Molecular Neurobiology

, Volume 38, Issue 1, pp 1–15

The ART of Loss: Aβ Imaging in the Evaluation of Alzheimer’s Disease and other Dementias

  • Victor L. Villemagne
  • Michelle T. Fodero-Tavoletti
  • Kerryn E. Pike
  • Roberto Cappai
  • Colin L. Masters
  • Christopher C. Rowe
Article

Abstract

Molecular neuroimaging based on annihilation radiation tomographic (ART) techniques such as positron emission tomography (PET), in conjunction with related biomarkers in plasma and cerebrospinal fluid (CSF), are proving valuable in the early and differential diagnosis of Alzheimer’s disease (AD). With the advent of new therapeutic strategies aimed at reducing β-amyloid (Aβ) burden in the brain to potentially prevent or delay functional and irreversible cognitive loss, there is increased interest in developing agents that allow assessment of Aβ burden in vivo. Aβ burden as assessed by molecular imaging matches histopathological reports of Aβ plaque distribution in aging and dementia and appears more accurate than FDG for the diagnosis of AD. Aβ imaging is also a very powerful tool in the differential diagnosis of AD from fronto-temporal dementia (FTD). Although Aβ burden as assessed by PET does not correlate with measures of cognitive decline in AD, it does correlate with memory impairment and rate of memory decline in mild cognitive impairment (MCI) and healthy older subjects. Approximately 30% of asymptomatic controls present cortical 11C-PiB retention. These observations suggest that Aβ deposition is not part of normal ageing, supporting the hypothesis that Aβ deposition occurs well before the onset of symptoms and is likely to represent preclinical AD. Further longitudinal observations are required to confirm this hypothesis and to better elucidate the role of Aβ deposition in the course of Alzheimer’s disease.

Keywords

Alzheimer’s disease Aβ Emission tomography Neurodegenerative disorders Brain imaging 

References

  1. 1.
    Masters CL, Cappai R, Barnham KJ, Villemagne VL (2006) Molecular mechanisms for Alzheimer’s disease: implications for neuroimaging and therapeutics. J Neurochem 97:1700–1725PubMedGoogle Scholar
  2. 2.
    Bennett DA (2000) Part I. Epidemiology and public health impact of Alzheimer’s disease. Dis Mon 46:657–665PubMedGoogle Scholar
  3. 3.
    Johnson N, Davis T, Bosanquet N (2000) The epidemic of Alzheimer’s disease. How can we manage the costs. Pharmacoeconomics 18:215–223PubMedGoogle Scholar
  4. 4.
    Schneider J, Murray J, Banerjee S, Mann A (1999) EUROCARE: a cross-national study of co-resident spouse carers for people with Alzheimer’s disease: I—Factors associated with carer burden. Int J Geriatr Psychiatry 14:651–661PubMedGoogle Scholar
  5. 5.
    Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791PubMedGoogle Scholar
  6. 6.
    Masters CL (2005) Neuropathology of Alzheimer’s disease. In: Burns A, O’Brien J, Ames D (eds) Dementia. 3rd edn. Hodder Arnold, London, pp 393–407Google Scholar
  7. 7.
    Masters CL, Beyreuther K (2005) The neuropathology of Alzheimer’s disease in the year 2005. In: Beal MF, Lang AE, Ludolph AC (eds) Neurodegenerative diseases: neurobiology, pathogenesis and therapeutics. Cambridge University Press, Cambridge, pp 433–440Google Scholar
  8. 8.
    Jellinger K (1990) Morphology of Alzheimer disease and related disorders. In: Maurer K, Riederer P, Beckmann H (eds) Alzheimer disease: epidemiology, neuropathology, neurochemistry, and clinics. Springer, Berlin, pp 61–77Google Scholar
  9. 9.
    Michaelis ML, Dobrowsky RT, Li G (2002) Tau neurofibrillary pathology and microtubule stability. J Mol Neurosci 19:289–293PubMedGoogle Scholar
  10. 10.
    Jellinger KA, Bancher C (1998) Neuropathology of Alzheimer’s disease: a critical update. J Neural Transm Suppl 54:77–95PubMedGoogle Scholar
  11. 11.
    Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249PubMedGoogle Scholar
  12. 12.
    Cappai R, White AR (1999) Amyloid beta. Int J Biochem Cell Biol 31:885–889PubMedGoogle Scholar
  13. 13.
    Villemagne VL, Cappai R, Barnham KJ, Cherny R, Opazo C, Novakovic KE, Rowe CC, Masters CL (2006) In: Barrow CJ, Small BJ (eds) The abeta centric pathway of Alzheimer’s disease, in abeta peptide and Alzheimer’s disease. Springer, London, pp 5–32Google Scholar
  14. 14.
    Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498PubMedGoogle Scholar
  15. 15.
    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185PubMedGoogle Scholar
  16. 16.
    Checler F, Vincent B (2002) Alzheimer’s and prion diseases: distinct pathologies, common proteolytic denominators. Trends Neurosci 25:616–620PubMedGoogle Scholar
  17. 17.
    Robinson SR, Bishop GM (2002) The search for an amyloid solution. Science 298:962–964 author reply 962–964PubMedGoogle Scholar
  18. 18.
    Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20:154–159PubMedGoogle Scholar
  19. 19.
    McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Ab amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866PubMedGoogle Scholar
  20. 20.
    Mega MS, Chu T, Mazziotta JC, Trivedi KH, Thompson PM, Shah A, Cole G, Frautschy SA, Toga AW (1999) Mapping biochemistry to metabolism: FDG-PET and amyloid burden in Alzheimer’s disease. Neuroreport 10:2911–2917PubMedGoogle Scholar
  21. 21.
    Greenberg SM, Rebeck GW, Vonsattel JP, Gomez-Isla T, Hyman BT (1995) Apolipoprotein E epsilon 4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol 38:254–259PubMedGoogle Scholar
  22. 22.
    McLean CA, Beyreuther K, Masters CL (2001) Amyloid abeta levels in Alzheimer’s disease—a diagnostic tool and the key to understanding the natural history of abeta. J Alzheimers Dis 3:305–312PubMedGoogle Scholar
  23. 23.
    Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. Jama 283:1571–1577PubMedGoogle Scholar
  24. 24.
    Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862PubMedGoogle Scholar
  25. 25.
    Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999) The levels of soluble versus insoluble brain Ab distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol 158:328–337PubMedGoogle Scholar
  26. 26.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539PubMedGoogle Scholar
  27. 27.
    Walsh DM, Klyubin I, Shankar GM, Townsend M, Fadeeva JV, Betts V, Podlisny MB, Cleary JP, Ashe KH, Rowan MJ, Selkoe DJ (2005) The role of cell-derived oligomers of abeta in Alzheimer’s disease and avenues for therapeutic intervention. Biochem Soc Trans 33:1087–1090PubMedGoogle Scholar
  28. 28.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944PubMedGoogle Scholar
  29. 29.
    Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review)—report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56:1133–1142PubMedGoogle Scholar
  30. 30.
    Petersen RC (2000) Mild cognitive impairment: transition between aging and Alzheimer’s disease. Neurologia 15:93–101PubMedGoogle Scholar
  31. 31.
    Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308PubMedGoogle Scholar
  32. 32.
    Masters CL, Beyreuther K (2006) Alzheimer’s centennial legacy: prospects for rational therapeutic intervention targeting the abeta amyloid pathway. Brain 129:2823–2839PubMedGoogle Scholar
  33. 33.
    Villemagne VL, Ng S, Cappai R, Barnham KJ, Fodero-Tavoletti MT, Rowe CC, Masters CL (2006) La Lunga Attesa: towards a molecular approach to neuroimaging and therapeutics in Alzheimer’s disease. The Neuroradiology Journal 19:51–75Google Scholar
  34. 34.
    Jobst KA, Smith AD, Szatmari M, Molyneux A, Esirs ME, King E, Smith A, Jaskowski A, McDonald B, Wald N (1992) Detection in life of confirmed Alzheimer’s idsease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet 340:1179–1183PubMedGoogle Scholar
  35. 35.
    Petrella JR, Coleman RE, Doraiswamy PM (2003) Neuroimaging and early diagnosis of Alzheimer disease: a look to the future. Radiology 226:315–336PubMedGoogle Scholar
  36. 36.
    Rapoport SI (2002) Hydrogen magnetic resonance spectroscopy in Alzheimer’s disease. Lancet Neurol 1:82PubMedGoogle Scholar
  37. 37.
    Schuff N, Capizzano AA, Du AT, Amend DL, O’Neill J, Norman D, Kramer J, Jagust W, Miller B, Wolkowitz OM, Yaffe K, Weiner MW (2002) Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 58:928–935PubMedGoogle Scholar
  38. 38.
    Juottonen K, Laakso MP, Insausti R, Lehtovirta M, Pitkanen A, Patanen K, Soininen H (1998) Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging 19:15–22PubMedGoogle Scholar
  39. 39.
    Xu Y, Jack CRJ, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, Boeve BF, Tangalos RG, Petersen RC (2000) Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54:1760–1767PubMedGoogle Scholar
  40. 40.
    de Leon MJ, Convit A, DeSanti S, Bobinski M, George AE, Wisniewski HM, Rusinek H, Carroll R, Saint Louis LA (1997) Contribution of structural neuroimaging to the early diagnosis of Alzheimer’s disease. Int Psychogeriatr 9:183–190 (discussion 247–152)PubMedGoogle Scholar
  41. 41.
    De Toledo-Morrell L, Goncharova I, Dickerson B, Wilson RS, Bennett DA (2000) From healthy aging to early Alzheimer’s disease: in vivo detection of entorhinal cortex atrophy. Ann N Y Acad Sci 911:240–253PubMedCrossRefGoogle Scholar
  42. 42.
    Bobinski M, de Leon MJ, Convit A, De Santi S, Wegiel J, Tarshish CY, Saint Louis LA, Wisniewski HM (1999) MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet 353:38–40PubMedGoogle Scholar
  43. 43.
    Killiany RJ, Gomez-Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, Tanzi R, Jones K, Hyman BT, Albert MS (2000) Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 47:430–439PubMedGoogle Scholar
  44. 44.
    Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson RS, Bennett DA, Beckett LA, deToledo-Morrell L (2001) MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging 22:747–754PubMedGoogle Scholar
  45. 45.
    Silverman DH, Phelps ME (2001) Application of positron emission tomography for evaluation of metabolism and blood flow in human brain: normal development, aging, dementia, and stroke. Mol Genet Metab 74:128–138PubMedGoogle Scholar
  46. 46.
    Villemagne VL, Rowe CC, Macfarlane S, Novakovic KE, Masters CL (2005) Imaginem oblivionis: the prospects of neuroimaging for early detection of Alzheimer’s disease. J Clin Neurosci 12:221–230PubMedGoogle Scholar
  47. 47.
    Phelps ME (2000) PET: the merging of biology and imaging into molecular imaging. J Nucl Med 41:661–681PubMedGoogle Scholar
  48. 48.
    Camargo EE (2001) Brain SPECT in neurology and psychiatry. J Nucl Med 42:611–623PubMedGoogle Scholar
  49. 49.
    Van Heertum RL, Tikofsky RS (2003) Positron emission tomography and single-photon emission computed tomography brain imaging in the evaluation of dementia. Semin Nucl Med 33:77–85PubMedGoogle Scholar
  50. 50.
    Salmon E, Sadzot B, Maquet P, Degueldre C, Lemaire C, Rigo P, Comar D, Franck G (1994) Differential diagnosis of Alzheimer’s disease with PET. J Nucl Med 35:391–398PubMedGoogle Scholar
  51. 51.
    Strauss HW (1991) The ART of PET. J Nucl Med 32:3AGoogle Scholar
  52. 52.
    Devanand DP, Jacobs DM, Tang MX, Del Castillo-Castaneda C, Sano M, Marder K, Bell K, Bylsma FW, Brandt J, Albert M, Stern Y (1997) The course of psychopathologic features in mild to moderate Alzheimer disease. Arch Gen Psychiatry 54:257–263PubMedGoogle Scholar
  53. 53.
    Coleman RE (2005) Positron emission tomography diagnosis of Alzheimer’s disease. Neuroimaging Clin N Am 15:837–846 xPubMedGoogle Scholar
  54. 54.
    Kennedy AM, Frackowiak RS, Newman SK, Bloomfield P, Seaward J, Roques P, Lewington G, Cunningham VJ, Rossor MN (1995) Deficits in cerebral glucose metabolism demonstrated by positron emission tomography in individuals at risk of familial Alzheimer’s disease. Neurosci Lett 186:17–20PubMedGoogle Scholar
  55. 55.
    Small GW, Mazziotta JC, Collins MT, Baxter LR, Phelps ME, Mandelkern MA, Kaplan A, La Rue A, Adamson CF, Chang L et al (1995) Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 273:942–947PubMedGoogle Scholar
  56. 56.
    Silverman DH, Cummings JL, Small G, Gambhir SS, Chen W, Czernin J, Phelps ME (2002) Added clinical benefit of incorporating 2-deoxy-2-[18F]fluoro-D-glucose with positron emission tomography into the clinical evaluation of patients with cognitive impairment. Mol Imaging Biol 4:283–2893PubMedGoogle Scholar
  57. 57.
    Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell AP, Gambhir SS, Hoh CK, Phelps ME (2001) Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 286:2120–2127PubMedGoogle Scholar
  58. 58.
    Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104–1113PubMedGoogle Scholar
  59. 59.
    Villemagne VL, Musachio JL, Scheffel U (1998) Nicotine and related compounds as PET and SPECT ligands. In: Arneric SP, Brioni JD (eds) Neuronal nicotinic receptors: pharmacology and therapeutic opportunities. John Wiley & Sons, New York, pp 235–250Google Scholar
  60. 60.
    Nordberg A, Hartvig P, Lilja A, Viitanen M, Amberla K, Lundqvist H, Andersson J, Nyback H, Ulin J, Anderson Y et al (1991) Nicotine receptors in the brain of patients with Alzheimer’s disease. Studies with 11C-nicotine and positron emission tomography. Acta Radiol Suppl 376:165–166PubMedGoogle Scholar
  61. 61.
    Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49:200–210PubMedGoogle Scholar
  62. 62.
    Horti AG, Villemagne VL (2006) The quest for Eldorado: development of radioligands for in vivo imaging of nicotinic acetylcholine receptors in human brain. Curr Pharm Des 12:3877–3900PubMedGoogle Scholar
  63. 63.
    Nordberg A (1993) Clinical studies in Alzheimer patients with positron emission tomography. Behav Brain Res 57:215–224PubMedGoogle Scholar
  64. 64.
    Nordberg A, Amberla K, Shigeta M, Lundqvist H, Viitanen M, Hellstrom-Lindahl E, Johansson M, Andersson J, Hartvig P, Lilja A, Langstrom B, Winblad B (1998) Long-term tacrine treatment in three mild Alzheimer patients: effects on nicotinic receptors, cerebral blood flow, glucose metabolism, EEG, and cognitive abilities. Alzheimer Dis Assoc Disord 12:228–237PubMedGoogle Scholar
  65. 65.
    Nordberg A, Lundqvist H, Hartvig P, Andersson J, Johansson M, Hellstrom-Lindahi E, Langstrom B (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8:78–84PubMedGoogle Scholar
  66. 66.
    Kadir A, Darreh-Shori T, Almkvist O, Wall A, Langstrom B, Nordberg A (2007) Changes in brain 11C-nicotine binding sites in patients with mild Alzheimer’s disease following rivastigmine treatment as assessed by PET. Psychopharmacology (Berl) 191:1005–1014Google Scholar
  67. 67.
    Kadir A, Darreh-Shori T, Almkvist O, Wall A, Grut M, Strandberg B, Ringheim A, Eriksson B, Blomquist G, Langstrom B, Nordberg A (2007) PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD. Neurobiol Aging 29(8):1204–1217 doi:10.1016/j.neurobiolaging.2007.02.020 PubMedGoogle Scholar
  68. 68.
    Ellis J, Villemagne VL, Nathan P, Mulligan RS, Gong SJ, O’Keefe G, Tochon-Danguy H, Wesnes K, Savage G, Rowe CC (2007) Galantamine improves cognitive performance without effecting nicotinic receptors in early Alzheimer’s disease as measured by 2[18F]F-A-85380 PET. J Nucl Med 48:60PGoogle Scholar
  69. 69.
    Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245PubMedGoogle Scholar
  70. 70.
    Fisher A, Pittel Z, Haring R, Bar-Ner N, Kliger-Spatz M, Natan N, Egozi I, Sonego H, Marcovitch I, Brandeis R (2003) M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J Mol Neurosci 20:349–356PubMedGoogle Scholar
  71. 71.
    Koch HJ, Haas S, Jurgens T (2005) On the physiological relevance of muscarinic acetylcholine receptors in Alzheimer’s disease. Curr Med Chem 12:2915–2921PubMedGoogle Scholar
  72. 72.
    Clader JW, Wang Y (2005) Muscarinic receptor agonists and antagonists in the treatment of Alzheimer’s disease. Curr Pharm Des 11:3353–3361PubMedGoogle Scholar
  73. 73.
    Verhoeff NP (2005) Acetylcholinergic neurotransmission and the beta-amyloid cascade: implications for Alzheimer’s disease. Expert Rev Neurother 5:277–284PubMedGoogle Scholar
  74. 74.
    Rossner S, Sastre M, Bourne K, Lichtenthaler SF (2006) Transcriptional and translational regulation of BACE1 expression—implications for Alzheimer’s disease. Prog Neurobiol 79:95–111PubMedGoogle Scholar
  75. 75.
    Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733PubMedGoogle Scholar
  76. 76.
    Eckelman WC (2006) Imaging of muscarinic receptors in the central nervous system. Curr Pharm Des 12:3901–3913PubMedGoogle Scholar
  77. 77.
    Higuchi M, Yanai K, Okamura N, Meguro K, Arai H, Itoh M, Iwata R, Ido T, Watanabe T, Sasaki H (2000) Histamine H(1) receptors in patients with Alzheimer’s disease assessed by positron emission tomography. Neuroscience 99:721–729PubMedGoogle Scholar
  78. 78.
    Walker Z, Costa DC, Walker RW, Shaw K, Gacinovic S, Stevens T, Livingston G, Ince P, McKeith IG, Katona CL (2002) Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 73:134–140PubMedGoogle Scholar
  79. 79.
    Kemppainen N, Ruottinen H, Nagren K, Rinne JO (2000) PET shows that striatal dopamine D1 and D2 receptors are differentially affected in AD. Neurology 55:205–209PubMedGoogle Scholar
  80. 80.
    Kepe V, Barrio JR, Huang SC, Ercoli L, Siddarth P, Shoghi-Jadid K, Cole GM, Satyamurthy N, Cummings JL, Small GW, Phelps ME (2006) Serotonin 1A receptors in the living brain of Alzheimer’s disease patients. Proc Natl Acad Sci USA 103:702–707PubMedGoogle Scholar
  81. 81.
    Versijpt J, Van Laere KJ, Dumont F, Decoo D, Vandecapelle M, Santens P, Goethals I, Audenaert K, Slegers G, Dierckx RA, Korf J (2003) Imaging of the 5-HT2A system: age-, gender-, and Alzheimer’s disease-related findings. Neurobiol Aging 24:553–561PubMedGoogle Scholar
  82. 82.
    Cohen RM, Andreason PJ, Doudet DJ, Carson RE, Sunderland T (1997) Opiate receptor avidity and cerebral blood flow in Alzheimer’s disease. J Neurol Sci 148:171–180PubMedGoogle Scholar
  83. 83.
    Brown DR, Wyper DJ, Owens J, Patterson J, Kelly RC, Hunter R, McCulloch J (1997) 123Iodo-MK-801: a spect agent for imaging the pattern and extent of glutamate (NMDA) receptor activation in Alzheimer’s disease. J Psychiatr Res 31:605–619PubMedGoogle Scholar
  84. 84.
    Selkoe DJ (2000) The early diagnosis of Alzheimer’s disease. In: Scinto LFM, Daffner KR (eds) The pathophysiology of Alzheimer’s disease. Humana, Totowa, NJ, USA, pp 83–104Google Scholar
  85. 85.
    Mathis CA, Lopresti BJ, Klunk WE (2007) Impact of amyloid imaging on drug development in Alzheimer’s disease. Nucl Med Biol 34:809–822PubMedGoogle Scholar
  86. 86.
    Okamura N, Suemoto T, Furumoto S, Suzuki M, Shimadzu H, Akatsu H, Yamamoto T, Fujiwara H, Nemoto M, Maruyama M, Arai H, Yanai K, Sawada T, Kudo Y (2005) Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J Neurosci 25:10857–10862PubMedGoogle Scholar
  87. 87.
    Sair HI, Doraiswamy PM, Petrella JR (2004) In vivo amyloid imaging in Alzheimer’s disease. Neuroradiology 46:93–104PubMedGoogle Scholar
  88. 88.
    Ono M, Wilson A, Nobrega J, Westaway D, Verhoeff P, Zhuang ZP, Kung MP, Kung HF (2003) 11C-labeled stilbene derivatives as abeta-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl Med Biol 30:565–571PubMedGoogle Scholar
  89. 89.
    Kung MP, Skovronsky DM, Hou C, Zhuang ZP, Gur TL, Zhang B, Trojanowski JQ, Lee VM, Kung HF (2003) Detection of amyloid plaques by radioligands for abeta40 and abeta42: potential imaging agents in Alzheimer’s patients. J Mol Neurosci 20:15–24PubMedGoogle Scholar
  90. 90.
    Link CD, Johnson CJ, Fonte V, Paupard M, Hall DH, Styren S, Mathis CA, Klunk WE (2001) Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging 22:217–226PubMedGoogle Scholar
  91. 91.
    Klunk WE, Bacskai BJ, Mathis CA, Kajdasz ST, McLellan ME, Frosch MP, Debnath ML, Holt DP, Wang Y, Hyman BT (2002) Imaging Ab plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative. J Neuropath Exp Neurol 61:797–805PubMedGoogle Scholar
  92. 92.
    Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, Hamilton RL, Ikonomovic MD, DeKosky ST, Mathis CA (2003) The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 23:2086–2092PubMedGoogle Scholar
  93. 93.
    Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Mathis CA (2001) Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci 69:1471–1484PubMedGoogle Scholar
  94. 94.
    Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, Holt DP, Wang Y, Huang GF, Debnath ML, Klunk WE (2002) A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett 12:295–298PubMedGoogle Scholar
  95. 95.
    Bacskai BJ, Hickey GA, Skoch J, Kajdasz ST, Wang Y, Huang GF, Mathis CA, Klunk WE, Hyman BT (2003) Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci USA 100:12462–12467PubMedGoogle Scholar
  96. 96.
    Mathis CA, Holt DP, Wang Y, Huang GF, Debnath ML, Klunk WE (2001) Lipophilic 11C-labelled thioflavin-T analogues for imaging amyloid plaques in Alzheimer’s disease. J Labelled Cpd Radiopharm 44:S26–S28Google Scholar
  97. 97.
    Mathis CA, Wang Y, Holt DP, Huang GF, Debnath ML, Klunk WE (2003) Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 46:2740–2754PubMedGoogle Scholar
  98. 98.
    Zhang W, Oya S, Kung MP, Hou C, Maier DL, Kung HF (2005) F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting abeta aggregates in the brain. Nucl Med Biol 32:799–809PubMedGoogle Scholar
  99. 99.
    Kung MP, Hou C, Zhuang ZP, Skovronsky D, Kung HF (2004) Binding of two potential imaging agents targeting amyloid plaques in postmortem brain tissues of patients with Alzheimer’s disease. Brain Res 1025:98–105PubMedGoogle Scholar
  100. 100.
    Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, Lavretsky H, Burggren AC, Cole GM, Vinters HV, Thompson PM, Huang SC, Satyamurthy N, Phelps ME, Barrio JR (2006) PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med 355:2652–2663PubMedGoogle Scholar
  101. 101.
    Kudo Y (2006) Development of amyloid imaging PET probes for an early diagnosis of Alzheimer’s disease. Minim Invasive Ther Allied Technol 15:209–213PubMedGoogle Scholar
  102. 102.
    Agdeppa ED, Kepe V, Petri A, Satyamurthy N, Liu J, Huang SC, Small GW, Cole GM, Barrio JR (2003) In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-[6-[(2-[(18)F]fluoroethyl)(methyl)amino]-2-naphthyl]ethylidene)malononitrile. Neuroscience 117:723–730PubMedGoogle Scholar
  103. 103.
    Barrio JR, Huang SC, Cole G, Satyamurthy N, Petric A, Phelps ME, Small G (1999) PET imaging of tangles and plaques in Alzheimer disease with a highly lipophilic probe. J Labelled Compd Radiopharm 42:S194–S195Google Scholar
  104. 104.
    Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localisation of neurofibrillary tangles and b-amyloid plaques in the brains of living patients with Alzheimer’s disease. Am J Ger Psychiatry 10:24–35Google Scholar
  105. 105.
    Small GW, Agdeppa ED, Kepe V, Satyamurthy N, Huang SC, Barrio JR (2002) In vivo brain imaging of tangle burden in humans. J Mol Neurosci 19:323–327PubMedGoogle Scholar
  106. 106.
    Lee VM (2002) Related Amyloid binding ligands as Alzheimer’s disease therapies. Neurobiol Aging 23:1039–1042PubMedGoogle Scholar
  107. 107.
    Marshall JR, Stimson ER, Ghilardi JR, Vinters HV, Mantyh PW, Maggio JE (2002) Noninvasive imaging of peripherally injected Alzheimer’s disease type synthetic A beta amyloid in vivo. Bioconjug Chem 13:276–284PubMedGoogle Scholar
  108. 108.
    Kurihara A, Pardridge WM (2000) Abeta(1–40) peptide radiopharmaceuticals for brain amyloid imaging: (111)In chelation, conjugation to poly(ethylene glycol)-biotin linkers, and autoradiography with Alzheimer’s disease brain sections. Bioconjug Chem 11:380–386PubMedGoogle Scholar
  109. 109.
    Majocha RE, Reno JM, Friedland RP, Van Haight C, Lyle LR, Marotta CA (1992) Development of a monoclonal antibody specific for b/A4 amyloid in Alzheimer’s disease brain for application to in vivo imaging of amyloid angiopathy. J Nucl Med 33:2184–2189PubMedGoogle Scholar
  110. 110.
    Walker LC, Price DL, Voytko ML, Schenk DB (1994) Labelling of cerebral amyloid in vivo with a monoclonal antibody. J Neuropathol Exp Neurol 53:377–383PubMedGoogle Scholar
  111. 111.
    Poduslo JF, Ramakrishnan M, Holasek SS, Ramirez-Alvarado M, Kandimalla KK, Gilles EJ, Curran GL, Wengenack TM (2007) In vivo targeting of antibody fragments to the nervous system for Alzheimer’s disease immunotherapy and molecular imaging of amyloid plaques. J Neurochem 102:420–433PubMedGoogle Scholar
  112. 112.
    Shi J, Perry G, Berridge MS, Aliev G, Siedlak SL, Smith MA, LaManna JC, Friedland RP (2002) Labeling of cerebral amyloid beta deposits in vivo using intranasal basic fibroblast growth factor and serum amyloid P component in mice. J Nucl Med 43:1044–1051PubMedGoogle Scholar
  113. 113.
    Wadghiri YZ, Sigurdsson EM, Wisniewski T, Turnbull DH (2005) Magnetic resonance imaging of amyloid plaques in transgenic mice. Methods Mol Biol 299:365–379PubMedGoogle Scholar
  114. 114.
    Vanhoutte G, Dewachter I, Borghgraef P, Van Leuven F, Van der Linden A (2005) Noninvasive in vivo MRI detection of neuritic plaques associated with iron in APP[V717I] transgenic mice, a model for Alzheimer’s disease. Magn Reson Med 53:607–613PubMedGoogle Scholar
  115. 115.
    Sato K, Higuchi M, Iwata N, Saido TC, Sasamoto K (2004) Fluoro-substituted and 13C-labeled styrylbenzene derivatives for detecting brain amyloid plaques. Eur J Med Chem 39:573–578PubMedGoogle Scholar
  116. 116.
    Wadghiri YZ, Sigurdsson EM, Sadowski M, Elliott JI, Li Y, Scholtzova H, Tang CY, Aguinaldo G, Pappolla M, Duff K, Wisniewski T, Turnbull DH (2003) Detection of Alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn Reson Med 50:293–302PubMedGoogle Scholar
  117. 117.
    Higuchi M, Iwata N, Matsuba Y, Sato K, Sasamoto K, Saido TC (2005) (19)F and (1)H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 8:527–533PubMedGoogle Scholar
  118. 118.
    Poduslo JF, Curran GL, Peterson JA, McCormick DJ, Fauq AH, Khan MA, Wengenack TM (2004) Design and chemical synthesis of a magnetic resonance contrast agent with enhanced in vitro binding, high blood–brain barrier permeability, and in vivo targeting to Alzheimer’s disease amyloid plaques. Biochemistry 43:6064–6075PubMedGoogle Scholar
  119. 119.
    Maezawa I, Hong HS, Liu R, Wu CY, Cheng RH, Kung MP, Kung HF, Lam KS, Oddo S, Laferla FM, Jin LW (2008) Congo red and thioflavin-T analogs detect abeta oligomers. J Neurochem 104:457–468PubMedGoogle Scholar
  120. 120.
    Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstrom M, Savitcheva I, Huang GF, Estrada S, Ausen B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Langstrom B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319PubMedGoogle Scholar
  121. 121.
    Klunk WE, Lopresti BJ, Ikonomovic MD, Lefterov IM, Koldamova RP, Abrahamson EE, Debnath ML, Holt DP, Huang GF, Shao L, DeKosky ST, Price JC, Mathis CA (2005) Binding of the positron emission tomography tracer Pittsburgh compound-B reflects the amount of amyloid-beta in Alzheimer’s disease brain but not in transgenic mouse brain. J Neurosci 25:10598–10606PubMedGoogle Scholar
  122. 122.
    Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, Hamilton RL, Ikonomovic MD, DeKosky ST, Mathis CA (2003) The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 23:2086–2092PubMedGoogle Scholar
  123. 123.
    Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35PubMedGoogle Scholar
  124. 124.
    Verhoeff NP, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, Kung HF, Kung MP, Houle S (2004) In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595PubMedGoogle Scholar
  125. 125.
    Kudo Y, Okamura N, Furumoto S, Tashiro M, Furukawa K, Maruyama M, Itoh M, Iwata R, Yanai K, Arai H (2007) 2-(2-[2-Dimethylaminothiazol-5-yl]Ethenyl)-6-(2-[Fluoro]Ethoxy)Benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J Nucl Med 48:553–561PubMedGoogle Scholar
  126. 126.
    Opazo C, Luza S, Villemagne VL, Volitakis I, Rowe C, Barnham KJ, Strozyk D, Masters CL, Cherny RA, Bush AI (2006) Radioiodinated clioquinol as a biomarker for beta-amyloid: Zn complexes in Alzheimer’s disease. Aging Cell 5:69–79PubMedGoogle Scholar
  127. 127.
    Newberg AB, Wintering NA, Plossl K, Hochold J, Stabin MG, Watson M, Skovronsky D, Clark CM, Kung MP, Kung HF (2006) Safety, biodistribution, and dosimetry of 123I-IMPY: a novel amyloid plaque-imaging agent for the diagnosis of Alzheimer’s disease. J Nucl Med 47:748–754PubMedGoogle Scholar
  128. 128.
    Mathis CA, Klunk WE, Price JC, DeKosky ST (2005) Imaging technology for neurodegenerative diseases: progress toward detection of specific pathologies. Arch Neurol 62:196–200PubMedGoogle Scholar
  129. 129.
    Ye L, Morgenstern JL, Gee AD, Hong G, Brown J, Lockhart A (2005) Delineation of positron emission tomography imaging agent binding sites on beta-amyloid peptide fibrils. J Biol Chem 280:23599–23604PubMedGoogle Scholar
  130. 130.
    Lockhart A, Ye L, Judd DB, Merritt AT, Lowe PN, Morgenstern JL, Hong G, Gee AD, Brown J (2005) Evidence for the presence of three distinct binding sites for the thioflavin T class of Alzheimer’s disease PET imaging agents on beta-amyloid peptide fibrils. J Biol Chem 280:7677–7684PubMedGoogle Scholar
  131. 131.
    Lockhart A, Lamb JR, Osredkar T, Sue LI, Joyce JN, Ye L, Libri V, Leppert D, Beach TG (2007) PIB is a non-specific imaging marker of amyloid-beta (A{beta}) peptide-related cerebral amyloidosis. Brain 130(Pt 10):2607–2615PubMedGoogle Scholar
  132. 132.
    Maeda J, Ji B, Irie T, Tomiyama T, Maruyama M, Okauchi T, Staufenbiel M, Iwata N, Ono M, Saido TC, Suzuki K, Mori H, Higuchi M, Suhara T (2007) Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography. J Neurosci 27:10957–10968PubMedGoogle Scholar
  133. 133.
    Toyama H, Ye D, Ichise M, Liow JS, Cai L, Jacobowitz D, Musachio JL, Hong J, Crescenzo M, Tipre D, Lu JQ, Zoghbi S, Vines DC, Seidel J, Katada K, Green MV, Pike VW, Cohen RM, Innis RB (2005) PET imaging of brain with the beta-amyloid probe, [11C]6-OH-BTA-1, in a transgenic mouse model of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 32:593–600PubMedGoogle Scholar
  134. 134.
    Harigaya Y, Saido TC, Eckman CB, Prada CM, Shoji M, Younkin SG (2000) Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun 276:422–427PubMedGoogle Scholar
  135. 135.
    Schilling S, Lauber T, Schaupp M, Manhart S, Scheel E, Bohm G, Demuth HU (2006) On the seeding and oligomerization of pGlu-amyloid peptides (in vitro). Biochemistry 45:12393–12399PubMedGoogle Scholar
  136. 136.
    Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, Cowie TF, Dickinson KL, Maruff P, Darby D, Smith C, Woodward M, Merory J, Tochon-Danguy H, O’Keefe G, Klunk WE, Mathis CA, Price JC, Masters CL, Villemagne VL (2007) Imaging beta-amyloid burden in aging and dementia. Neurology 68:1718–1725PubMedGoogle Scholar
  137. 137.
    Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, Dekosky ST, Mathis CA (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 25(11):1528–1547PubMedGoogle Scholar
  138. 138.
    Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris JC, Mintun MA (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717PubMedGoogle Scholar
  139. 139.
    Johnson KA, Gregas M, Becker JA, Kinnecom C, Salat DH, Moran EK, Smith EE, Rosand J, Rentz DM, Klunk WE, Mathis CA, Price JC, Dekosky ST, Fischman AJ, Greenberg SM (2007) Imaging of amyloid burden and distribution in cerebral amyloid angiopathy. Ann Neurol 62:229–234PubMedGoogle Scholar
  140. 140.
    Bacskai BJ, Frosch MP, Freeman SH, Raymond SB, Augustinack JC, Johnson KA, Irizarry MC, Klunk WE, Mathis CA, Dekosky ST, Greenberg SM, Hyman BT, Growdon JH (2007) Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol 64:431–434PubMedGoogle Scholar
  141. 141.
    Archer HA, Edison P, Brooks DJ, Barnes J, Frost C, Yeatman T, Fox NC, Rossor MN (2006) Amyloid load and cerebral atrophy in Alzheimer’s disease: an 11C-PIB positron emission tomography study. Ann Neurol 60:145–147PubMedGoogle Scholar
  142. 142.
    Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, Larossa GN, Spinner ML, Klunk WE, Mathis CA, Dekosky ST, Morris JC, Holtzman DM (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid abeta(42) in humans. Ann Neurol 59:512–519PubMedGoogle Scholar
  143. 143.
    Nelissen N, Vandenbulcke M, Fannes K, Verbruggen A, Peeters R, Dupont P, Van Laere K, Bormans G, Vandenberghe R (2007) Abeta amyloid deposition in the language system and how the brain responds. Brain 130:2055–2069PubMedGoogle Scholar
  144. 144.
    Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, DeKosky ST, Mathis CA (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 25:1528–1547PubMedGoogle Scholar
  145. 145.
    Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840PubMedGoogle Scholar
  146. 146.
    Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, Meltzer CC, Schimmel K, Tsopelas ND, DeKosky ST, Price JC (2005) Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 46:1959–1972PubMedGoogle Scholar
  147. 147.
    Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, Mathis CA, Klunk WE, Masters CL, Rowe CC (2007) {beta}-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain 130:2837–2844PubMedGoogle Scholar
  148. 148.
    Ng S, Villemagne VL, Berlangieri S, Lee ST, Cherk M, Gong SJ, Ackermann U, Saunder T, Tochon-Danguy H, Jones G, Smith C, O’Keefe G, Masters CL, Rowe CC (2007) Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med 48:547–552PubMedGoogle Scholar
  149. 149.
    LeVine H 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284PubMedGoogle Scholar
  150. 150.
    Fodero-Tavoletti MT, Smith DP, McLean CA, Adlard PA, Barnham KJ, Foster LE, Leone L, Perez K, Cortes M, Culvenor JG, Li QX, Laughton KM, Rowe CC, Masters CL, Cappai R, Villemagne VL (2007) In vitro characterization of Pittsburgh compound-B binding to Lewy bodies. J Neurosci 27:10365–10371PubMedGoogle Scholar
  151. 151.
    Johansson A, Savitcheva I, Forsberg A, Engler H, Langstrom B, Nordberg A, Askmark H (2008) [(11)C]-PIB imaging in patients with Parkinson’s disease: preliminary results. Parkinsonism Relat Disord 14(4):345–347 doi:10.1016/j.parkreldis.2007.07.010 PubMedGoogle Scholar
  152. 152.
    Rinne JO, Edison P, Rowe CC, Ahmed I, Villemagne VL, Chaudhuri KR, Brooks DJ (2007) Increased amyloid load In Parkinson’s Disease Dementia (PDD) and Lewy Body Dementia (LBD) Measured with 11C-PIB PET. Neurodegenerative Dis 1:307Google Scholar
  153. 153.
    Masliah E, Rockenstein E, Veinbergs I, Sagara Y, Mallory M, Hashimoto M, Mucke L (2001) Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proc Natl Acad Sci USA 98:12245–12250PubMedGoogle Scholar
  154. 154.
    Rabinovici GD, Furst AJ, O’Neil JP, Racine CA, Mormino EC, Baker SL, Chetty S, Patel P, Pagliaro TA, Klunk WE, Mathis CA, Rosen HJ, Miller BL, Jagust WJ (2007) 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68:1205–1212PubMedGoogle Scholar
  155. 155.
    Engler H, Santillo AF, Wang SX, Lindau M, Savitcheva I, Nordberg A, Lannfelt L, Langstrom B, Kilander L (2007) In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imaging 35:100–106PubMedGoogle Scholar
  156. 156.
    Drzezga A, Grimmer T, Henriksen G, Stangier I, Perneczky R, Diehl-Schmid J, Mathis CA, Klunk WE, Price J, DeKosky ST, Wester HJ, Schwaiger M, Kurz A (2007) Imaging of amyloid-plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 39:619–633 doi:10.1016/j.neuroimage.2007.09.020. 2007 PubMedGoogle Scholar
  157. 157.
    Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, Klunk WE, Mathis CA, DeKosky ST, Morris JC (2006) [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67:446–452PubMedGoogle Scholar
  158. 158.
    Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368PubMedGoogle Scholar
  159. 159.
    Hulette CM, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM (1998) Neuropathological and neuropsychological changes in “normal” aging: evidence for preclinical Alzheimer disease in cognitively normal individuals. J Neuropathol Exp Neurol 57:1168–1174PubMedGoogle Scholar
  160. 160.
    Morris JC, Price AL (2001) Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. J Mol Neurosci 17:101–118PubMedGoogle Scholar
  161. 161.
    Whyte S, Wilson N, Currie J, Maruff P, Malone V, Shafiq-Antonacci R, Tyler P, Derry KL, Underwood J, Li QX, Beyreuther K, Masters CL (1997) Collection and normal levels of the amyloid precursor protein in plasma. Ann Neurol 41:121–124PubMedGoogle Scholar
  162. 162.
    Collie A, Maruff P, Shafiq-Antonacci R, Smith M, Hallup M, Schofield PR, Masters CL, Currie J (2001) Memory decline in healthy older people: implications for identifying mild cognitive impairment. Neurology 56:1533–1538PubMedGoogle Scholar
  163. 163.
    Villemagne VL, Pike KE, Darby D, Maruff P, Savage G, Ng S, Ackermann U, Cowie TF, Currie J, Chan SG, Jones G, Tochon-Danguy H, O’Keefe G, Masters CL, Rowe CC (2008) Abeta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer’s disease. Neuropsychologia 46(6):1688–1697 doi:10.1016/j.neuropsychologia.2008.02.008 Google Scholar
  164. 164.
    Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, Berg L (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58:397–405PubMedGoogle Scholar
  165. 165.
    Yaffe K, Petersen RC, Lindquist K, Kramer J, Miller B (2006) Subtype of mild cognitive impairment and progression to dementia and death. Dement Geriatr Cogn Disord 22:312–319PubMedGoogle Scholar
  166. 166.
    Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, Ringheim A, Langstrom B, Nordberg A (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging (in press) doi:10.1016/j.neurobiolaging.2007.03.029
  167. 167.
    Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, Wall A, Ringheim A, Langstrom B, Nordberg A (2006) Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129:2856–2866PubMedGoogle Scholar
  168. 168.
    Tolboom N, Yaqub M, Lubberink M, Kloet RW, Boellaard R, Windhorst B, Scheltens P, Lammertsma A, van Berckel BN (2006) Test–retest variability of [11C]PIB studies in healthy subjects and AD patients. Neuroimage 21:T100Google Scholar
  169. 169.
    Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472PubMedGoogle Scholar
  170. 170.
    Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull 61:1–24PubMedGoogle Scholar
  171. 171.
    Klunk WE, Price JC, Mathis CA, Tsopelas ND, Lopresti BJ, Ziolko SK, Bi W, Hoge JA, Cohen AD, Ikonomovic MD, Saxton JA, Snitz BE, Pollen DA, Moonis M, Lippa CF, Swearer JM, Johnson KA, Rentz DM, Fischman AJ, Aizenstein HJ, DeKosky ST (2007) Amyloid deposition begins in the striatum of presenilin-1 mutation carriers from two unrelated pedigrees. J Neurosci 27:6174–6184PubMedGoogle Scholar
  172. 172.
    Braak H, Braak E (1997) Staging of Alzheimer-related cortical destruction. Int Psychogeriatr 9(Suppl 1):257–261 (discussion 269–272)PubMedGoogle Scholar
  173. 173.
    Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800PubMedGoogle Scholar
  174. 174.
    Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G, Beyreuther K, Masters CL (1988) A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 38:1688–1693PubMedGoogle Scholar
  175. 175.
    Ng SY, Villemagne VL, Masters CL, Rowe CC (2007) Evaluating atypical dementia syndromes using positron emission tomography with carbon 11 labeled Pittsburgh compound B. Arch Neurol 64:1140–1144PubMedGoogle Scholar
  176. 176.
    Kung MP, Zhuang ZP, Hou C, Kung HF (2004) Development and evaluation of iodinated tracers targeting amyloid plaques for SPECT imaging. J Mol Neurosci 24:49–53PubMedGoogle Scholar
  177. 177.
    Zhuang ZP, Kung MP, Hou C, Ploessl K, Kung HF (2005) Biphenyls labeled with technetium 99m for imaging beta-amyloid plaques in the brain. Nucl Med Biol 32:171–184PubMedGoogle Scholar
  178. 178.
    Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, Tochon-Danguy H, Chan G, Berlangieri SU, Jones G, Dickinson-Rowe KL, Kung HP, Zhang W, Kung MP, Skovronsky D, Dyrks T, Holl G, Krause S, Friebe M, Lehman L, Lindemann S, Dinkelborg LM, Masters CL, Villemagne VL (2008) Imaging of amyloid beta in Alzheimer’s disease with (18)F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7:129–135PubMedGoogle Scholar
  179. 179.
    Mathis CA, Lopresti BJ, Mason N, Price J, Flatt N, Bi W, Ziolko S, DeKosky S, Klunk WE (2007) Comparison of the amyloid imaging agents [F-18]3′-F-PIB and [C-11]PIB in Alzheimer’s disease and control subjects. J Nucl Med 48:56PGoogle Scholar
  180. 180.
    DeKosky S (2003) Early intervention is key to successful management of Alzheimer disease. Alzheimer Dis Assoc Disord 17(Suppl 4):S99–S104PubMedGoogle Scholar
  181. 181.
    de Leon MJ, Mosconi L, Blennow K, DeSanti S, Zinkowski R, Mehta PD, Pratico D, Tsui W, Saint Louis LA, Sobanska L, Brys M, Li Y, Rich K, Rinne J, Rusinek H (2007) Imaging and CSF studies in the preclinical diagnosis of Alzheimer’s disease. Ann N Y Acad Sci 1097:114–145PubMedGoogle Scholar
  182. 182.
    Frank RA, Galasko D, Hampel H, Hardy J, de Leon MJ, Mehta PD, Rogers J, Siemers E, Trojanowski JQ (2003) Biological markers for therapeutic trials in Alzheimer’s disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer’s disease. Neurobiol Aging 24:521–536PubMedGoogle Scholar
  183. 183.
    DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM (2001) Peripheral anti-Ab antibody alters CNS and plasma Ab clearance and decreases brain Ab burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 98:8850–8855PubMedGoogle Scholar
  184. 184.
    Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691PubMedGoogle Scholar
  185. 185.
    Xia W (2003) Amyloid inhibitors and Alzheimer’s disease. Curr Opin Investig Drugs 4:55–59PubMedGoogle Scholar
  186. 186.
    Schenk D, Hagen M, Seubert P (2004) Current progress in beta-amyloid immunotherapy. Curr Opin Immunol 16:599–606PubMedGoogle Scholar
  187. 187.
    Dubois B, Feldman HH, Jacova C, Dekosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Victor L. Villemagne
    • 1
    • 2
    • 3
  • Michelle T. Fodero-Tavoletti
    • 2
    • 3
    • 5
  • Kerryn E. Pike
    • 1
  • Roberto Cappai
    • 2
    • 3
    • 5
  • Colin L. Masters
    • 2
    • 3
  • Christopher C. Rowe
    • 1
    • 4
    • 6
  1. 1.Department of Nuclear MedicineCentre for PET, Austin HealthHeidelbergAustralia
  2. 2.Department of PathologyThe University of MelbourneMelbourneAustralia
  3. 3.The Mental Research Institute of VictoriaParkvilleAustralia
  4. 4.Centre for NeuroscienceThe University of MelbourneMelbourneAustralia
  5. 5.Bio21 InstituteThe University of MelbourneMelbourneAustralia
  6. 6.Department of MedicineThe University of MelbourneMelbourneAustralia

Personalised recommendations