Molecular Neurobiology

, Volume 36, Issue 1, pp 92–101

The Endocannabinoid System and Extinction Learning

Article

Abstract

The endocannabinoid system has emerged as a versatile neuromodulatory system, implicated in a plethora of physiological and pathophysiological processes. Cannabinoid receptor type 1 (CB1 receptor) and endocannabinoids are widely distributed in the brain. Their roles in learning and memory have been well documented, using rodents in various memory tests. Depending on the test, the endocannabinoid system is required in the acquisition and/or extinction of memory. In particular, the activation of CB1 receptor-mediated signaling is centrally involved in the facilitation of behavioral adaptation after the acquisition of aversive memories. As several human psychiatric disorders, such as phobia, generalized anxiety disorders, and posttraumatic stress disorder (PTSD) appear to involve aberrant memory processing and impaired adaptation to changed environmental conditions, the hope has been fuelled that the endocannabinoid system might be a valuable therapeutic target for the treatment of these disorders. This review summarizes the current data on the role of the endocannabinoid system in the modulation of extinction learning.

Keywords

Endocannabinoids Cannabinoid receptor THC Extinction Habituation Anxiety Posttraumatic stress disorder Phobia Rodent Fear conditioning 

References

  1. 1.
    Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884PubMedGoogle Scholar
  2. 2.
    Di Marzo V, De Petrocellis L, Bisogno T (2005) The biosynthesis, fate and pharmacological properties of endocannabinoids. Handb Exp Pharmacol 168:147–185PubMedCrossRefGoogle Scholar
  3. 3.
    Pertwee RG (2005) Pharmacological actions of cannabinoids. Handb Exp Pharmacol 168:1–51PubMedGoogle Scholar
  4. 4.
    Valverde O, Karsak M, Zimmer A (2005) Analysis of the endocannabinoid system by using CB1 cannabinoid receptor knockout mice. Handb Exp Pharmacol 168:117–145PubMedGoogle Scholar
  5. 5.
    Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27:73–100PubMedGoogle Scholar
  6. 6.
    Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122PubMedGoogle Scholar
  7. 7.
    Matias I, Di Marzo V (2007) Endocannabinoids and the control of energy balance. Trends Endocrinol Metab 18:27–37PubMedGoogle Scholar
  8. 8.
    Harkany T, Guzman M, Galve-Roperh I, Berghuis P, Devi LA, Mackie K (2007) The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol Sci 28:83–92PubMedGoogle Scholar
  9. 9.
    Wotjak CT (2005) Role of endogenous cannabinoids in cognition and emotionality. Mini Rev Med Chem 5:659–670PubMedGoogle Scholar
  10. 10.
    Sullivan JM (2000) Cellular and molecular mechanisms underlying learning and memory impairments produced by cannabinoids. Learn Mem 7:132–139PubMedGoogle Scholar
  11. 11.
    Riedel G, Davies SN (2005) Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol 168:445–477PubMedGoogle Scholar
  12. 12.
    Ranganathan M, D’Souza DC (2006) The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology (Berl) 188:425–444Google Scholar
  13. 13.
    Lichtman AH, Varvel SA, Martin BR (2002) Endocannabinoids in cognition and dependence. Prostaglandins Leukot. Essent Fatty Acids 66:269–285Google Scholar
  14. 14.
    Robbe D, Montgomery SM, Thome A, Rueda-Orozco PE, McNaughton BL, Buzsaki G (2006) Cannabinoids reveal importance of spike timing coordination in hippocampal function. Nat Neurosci 9:1526–1533PubMedGoogle Scholar
  15. 15.
    Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066PubMedGoogle Scholar
  16. 16.
    Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 168:299–325PubMedGoogle Scholar
  17. 17.
    Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225PubMedGoogle Scholar
  18. 18.
    Lutz B (2002) Molecular biology of cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids 66:123–142PubMedGoogle Scholar
  19. 19.
    Zimmer A, Zimmer AM, Hohmann AG, Herkenham M, Bonner TI (1999) Increased mortality, hypoactivity, and hypoalgesia in cannabinoid CB1 receptor knockout mice. Proc Natl Acad Sci USA 96:5780–5785PubMedGoogle Scholar
  20. 20.
    Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Bohme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M (1999) Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 283:401–404PubMedGoogle Scholar
  21. 21.
    Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang J, Hofmann C, Zieglgansberger W, Di Marzo V, Lutz B (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534PubMedGoogle Scholar
  22. 22.
    Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, van der Stelt M, Lopez-Rodriguez ML, Casanova E, Schütz G, Zieglgänsberger W, Di Marzo V, Behl C, Lutz B (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84–88PubMedGoogle Scholar
  23. 23.
    Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R, Kelsch W, Jacob W, Marsch R, Ekker M, Long J, Rubenstein JL, Goebbels S, Nave KA, During M, Klugmann M, Wolfel B, Dodt HU, Zieglgänsberger W, Wotjak CT, Mackie K, Elphick MR, Marsicano G, Lutz B (2006) The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51:455–466PubMedGoogle Scholar
  24. 24.
    Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76PubMedGoogle Scholar
  25. 25.
    Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system. J Endocrinol Invest 29:27–46PubMedGoogle Scholar
  26. 26.
    Klein TW (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5:400–411PubMedGoogle Scholar
  27. 27.
    Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98:9371–9376PubMedGoogle Scholar
  28. 28.
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313PubMedGoogle Scholar
  29. 29.
    Rinaldi-Carmona M, Barth F, Heaulme M, Shire D, Calandra B, Congy C, Martinez S, Maruani J, Neliat G, Caput D, Ferrara P, Soubrié P, Brelière JC, Le Fur G (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240–244PubMedGoogle Scholar
  30. 30.
    Gatley SJ, Gifford AN, Volkow ND, Lan R, Makriyannis A (1996) 123I-labeled AM251: a radioiodinated ligand which binds in vivo to mouse brain cannabinoid CB1 receptors. Eur J Pharmacol 307:331–338PubMedGoogle Scholar
  31. 31.
    Rinaldi-Carmona M, Barth F, Congy C, Martinez S, Oustric D, Perio A, Poncelet M, Maruani J, Arnone M, Finance O, Soubrie P, Le Fur G (2004) SR147778 [5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyr azole-3-carboxamide], a new potent and selective antagonist of the CB1 cannabinoid receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther 310:905–914PubMedGoogle Scholar
  32. 32.
    Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, Rana GL, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81PubMedGoogle Scholar
  33. 33.
    Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D (1997) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097PubMedGoogle Scholar
  34. 34.
    De Petrocellis L, Bisogno T, Davis JB, Pertwee RG, Di Marzo V (2000) Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett 483:52–56PubMedGoogle Scholar
  35. 35.
    Lopez-Rodriguez ML, Viso A, Ortega-Gutierrez S, Lastres-Becker I, Gonzalez S, Fernandez-Ruiz J, Ramos JA (2001) Design, synthesis and biological evaluation of novel arachidonic acid derivatives as highly potent and selective endocannabinoid transporter inhibitors. J Med Chem 44:4505–4508PubMedGoogle Scholar
  36. 36.
    de Sousa N, Almeida OF, Wotjak CT (2006) A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav 5(Suppl 2):5–24PubMedGoogle Scholar
  37. 37.
    Reibaud M, Obinu MC, Ledent C, Parmentier M, Bohme GA, Imperato A (1999) Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur J Pharmacol 379:R1–R2PubMedGoogle Scholar
  38. 38.
    Maccarrone M, Valverde O, Barbaccia ML, Castane A, Maldonado R, Ledent C, Parmentier M, Finazzi-Agro A (2002) Age-related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour. Eur J Neurosci 15:1178–1186PubMedGoogle Scholar
  39. 39.
    Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O (2002) Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl) 159:379–387Google Scholar
  40. 40.
    Bilkei-Gorzo A, Racz I, Valverde O, Otto M, Michel K, Sastre M, Zimmer A (2005) Early age-related cognitive impairment in mice lacking cannabinoid CB1 receptors. Proc Natl Acad Sci USA 102:15670–15675PubMedGoogle Scholar
  41. 41.
    Lutz B (2004) On-demand activation of the endocannabinoid system in the control of neuronal excitability and epileptiform seizures. Biochem Pharmacol 68:1691–1698PubMedGoogle Scholar
  42. 42.
    van der Stelt M, Di Marzo V (2005) Cannabinoid receptors and their role in neuroprotection. Neuromolecular Med 7:37–50PubMedGoogle Scholar
  43. 43.
    Terranova JP, Storme JJ, Lafon N, Perio A, Rinaldi-Carmona M, LeFur G, Soubrie P (1996) Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist, SR141716. Psychopharmacology 126:165–172PubMedGoogle Scholar
  44. 44.
    Lichtman AH (2000) SR 141716A enhances spatial memory as assessed in a radial-arm maze task in rats. Eur J Pharmacol 404:175–179PubMedGoogle Scholar
  45. 45.
    Wolff MC, Leander JD (2003) SR141716A, a cannabinoid CB1 receptor antagonist, improves memory in a delayed radial maze task. Eur J Pharmacol 477:213–217PubMedGoogle Scholar
  46. 46.
    Mallet PE, Beninger RJ (1998) The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by delta9-tetrahydrocannabinol or anandamide. Psychopharmacology (Berl) 140:11–19Google Scholar
  47. 47.
    Hampson RE, Deadwyler SA (2000) Cannabinoids reveal the necessity of hippocampal neural encoding for short-term memory in rats. J Neurosci 20:8932–8942PubMedGoogle Scholar
  48. 48.
    Mansbach RS, Rovetti CC, Winston EN, Lowe JA III (1996) Effects of the cannabinoid CB1 receptor antagonist SR141716A on the behavior of pigeons and rats. Psychopharmacology (Berl) 124:315–322Google Scholar
  49. 49.
    Kishimoto Y, Kano M (2006) Endogenous cannabinoid signaling through the CB1 receptor is essential for cerebellum-dependent discrete motor learning. J Neurosci 26:8829–8837PubMedGoogle Scholar
  50. 50.
    Varvel SA, Wise LE, Niyuhire F, Cravatt BF, Lichtman AH (2007) Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology 32:1032–1041PubMedGoogle Scholar
  51. 51.
    Mikics E, Dombi T, Barsvari B, Varga B, Ledent C, Freund TF, Haller J (2006) The effects of cannabinoids on contextual conditioned fear in CB1 knockout and CD1 mice. Behav Pharmacol 17:223–230PubMedGoogle Scholar
  52. 52.
    Marsch R, Foeller E, Rammes G, Bunck M, Kossl M, Holsboer F, Zieglgänsberger W, Landgraf R, Lutz B, Wotjak CT (2007) Reduced anxiety, conditioned fear, and hippocampal long-term potentiation in transient receptor potential vanilloid type 1 receptor-deficient mice. J Neurosci 27:832–839PubMedGoogle Scholar
  53. 53.
    Brewin CR (2001) A cognitive neuroscience account of posttraumatic stress disorder and its treatment. Behav Res Ther 39:373–393PubMedGoogle Scholar
  54. 54.
    Nemeroff CB, Bremner JD, Foa EB, Mayberg HS, North CS, Stein MB (2006) Posttraumatic stress disorder: a state-of-the-science review. J Psychiatr Res 40:1–21PubMedGoogle Scholar
  55. 55.
    LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedGoogle Scholar
  56. 56.
    Kim JJ, Jung MW (2006) Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 30:188–202PubMedGoogle Scholar
  57. 57.
    Rodrigues SM, Schafe GE, LeDoux JE (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 44:75–91PubMedGoogle Scholar
  58. 58.
    Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844–852PubMedGoogle Scholar
  59. 59.
    Wotjak CT (2005) Learning and memory. Handb Exp Pharmacol 169:1–34PubMedGoogle Scholar
  60. 60.
    Myers KM, Davis M (2002) Behavioral and neural analysis of extinction. Neuron 36:567–584PubMedGoogle Scholar
  61. 61.
    Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150PubMedGoogle Scholar
  62. 62.
    Barad M, Gean PW, Lutz B (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60:322–328PubMedGoogle Scholar
  63. 63.
    Quirk GJ, Garcia R, Gonzalez-Lima F (2006) Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 60:337–343PubMedGoogle Scholar
  64. 64.
    Sotres-Bayon F, Cain CK, LeDoux JE (2006) Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 60:329–336PubMedGoogle Scholar
  65. 65.
    Milad MR, Rauch SL, Pitman RK, Quirk GJ (2006) Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol 73:61–71PubMedGoogle Scholar
  66. 66.
    Berghuis P, Rajnicek AM, Morozov YM, Ross RA, Mulder J, Urban GM, Monory K, Marsicano G, Matteoli M, Canty A, Irving AJ, Katona I, Yanagawa Y, Rakic P, Lutz B, Mackie K, Harkany T (2007) Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316:1212–1216PubMedGoogle Scholar
  67. 67.
    Kamprath K, Marsicano G, Tang J, Monory K, Bisogno T, Di Marzo V, Lutz B, Wotjak CT (2006) Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci 26:6677–6686PubMedGoogle Scholar
  68. 68.
    Seidenbecher T, Laxmi TR, Stork O, Pape HC (2003) Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301:846–850PubMedGoogle Scholar
  69. 69.
    Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53:871–880PubMedGoogle Scholar
  70. 70.
    Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728–733PubMedGoogle Scholar
  71. 71.
    Varvel SA, Lichtman AH (2002) Evaluation of CB1 receptor knockout mice in the Morris water maze. J Pharmacol Exp Ther 301:915–924PubMedGoogle Scholar
  72. 72.
    Varvel SA, Anum EA, Lichtman AH (2005) Disruption of CB1 receptor signaling impairs extinction of spatial memory in mice. Psychopharmacology (Berl) 179:863–872Google Scholar
  73. 73.
    Chhatwal JP, Davis M, Maguschak KA, Ressler KJ (2005) Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 30:516–524PubMedGoogle Scholar
  74. 74.
    Suzuki A, Josselyn SA, Frankland PW, Masushige S, Silva AJ, Kida S (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795PubMedGoogle Scholar
  75. 75.
    Finn DP, Beckett SR, Richardson D, Kendall DA, Marsden CA, Chapman V (2004) Evidence for differential modulation of conditioned aversion and fear-conditioned analgesia by CB1 receptors. Eur J Neurosci 20:848–852PubMedGoogle Scholar
  76. 76.
    Cannich A, Wotjak CT, Kamprath K, Hermann H, Lutz B, Marsicano G (2004) CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Mem 11:625–632PubMedGoogle Scholar
  77. 77.
    Chhatwal JP, Stanek-Rattiner L, Davis M, Ressler KJ (2006) Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nat Neurosci 9:870–872PubMedGoogle Scholar
  78. 78.
    Lin HC, Mao SC, Gean PW (2006) Effects of intra-amygdala infusion of CB1 receptor agonists on the reconsolidation of fear-potentiated startle. Learn Mem 13:316–321PubMedGoogle Scholar
  79. 79.
    Pamplona FA, Prediger RD, Pandolfo P, Takahashi RN (2006) The cannabinoid receptor agonist WIN 55,212-2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology (Berl) 188:641–649Google Scholar
  80. 80.
    Niyuhire F, Varvel SA, Thorpe AJ, Stokes RJ, Wiley JL, Lichtman AH (2007) The disruptive effects of the CB(1) receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacology (Berl) 191:223–231Google Scholar
  81. 81.
    Shiflett MW, Rankin AZ, Tomaszycki ML, DeVoogd TJ (2004) Cannabinoid inhibition improves memory in food-storing birds, but with a cost. Proc R Soc Lond B Biol Sci 271:2043–2048Google Scholar
  82. 82.
    Hölter SM, Kallnik M, Wurst W, Marsicano G, Lutz B, Wotjak CT (2005) Cannabinoid CB1 receptor is dispensable for memory extinction in an appetitively-motivated learning task. Eur J Pharmacol 510:69–74PubMedGoogle Scholar
  83. 83.
    Sanchis-Segura C, Cline BH, Marsicano G, Lutz B, Spanagel R (2004) Reduced sensitivity to reward in CB1 knockout mice. Psychopharmacology (Berl) 176:223–232Google Scholar
  84. 84.
    Thornton-Jones ZD, Kennett GA, Vickers SP, Clifton PG (2007) A comparison of the effects of the CB(1) receptor antagonist SR141716A, pre-feeding and changed palatability on the microstructure of ingestive behaviour. Psychopharmacology (Berl) 193:1–9Google Scholar
  85. 85.
    Thornton-Jones ZD, Vickers SP, Clifton PG (2005) The cannabinoid CB1 receptor antagonist SR141716A reduces appetitive and consummatory responses for food. Psychopharmacology (Berl) 179:452–460Google Scholar
  86. 86.
    Lin CH, Yeh SH, Leu TH, Chang WC, Wang ST, Gean PW (2003) Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci 23:1574–1579PubMedGoogle Scholar
  87. 87.
    Lu KT, Walker DL, Davis M (2001) Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J Neurosci 21:RC162PubMedGoogle Scholar
  88. 88.
    Kamprath K, Wotjak CT (2004) Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn Mem 11:770–786PubMedGoogle Scholar
  89. 89.
    McSweeney FK, Swindell S (2002) Common processes may contribute to extinction and habituation. J Gen Psychol 129:364–400PubMedCrossRefGoogle Scholar
  90. 90.
    Viveros MP, Marco EM, File SE (2005) Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 81:331–342PubMedGoogle Scholar
  91. 91.
    Hill MN, Gorzalka BB (2005) Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol 16:333–352PubMedGoogle Scholar
  92. 92.
    Witkin JM, Tzavara ET, Davis RJ, Li X, Nomikos GG (2005) A therapeutic role for cannabinoid CB1 receptor antagonists in major depressive disorders. Trends Pharmacol Sci 26:609–617PubMedGoogle Scholar
  93. 93.
    Cota D, Marsicano G, Tschöp M, Grübler Y, Flachskamm C, Schubert M, Auer D, Yassouridis A, Thone-Reineke C, Ortmann S, Tomassoni F, Cervino C, Nisoli E, Linthorst AC, Pasquali R, Lutz B, Stalla GK, Pagotto U (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431PubMedGoogle Scholar
  94. 94.
    Cota D, Steiner MA, Marsicano G, Cervino C, Herman JP, Grubler Y, Stalla J, Pasquali R, Lutz B, Stalla GK, Pagotto U (2007) Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinology 148:1574–1581PubMedGoogle Scholar
  95. 95.
    Patel S, Roelke CT, Rademacher DJ, Hillard CJ (2005) Inhibition of restraint stress-induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci 21:1057–1069PubMedGoogle Scholar
  96. 96.
    Nader K, Schafe GE, Le Doux JE (2000) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–726PubMedGoogle Scholar
  97. 97.
    Kobilo T, Hazvi S, Dudai Y (2007) Role of cortical cannabinoid CB1 receptor in conditioned taste aversion memory. Eur J Neurosci 25:3417–3421PubMedGoogle Scholar
  98. 98.
    Murillo-Rodriguez E, Giordano M, Cabeza R, Henriksen SJ, Mendez DM, Navarro L, Prospero-Garcia O (2001) Oleamide modulates memory in rats. Neurosci Lett 313:61–64PubMedGoogle Scholar
  99. 99.
    Parker LA, Burton P, Sorge RE, Yakiwchuk C, Mechoulam R (2004) Effect of low doses of delta9-tetrahydrocannabinol and cannabidiol on the extinction of cocaine-induced and amphetamine-induced conditioned place preference learning in rats. Psychopharmacology (Berl) 175:360–366Google Scholar
  100. 100.
    Azad SC, Monory K, Marsicano G, Cravatt BF, Lutz B, Zieglgansberger W, Rammes G (2004) Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J Neurosci 24:9953–9961PubMedGoogle Scholar
  101. 101.
    Chevaleyre V, Heifets BD, Kaeser PS, Sudhof TC, Purpura DP, Castillo PE (2007) Endocannabinoid-mediated long-term plasticity requires cAMP/PKA signaling and RIM1alpha. Neuron 54:801–812PubMedGoogle Scholar
  102. 102.
    Chevaleyre V, Castillo PE (2004) Endocannabinoid-mediated metaplasticity in the hippocampus. Neuron 43:871–881PubMedGoogle Scholar
  103. 103.
    Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592PubMedGoogle Scholar
  104. 104.
    Alger E (2002) Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol 68:247–286PubMedGoogle Scholar
  105. 105.
    Lafourcade M, Elezgarai I, Mato S, Bakiri Y, Grandes P, Manzoni OJ (2007) Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS ONE 2:e709PubMedGoogle Scholar
  106. 106.
    Bruchey AK, Shumake J, Gonzalez-Lima F (2007) Network model of fear extinction and renewal functional pathways. Neuroscience 145:423–437PubMedGoogle Scholar
  107. 107.
    Siegmund A, Wotjak CT (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41:848–860PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of Physiological ChemistryJohannes Gutenberg-University MainzMainzGermany

Personalised recommendations