Molecular Neurobiology

, Volume 36, Issue 3, pp 245–253 | Cite as

Neurogenesis and Neuroprotection in the CNS — Fundamental Elements in the Effect of Glatiramer Acetate on Treatment of Autoimmune Neurological Disorders



Multiple sclerosis (MS) is no longer considered to be simply an autoimmune disease. In addition to inflammation and demyelination, axonal injury and neuronal loss underlie the accumulation of disability and the disease progression. Specific treatment strategies should thus aim to act within the central nervous system (CNS) by interfering with both neuroinflammation and neurodegeneration. Specific treatment strategies to autoimmune neurological disorders should aim to act within the CNS by interfering with both neuroinflammation and neurodegeneration. The cumulative effect of Glatiramer acetate (GA; Copaxone®, Copolymer 1), an approved drug for the treatment of MS, reviewed herewith, draws a direct linkage between anti-inflammatory immunomodulation, neuroprotection, neurogenesis, and therapeutic activity in the CNS. GA treatment augmented the three processes characteristic of neurogenesis, namely, neuronal progenitor cell proliferation, migration, and differentiation. The newborn neurons manifested massive migration through exciting and dormant migratory pathways, into injury sites in brain regions, which do not normally undergo neurogenesis, and differentiated to mature neuronal phenotype, thus, counteracting the neurodegenerative course of disease. The plausible mechanism underlying this multifactorial effect is the induction of GA-reactive T cells in the periphery and their infiltration into the CNS, where they release immunomodulatory cytokines and neurotrophic factors in the injury site.


Immunomodulation Neuroprotection Neurogenesis Neurotrophic factors (NTs) Brain-derived neurotrophic factor (BDNF) Multiple sclerosis (MS) Experimental autoimmune encephalomyelitis (EAE) Glatiramer acetate (GA) 


  1. 1.
    Hellings N, Raus J, Stinissen P (2002) Insights into the immunopathogenesis of multiple sclerosis. Immunol Res 25:27–51PubMedCrossRefGoogle Scholar
  2. 2.
    Kornek B, Lassmann H (1999) Axonal pathology in multiple sclerosis: a historical note. Brain Pathol 9:651–656PubMedCrossRefGoogle Scholar
  3. 3.
    Bitsch A, Schuchardt J, Bunkowski S (2000) Acute axonal injury in multiple sclerosis. Correlation with demyelination and inflammation. Brain 123:1174–1183PubMedCrossRefGoogle Scholar
  4. 4.
    Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278PubMedCrossRefGoogle Scholar
  5. 5.
    Ziemssen T (2005) Modulating processes within the central nervous system is central to therapeutic control of multiple sclerosis. J Neurol 252(Vl)38–45CrossRefGoogle Scholar
  6. 6.
    Feltkamp TEW (1999) The mystery of autoimmune diseases. In: The decade of autoimmunity. Elsevier, pp 1–5Google Scholar
  7. 7.
    Ramony Cajal S (1928) Degeneration and regeneration of the nervous system. Hafner, New YorkGoogle Scholar
  8. 8.
    Altman J, Das GD (1965) Autoradiographic and histological evidence of post-natal hippocampal neurogenesis in rats. J Comp Neurol 124:19–35CrossRefGoogle Scholar
  9. 9.
    Gage FH (2000) Mammalian neural stem cell. Science 287:1433–1438PubMedCrossRefGoogle Scholar
  10. 10.
    Kempermann G, Gage FH (2000) Neurogenesis in the adult hippocampus. Novartis Found Symp 231:220–235PubMedGoogle Scholar
  11. 11.
    Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634PubMedGoogle Scholar
  12. 12.
    Yudkin PL, Ellison GW, Ghezzi A Goodkin D, Hughe RA, McPherson K, Mertin J, Milanese C (1991) Overview of azathioprime treatment in multiple sclerosis. Lancet 338:1051–1055PubMedCrossRefGoogle Scholar
  13. 13.
    Johnson KP, Knobler RL, Greenstein JL et al (1990) Recombinant beta interferon treatment of relapsing-remitting multiple sclerosis pilot study results. Neurology 40(Suppl 1):261Google Scholar
  14. 14.
    Jacobs LD, Cookfair DL, Rudick RA et al (1996) Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaboration Group (MSCRG). Ann Neurol 39:285–294PubMedCrossRefGoogle Scholar
  15. 15.
    PRIM (Prevention of relapses and disability by interferon beta-1a subsequently in multiple sclerosis) study group (1998) Randomized, double blind, placebo controlled study of interferon beta-1a in relapsing-remitting multiple sclerosis: chemical results. Lancet 352:1498–1504CrossRefGoogle Scholar
  16. 16.
    Arnon R (1966) The development of Cop 1 (Copaxone®), an innovative drug for the treatment of multiple sclerosis: personal reflections. Immunol Lett 50:1–15CrossRefGoogle Scholar
  17. 17.
    Teitelbaum D, Meshorer M, Hirshfeld T, Sela M, Arnon R (1971) Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol 1:242–248PubMedCrossRefGoogle Scholar
  18. 18.
    Arnon R, Sela M (2003) Immunomodulation by the copolymer glatiramer acetate. J Mol Recognit 16:412–421PubMedCrossRefGoogle Scholar
  19. 19.
    Sela M, Teitelbaum D (2001) Glatiramer acetate in the treatment of multiple sclerosis. Expert Opin Pharmacother 2:1149–1165PubMedCrossRefGoogle Scholar
  20. 20.
    Wolinsky JS (2006) The use of glatiramer acetate in the treatment of multiple sclerosis. Adv Neurol 98:273–292PubMedGoogle Scholar
  21. 21.
    Fridkis-Hareli M, Teitelbaum D, Gurevich E, Pecht I, Brautbar C, Kwon OJ, Brenner T, Arnon R, Sela M (1994) Direct binding of myelin basic protein and synthetic copolymer 1 class II major histocompatibility complex molecules on living antigen presenting cells-specificity and promiscuity. Proc Natl Acad Sci U S A 91:4872–4876PubMedCrossRefGoogle Scholar
  22. 22.
    Farina C, Weber MS, Meinl E, Wekerle H, Hohlfeld R (2005) Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Neurology 4:567–575PubMedGoogle Scholar
  23. 23.
    Arnon R, Aharoni R (2004) Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 101(Suppl 2):14593–14598PubMedCrossRefGoogle Scholar
  24. 24.
    Aharoni R, Teitelbaum D, Arnon R, Sela M (1999) Copolymer 1 acts against the immunodominant epitope 82-100 of myelin basic protein by T cell receptor antagonism in addition to major histocompatibility complex blocking. Proc Natl Acad Sci U S A 96:634–639PubMedCrossRefGoogle Scholar
  25. 25.
    Lando Z, Teitelbaum D, Arnon R (1979) Effect of cyclophosphamide on suppressor cell activity in mice unresponsive to EAE. J Immunol 132:2156–2160Google Scholar
  26. 26.
    Aharoni R, Teitelbaum D, Arnon R (1993) T-suppressor hybridomas and IL-2 dependent lines induced by copolymer 1 or by spinal cord homogenate downregulate experimental allergic encephalomyelitis. Eur J Immunol 23:17–25PubMedCrossRefGoogle Scholar
  27. 27.
    Aharoni R, Teitelbaum D, Sela M, Arnon R (1997) Copolymer 1 induces T cells of the T helper type 2 that cross react with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 94:10821–10826PubMedCrossRefGoogle Scholar
  28. 28.
    Aharoni R, Teitelbaum D, Sela M, Arnon R (1998) Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by Copolymer 1. J Neuroimmunol 91:135–146PubMedCrossRefGoogle Scholar
  29. 29.
    Miller A, Shapiro S, Gershtein R, Kinarty A, Rawashdeh H, Honigman S, Lahat N (1998) Treatment of multiple sclerosis with copolymer 1 (Copaxone©) implicating mechanisms of Th1 to Th2/3 immune deviation. J Neuroimmunol 92:113–121PubMedCrossRefGoogle Scholar
  30. 30.
    Neuhaus O, Farina C, Yassouridis A, Wiendl H, Then Bergh F, Dose T, Wekerle H, Hohlfeld R (2000) Multiple sclerosis comparison of copolymer-1 reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A 97:7452–7457PubMedCrossRefGoogle Scholar
  31. 31.
    Duda PW, Schmied MC, Cook S, Kriegler JI, Hafler DA (2000b) Glatiramer acetate (Copaxone©) induces degenerate, TH2-polarized immune response in patients with multiple sclerosis. J Clin Invest 105:967–976PubMedGoogle Scholar
  32. 32.
    Aharoni R, Teitelbaum D, Leitner O, Meshorer A, Sela, M, Arnon R (2000) Specific Th2 cells accumulate in the central nervous system of mice protected against EE by copolymer. Proc Natl Acad Sci U S A 97:11472–11477PubMedCrossRefGoogle Scholar
  33. 33.
    Aharoni R, Meshorer A, Sela M, Arnon R (2002) Oral treatment of mice with copolymer 1 (glatiramer acetate) results in the accumulation of specific TH2 cells in the central nervous system. J Neuroimmunol 126:58–68PubMedCrossRefGoogle Scholar
  34. 34.
    Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R (2003) Glatiramer acetate specific T-cells in the brain express TH2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 100(24):14157–14162PubMedCrossRefGoogle Scholar
  35. 35.
    Bettelli E, Nicholson LB, Kuchroo VK (2003) IL-10, a key effector regulatory cytokine in experimental autoimmune encephalomyelitis. J Autoimmun 4:265–267CrossRefGoogle Scholar
  36. 36.
    Morris MM, Dyson H, Baker D, Harbige LS, Fazakerley JK, Amor S (1997) Characterization of the cellular and cytokine response in the central nervous system following Semliki Forest virus infection. Neuroimmunology 74:185–197CrossRefGoogle Scholar
  37. 37.
    Kipnis J, Yoles E, Porat Z, Cohen A, Mor F, Sela M, Cohen IR, Swhwartz M (2000) T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 97:7446–7451PubMedCrossRefGoogle Scholar
  38. 38.
    Ziemssen T, Kumpfel T, Kinkert WEF, Neuhaus O, Hohlfeld R (2002) Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 125:2381–2391PubMedCrossRefGoogle Scholar
  39. 39.
    Chen M, Valenzuela RM, Dhib-Jalbut S (2003) Glatiramer acetate-reactive T cells produce brain derived neurotrophic factor. J Neurol Sci 215:37–44PubMedCrossRefGoogle Scholar
  40. 40.
    Aharoni R, Eylam R, Domev H, Labunsky G, Sela M, Arnon R (2005) The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 102(52):19045–19050PubMedCrossRefGoogle Scholar
  41. 41.
    Lessman V, Gottmann K, Malcangio M (2003) Neurotrophin secretion: current facts and future prospect. Prog Neurobiol 69:341–374CrossRefGoogle Scholar
  42. 42.
    Riley CP, Cope TC, Buck CR (2004) CNS neurotrophins are biologically active and expressed by multiple cell types. J Mol Histol 35:771–783PubMedCrossRefGoogle Scholar
  43. 43.
    Althau HH (2004) Remyelination in multiple sclerosis: a new role for neurotrophins? Prog Brain Res 146:415–432CrossRefGoogle Scholar
  44. 44.
    Murer MG, Yan O, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:7–124CrossRefGoogle Scholar
  45. 45.
    Caggiula M, Batocchi AP, Frisullo G, Angelucci F, Patanella AK, Sancricca C, Nociti V, Tonali PA, Mirabella M (2005) Neurotrophic factors and clinical recovery in relapsing-remitting multiple sclerosis. Scand J Immunol 62:176–182PubMedCrossRefGoogle Scholar
  46. 46.
    Azoulay D, Vachapova V, Shihman B, Miler A, Karni A (2005) Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 167:215–218PubMedCrossRefGoogle Scholar
  47. 47.
    Stadelmann C, Kerscensteiner M, Misgeld T, Bruck W, Hohlfeld R, Lassmann H (2002) BDNF and gp145 trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125:75–85PubMedCrossRefGoogle Scholar
  48. 48.
    Aharoni R, Arnon R, Eilam R (2005) Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 25(36):8228–8217Google Scholar
  49. 49.
    Gilgum-Sherki Y, Panet H, Holdengreber V, Mosberg-Galili R, Offen D (2003) Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 47:201–207CrossRefGoogle Scholar
  50. 50.
    Luc DC, Song H, Colamarino SA, Ming G-L, Gage FH (2004) Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 44:399–421CrossRefGoogle Scholar
  51. 51.
    Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH (2002) Functional neurogenesis in adult hippocampus. Nature 415:1000–1034CrossRefGoogle Scholar
  52. 52.
    Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A (2004) Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 76:223–231PubMedCrossRefGoogle Scholar
  53. 53.
    Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Evercooren AB (2002) Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci U S A 99:13211–13216PubMedCrossRefGoogle Scholar
  54. 54.
    Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24:171–189PubMedCrossRefGoogle Scholar
  55. 55.
    Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955PubMedCrossRefGoogle Scholar
  56. 56.
    Chitnis T, Imitola J, Khoury SJ (2005) Therapeutic strategies to prevent neurodegeneration and promote regeneration in multiple sclerosis. Current Drug Targets Immune Endocrine and Metabolic Disorders 5:11–26CrossRefGoogle Scholar
  57. 57.
    Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51PubMedCrossRefGoogle Scholar
  58. 58.
    Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 15:165–171CrossRefGoogle Scholar
  59. 59.
    Hobom M, Storch MK, Weissert R, Maier K, Radhakrishnan A, Kramer B, Bahr M, Diem R (2004) Mechanisms and time course of neuronal degeneration experimental autoimmune encephalomyelitis. Brain Pathol 14:148–157PubMedCrossRefGoogle Scholar
  60. 60.
    Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J (1999) Doublecortin is a developmentally regulated microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23:247–256PubMedCrossRefGoogle Scholar
  61. 61.
    Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1–10PubMedCrossRefGoogle Scholar
  62. 62.
    O’Rourke NA, Sullivan DP, Kaznowsky CE, Jacobs AA, McConnell SK (1995) Tangential migration of neurons in the developing cerebral cortex. Development 121:2165–2176PubMedGoogle Scholar
  63. 63.
    Gould E, Gross CG (2002) Neurogenesis in adult mammals: some progress and problems. J Neurosci 22(3):619–623PubMedGoogle Scholar
  64. 64.
    Filippi M, Rovaris M, Rocca MA, the European/Canadian Glatiramer Acetate Study Group (2001) Glatiramer Acetate reduces the proportion of new MS lesions evolving into “black holes.” Neurology 57:731–733PubMedGoogle Scholar
  65. 65.
    Khan O, Shen Y, Caon C, Bao F, Ching W, Reznar M, Buccheister A, Hu J, Tselis A, Lisak R (2005) Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing-remitting multiple sclerosis. Mult Scler 11:646–651PubMedCrossRefGoogle Scholar
  66. 66.
    Ford CC, Johnson KP, Lisak RP, Panitch HS, Shifroni G, Wolinsky JS, the Copaxone Study Group (2006) Aprospective open-labled study of glatiramer acetate: over a decade of continuous use in multiple sclerosos patients. Mult Scler 12:309–320PubMedCrossRefGoogle Scholar
  67. 67.
    Kipnis J, Yoles E, Cohen A et al (2000) T-cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 97:7446–7451PubMedCrossRefGoogle Scholar
  68. 68.
    Schori H, Kipnis J, Yoles E et al (2001) Vaccination for protection of retinalganglion cells against death from glutamate cytotoxicity and ocular hypertention: implication for glaucoma. Proc Natl Acad Sci U S A 98:3398–3403PubMedCrossRefGoogle Scholar
  69. 69.
    Benner EJ, Mosley RI, Destache CJ et al (2004) Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:9435–9440PubMedCrossRefGoogle Scholar
  70. 70.
    Angelov DN, Waibel S, Guntinas-Lichius O et al (2004) Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 101:15823–15828CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.The Department of ImmunologyThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations