuroprotective agents. Ann NY Acad Sci 993:334–344, discussion 345–339PubMedCrossRefGoogle Scholar
  185. 185.
    Doody RS, Gavrilova S, Sano M, Thomas R, Aisen P, Bachurin S, Seely L, Hung D (2007) Results of a one-year randomized, placebo-controlled trial of dimebon for the treatment of mild to moderate Alzheimer’s disease. Alzheimers Dement 3:S199–S200Google Scholar
  186. 186.
    Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450PubMedGoogle Scholar
  187. 187.
    Fisher A, Pittel Z, Haring R, Bar-Ner N, Kliger-Spatz M, Natan N, Egozi I, Sonego H, Marcovitch I, Brandeis R (2003) M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J Mol Neurosci 20:349–356PubMedGoogle Scholar
  188. 188.
    Caccamo A, Oddo S, Billings LM, Green KN, Martinez-Coria H, Fisher A, LaFerla FM (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49:671–682PubMedGoogle Scholar
  189. 189.
    Korczyn AD (2000) Muscarinic M(1) agonists in the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 9:2259–2267PubMedGoogle Scholar
  190. 190.
    Mirza NR, Peters D, Sparks RG (2003) Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 9:159–186PubMedGoogle Scholar
  191. 191.
    Clader JW, Billard W, Binch H 3rd, Chen LY, Crosby G Jr, Duffy RA, Ford J, Kozlowski JA, Lachowicz JE, Li S, Liu C, McCombie SW, Vice S, Zhou G, Greenlee WJ (2004) Muscarinic M2 antagonists: anthranilamide derivatives with exceptional selectivity and in vivo activity. Bioorganic Med Chem 12:319–326Google Scholar
  192. 192.
    Greenlee W, Clader J, Asberom T, McCombie S, Ford J, Guzik H, Kozlowski J, Li S, Liu C, Lowe D, Vice S, Zhao H, Zhou G, Billard W, Binch H, Crosby R, Duffy R, Lachowicz J, Coffin V, Watkins R, Ruperto V, Strader C, Taylor L, Cox K (2001) Muscarinic agonists and antagonists in the treatment of Alzheimer’s disease. Farmaco 56:247–250PubMedGoogle Scholar
  193. 193.
    Fratiglioni L, Wang HX (2000) Smoking and Parkinson’s and Alzheimer’s disease: review of the epidemiological studies. Behavioural Brain Res 113:117–120Google Scholar
  194. 194.
    Mudo G, Belluardo N, Fuxe K (2007) Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms. J Neural Transm 114:135–147PubMedGoogle Scholar
  195. 195.
    Buccafusco JJ, Letchworth SR, Bencherif M, Lippiello PM (2005) Long-lasting cognitive improvement with nicotinic receptor agonists: mechanisms of pharmacokinetic-pharmacodynamic discordance. Trends Pharmacol Sci 26:352–360PubMedGoogle Scholar
  196. 196.
    Dunbar GC, Inglis F, Kuchibhatla R, Sharma T, Tomlinson M, Wamsley J (2007) Effect of ispronicline, a neuronal nicotinic acetylcholine receptor partial agonist, in subjects with age associated memory impairment (AAMI). J Psychopharmacol (Oxford, England) 21:171–178Google Scholar
  197. 197.
    Martin LF, Freedman R (2007) Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol 78:225–246PubMedCrossRefGoogle Scholar
  198. 198.
    Mitchell ES, Neumaier JF (2005) 5-HT6 receptors: a novel target for cognitive enhancement. Pharmacol Ther 108:320–333PubMedGoogle Scholar
  199. 199.
    Holenz J, Pauwels PJ, Diaz JL, Merce R, Codony X, Buschmann H (2006) Medicinal chemistry strategies to 5-HT(6) receptor ligands as potential cognitive enhancers and antiobesity agents. Drug Discov Today 11:283–299PubMedGoogle Scholar
  200. 200.
    Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic function in the CNS. Neuroscientist 13:127–137PubMedGoogle Scholar
  201. 201.
    Wise LE, Iredale PA, Stokes RJ, Lichtman AH (2007) Combination of rimonabant and donepezil prolongs spatial memory duration. Neuropsychopharmacology 32:1805–1812PubMedGoogle Scholar
  202. 202.
    Wijtmans M, Leurs R, de Esch I (2007) Histamine H3 receptor ligands break ground in a remarkable plethora of therapeutic areas. Expert Opin Investig Drugs 16:967–985PubMedGoogle Scholar
  203. 203.
    Miyamoto E (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharmacol Sci 100:433–442PubMedGoogle Scholar
  204. 204.
    Rose GM, Hopper A, De Vivo M, Tehim A (2005) Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des 11:3329–3334PubMedGoogle Scholar
  205. 205.
    Rose GM, Ong VS, Woodruff-Pak DS (2007) Efficacy of MEM 1003, a novel calcium channel blocker, in delay and trace eyeblink conditioning in older rabbits. Neurobiol Aging 28:766–773PubMedGoogle Scholar
  206. 206.
    Arai AC, Kessler M (2007) Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Current Drug Targets 8:583–602PubMedGoogle Scholar
  207. 207.
    Atack JR, Bayley PJ, Seabrook GR, Wafford KA, McKernan RM, Dawson GR (2006) L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for alpha5-containing GABAA receptors. Neuropharmacology 51:1023–1029PubMedGoogle Scholar
  208. 208.
    Bowery NG (2006) GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol 6:37–43PubMedGoogle Scholar
  209. 209.
    Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurology 6:734–746PubMedGoogle Scholar
  210. 210.
    Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurology 5:228–234PubMedGoogle Scholar
  211. 211.
    Cummings JL, Doody R, Clark C (2007) Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology 69:1622–1634PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Bristol Myers Squibb, Neuroscience Drug DiscoveryWallingfordUSA

Personalised recommendations