Advertisement

Molecular Neurobiology

, Volume 36, Issue 3, pp 224–231 | Cite as

Alsin and the Molecular Pathways of Amyotrophic Lateral Sclerosis

  • Jayanth Chandran
  • Jinhui Ding
  • Huaibin CaiEmail author
Article

Abstract

Autosomal recessive mutations in the ALS2 gene lead to a clinical spectrum of motor dysfunction including juvenile onset amyotrophic lateral sclerosis (ALS2), primary lateral sclerosis, and hereditary spastic paraplegia. The 184-kDa alsin protein, encoded by the full-length ALS2 gene, contains three different guanine-nucleotide-exchange factor-like domains, which may play a role in the etiology of the disease. Multiple in vitro biochemical and cell biology assays suggest that alsin dysfunction affects endosome trafficking through a Rab5 small GTPase family-mediated mechanism. Four ALS2-deficient mouse models have been generated by different groups and used to study the behavioral and pathological impact of alsin deficiency. These mouse models largely fail to recapitulate hallmarks of motor neuron disease, but the subtle deficits that are observed in behavior and pathology have aided in our understanding of the relationship between alsin and motor dysfunction. In this review, we summarize recent clinical and molecular reports regarding alsin and attempt to place these results within the larger context of motor neuron disease.

Keywords

Amyotrophic lateral sclerosis (ALS) ALS2 Alsin Rab5 Mouse model Guanine-nucleotide-exchange factor Primary lateral sclerosis Hereditary spastic paraplegia 

Notes

Acknowledgements

The Intramural Research Programs of the National Institute on Aging provides support for this project.

References

  1. 1.
    Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819PubMedCrossRefGoogle Scholar
  2. 2.
    Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749PubMedCrossRefGoogle Scholar
  3. 3.
    Siddique T, Lalani I (2002) Genetic aspects of amyotrophic lateral sclerosis. Adv Neurol 88:21–32PubMedGoogle Scholar
  4. 4.
    Rosen DR (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364:362PubMedGoogle Scholar
  5. 5.
    Hadano S, Hand CK, Osuga H, Yanagisawa Y, Otomo A, Devon RS, Miyamoto N, Showguchi-Miyata J, Okada Y, Singaraja R, Figlewicz DA, Kwiatkowski T, Hosler BA, Sagie T, Skaug J, Nasir J, Brown RH, Jr., Scherer SW, Rouleau GA, Hayden MR, Ikeda JE (2001) A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2. Nat Genet 29:166–173PubMedCrossRefGoogle Scholar
  6. 6.
    Yang Y, Hentati A, Deng HX, Dabbagh O, Sasaki T, Hirano M, Hung WY, Ouahchi K, Yan J, Azim AC, Cole N, Gascon G, Yagmour A, Ben-Hamida M, Pericak-Vance M, Hentati F, Siddique T (2001) The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 29:160–165PubMedCrossRefGoogle Scholar
  7. 7.
    Panzeri C, De Palma C, Martinuzzi A, Daga A, De Polo G, Bresolin N, Miller CC, Tudor EL, Clementi E, Bassi MT (2006) The first ALS2 missense mutation associated with JPLS reveals new aspects of alsin biological function. Brain 129:1710–1719PubMedCrossRefGoogle Scholar
  8. 8.
    Eymard-Pierre E, Yamanaka K, Haeussler M, Kress W, Gauthier-Barichard F, Combes P, Cleveland DW, Boespflug-Tanguy O (2006) Novel missense mutation in ALS2 gene results in infantile ascending hereditary spastic paralysis. Ann Neurol 59:976–980PubMedCrossRefGoogle Scholar
  9. 9.
    Yamanaka K, Vande VC, Eymard-Pierre E, Bertini E, Boespflug-Tanguy O, Cleveland DW (2003) Unstable mutants in the peripheral endosomal membrane component ALS2 cause early-onset motor neuron disease. Proc Natl Acad Sci USA 100:16041–16046PubMedCrossRefGoogle Scholar
  10. 10.
    Kress JA, Kuhnlein P, Winter P, Ludolph AC, Kassubek J, Muller U, Sperfeld AD (2005) Novel mutation in the ALS2 gene in juvenile amyotrophic lateral sclerosis. Ann Neurol 58:800–803PubMedCrossRefGoogle Scholar
  11. 11.
    Eymard-Pierre E, Lesca G, Dollet S, Santorelli FM, Di Capua M, Bertini E, Boespflug-Tanguy O (2002) Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am J Hum Genet 71:518–527PubMedCrossRefGoogle Scholar
  12. 12.
    Ben Hamida M, Hentati F, Ben Hamida C (1990) Hereditary motor system diseases (chronic juvenile amyotrophic lateral sclerosis). Conditions combining a bilateral pyramidal syndrome with limb and bulbar amyotrophy. Brain 113(Pt 2):347–363PubMedCrossRefGoogle Scholar
  13. 13.
    Eymard-Pierre E, Lesca G, Dollet S, Santorelli FM, Di Capua M, Bertini E, Boespflug-Tanguy O (2002) Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am J Hum Genet 71:518–527PubMedCrossRefGoogle Scholar
  14. 14.
    Otomo A, Hadano S, Okada T, Mizumura H, Kunita R, Nishijima H, Showguchi-Miyata J, Yanagisawa Y, Kohiki E, Suga E, Yasuda M, Osuga H, Nishimoto T, Narumiya S, Ikeda JE (2003) ALS2, a novel guanine nucleotide exchange factor for the small GTPase Rab5, is implicated in endosomal dynamics. Hum Mol Genet 12:1671–1687PubMedCrossRefGoogle Scholar
  15. 15.
    Hadano S, Otomo A, Suzuki-Utsunomiya K, Kunita R, Yanagisawa Y, Showguchi-Miyata J, Mizumura H, Ikeda JE (2004) ALS2CL, the novel protein highly homologous to the carboxy-terminal half of ALS2, binds to Rab5 and modulates endosome dynamics. FEBS Lett 575:64–70PubMedCrossRefGoogle Scholar
  16. 16.
    Topp JD, Gray NW, Gerard RD, Horazdovsky BF (2004) Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor. J Biol Chem 279:24612–24623PubMedCrossRefGoogle Scholar
  17. 17.
    Tudor EL, Perkinton MS, Schmidt A, Ackerley S, Brownlees J, Jacobsen NJ, Byers HL, Ward M, Hall A, Leigh PN, Shaw CE, McLoughlin DM, Miller CC (2005) ALS2/Alsin regulates Rac-PAK signaling and neurite outgrowth. J Biol Chem 280:4735–34740CrossRefGoogle Scholar
  18. 18.
    Dickson BJ (2001) Rho GTPases in growth cone guidance. Curr Opin Neurobiol 11:103–110PubMedCrossRefGoogle Scholar
  19. 19.
    Jacquier A, Buhler E, Schafer MK, Bohl D, Blanchard S, Beclin C, Haase G (2006) Alsin/Racl signaling controls survival and growth of spinal motoneurons. Ann Neurol 60:105–117PubMedCrossRefGoogle Scholar
  20. 20.
    Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117PubMedCrossRefGoogle Scholar
  21. 21.
    Esters H, Alexandrov K, Iakovenko A, Ivanova T, Thoma N, Rybin V, Zerial M, Scheidig AJ, Goody RS (2001) Vps9, Rabex-5 and DSS4: proteins with weak but distinct nucleotide-exchange activities for Rab proteins. J Mol Biol 310:141–156PubMedCrossRefGoogle Scholar
  22. 22.
    Li G, Stahl PD (1993) Structure-function relationship of the small GTPase rab5. J Biol Chem 268:24475–24480PubMedGoogle Scholar
  23. 23.
    Renault L, Nassar N, Vetter I, Becker J, Klebe C, Roth M, Wittinghofer A (1998) The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Nature 392:97–101PubMedCrossRefGoogle Scholar
  24. 24.
    Kwak S, Weiss JH (2006) Calcium-permeable AMPA channels in neurodegenerative disease and ischemia. Curr Opin Neurobiol 16:281–287PubMedCrossRefGoogle Scholar
  25. 25.
    Setou M, Seog DH, Tanaka Y, Kanai Y, Takei Y, Kawagishi M, Hirokawa N (2002) Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417:83–87PubMedCrossRefGoogle Scholar
  26. 26.
    Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25:578–588PubMedCrossRefGoogle Scholar
  27. 27.
    Lai C, Xie C, McCormack SG, Chiang HC, Michalak MK, Lin X, Chandran J, Shim H, Shimoji M, Cookson MR, Huganir RL, Rothstein JD, Price DL, Wong PC, Martin LJ, Zhu JJ, Cai H (2006) Amyotrophic lateral sclerosis 2-deficiency leads to neuronal degeneration in amyotrophic lateral sclerosis through altered AMPA receptor trafficking. J Neurosci 26:11798–11806PubMedCrossRefGoogle Scholar
  28. 28.
    Millecamps S, Gentil BJ, Gros-Louis F, Rouleau G, Julien JP (2005) Alsin is partially associated with centrosome in human cells. Biochim Biophys Acta 1745:84–100PubMedCrossRefGoogle Scholar
  29. 29.
    Cai H, Lin X, Xie C, Laird FM, Lai C, Wen H, Chiang HC, Shim H, Farah MH, Hoke A, Price DL, Wong PC (2005) Loss of ALS2 function is insufficient to trigger motor neuron degeneration in knock-out mice but predisposes neurons to oxidative stress. J Neurosci 25:7567–7574PubMedCrossRefGoogle Scholar
  30. 30.
    Hadano S, Benn SC, Kakuta S, Otomo A, Sudo K, Kunita R, Suzuki-Utsunomiya K, Mizumura H, Shefner JM, Cox GA, Iwakura Y, Brown RH Jr, Ikeda JE (2006) Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking. Hum Mol Genet 15:233–250PubMedCrossRefGoogle Scholar
  31. 31.
    Devon RS, Orban PC, Gerrow K, Barbieri MA, Schwab C, Cao LP, Helm JR, Bissada N, Cruz-Aguado R, Davidson TL, Witmer J, Metzler M, Lam CK, Tetzlaff W, Simpson EM, McCaffery JM, El-Husseini AE, Leavitt BR, Hayden MR (2006) Als2-deficient mice exhibit disturbances in endosome trafficking associated with motor behavioral abnormalities. Proc Natl Acad Sci USA 103:9595–9600PubMedCrossRefGoogle Scholar
  32. 32.
    Yamanaka K, Miller TM, McAlonis-Downes M, Chun SJ, Cleveland DW (2006) Progressive spinal axonal degeneration and slowness in ALS2-deficient mice. Ann Neurol 60:95–104PubMedCrossRefGoogle Scholar
  33. 33.
    Bendotti C, Carri MT (2004) Lessons from models of SOD1-linked familial ALS. Trends Mol Med 10:393–400PubMedCrossRefGoogle Scholar
  34. 34.
    Bothe GW, Bolivar VJ, Vedder MJ, Geistfeld JG (2005) Behavioral differences among fourteen inbred mouse strains commonly used as disease models. Comp Med 55:326–334PubMedGoogle Scholar
  35. 35.
    Simpson EM, Linder CC, Sargent EE, Davisson MT, Mobraaten LE, Sharp JJ (1997) Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat Genet 16:19–27PubMedCrossRefGoogle Scholar
  36. 36.
    Erie EA, Shim H, Smith AL, Lin X, Keyvanfar K, Xie C, Chen J, Cai H (2007) Mice deficient in the ALS2 gene exhibit lymphopenia and abnormal hematopietic function. J Neuroimmunol 182:226–231PubMedCrossRefGoogle Scholar
  37. 37.
    Provinciali L, Laurenzi MA, Vesprini L, Giovagnoli AR, Bartocci C, Montroni M, Bagnarelli P, Clementi M, Varaldo PE (1988) Immunity assessment in the early stages of amyotrophic lateral sclerosis: a study of virus antibodies and lymphocyte subsets. Acta Neurol Scand 78:449–454PubMedCrossRefGoogle Scholar
  38. 38.
    Verma A, Berger JR (2006) ALS syndrome in patients with HIV-1 infection. J Neurol Sci 240:59–64PubMedCrossRefGoogle Scholar
  39. 39.
    Sinha S, Mathews T, Arunodaya GR, Siddappa NB, Ranga U, Desai A, Ravi V, Taly AB (2004) HIV-1 clade-C-associated “ALS”-like disorder: first report from India. J Neurol Sci 224:97–100PubMedCrossRefGoogle Scholar
  40. 40.
    Kuzmenok OI, Sanberg PR, Desjarlais TG, Bennett SP, Garbuzova-Davis SN (2006) Lymphopenia and spontaneous autorosette formation in SOD1 mouse model of ALS. J Neuroimmunol 172:132–136PubMedCrossRefGoogle Scholar
  41. 41.
    Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, Sisodia SS, Cleveland DW, Price DL (1995) An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacoular degeneration of mitochondria. Neuron 14:1105–1116PubMedCrossRefGoogle Scholar
  42. 42.
    Kanekura K, Hashimoto Y, Niikura T, Aiso S, Matsuoka M, Nishimoto I (2004) Alsin, the product of ALS gene, suppresses SOD1 mutant neurotoxicity through RhoGEF domain by interacting with SOD1 mutants. J Biol Chem 279:19247–19256PubMedCrossRefGoogle Scholar
  43. 43.
    Kanekura K, Hashimoto Y, Kita Y, Sasabe J, Aiso S, Nishimoto I, Matsuoka M (2005) A Rac1/phosphatidylinositol 3-kinase/Akt3 anti-apoptotic pathway, triggered by AlsinLF, the product of the ALS2 gene, antagonizes Cu/Zn-superoxide dismutase (SOD1) mutant-induced motoneuronal cell death. J Biol Chem 280:4532–4543PubMedCrossRefGoogle Scholar
  44. 44.
    Lin X, Shim H, Cai H (2007) Deficiency in the ALS2 gene does not affect the motor neuron degeneration in SOD1 (G93A) transgenic mice. Neurobiol Aging (in press)Google Scholar
  45. 45.
    Kieran D, Hafezparast M, Bohnert S, Dick JR, Martin J, Schiavo G, Fisher EM, Greensmith L (2005) A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J Cell Biol 169:561–567PubMedCrossRefGoogle Scholar
  46. 46.
    Nishimura AL, Mitne-Neto M, Silva HC, Richieri-Costa A, Middleton S, Cascio D, Kok F, Oliveira JR, Gillingwater T, Webb J, Skehel P, Zatz M (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831PubMedCrossRefGoogle Scholar
  47. 47.
    Schmitt-John T, Drepper C, Mussmann A, Hahn P, Kuhlmann M, Thiel C, Hafner M, Lengeling A, Heimann P, Jones JM, Meisler MH, Jockusch H (2005) Mutation of Vps54 causes motor neuron disease and defective spermiogenesis in the wobbler mouse. Nat Genet 37:1213–1215PubMedCrossRefGoogle Scholar
  48. 48.
    Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, Floeter MK, Bidus K, Drayna D, Oh SJ, Brown RH Jr, Ludlow CL, Fischbeck KH (2003) Mutant dynactin in motor neuron disease. Nat Genet 33:455–456PubMedCrossRefGoogle Scholar
  49. 49.
    Puls I, Oh SJ, Sumner CJ, Wallace KE, Floeter MK, Mann EA, Kennedy WR, Wendelschafer-Crabb G, Vortmeyer A, Powers R, Finnegan K, Holzbaur EL, Fischbeck KH, Ludlow CL (2005) Distal spinal and bulbar muscular atrophy caused by dynactin mutation. Ann Neurol 57:687–694PubMedCrossRefGoogle Scholar
  50. 50.
    Reid E, Kloos M, Ashley-Koch A, Hughes L, Bevan S, Svenson IK, Graham FL, Gaskell PC, Dearlove A, Pericak-Vance MA, Rubinsztein DC, Marchuk DA (2002) A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia. Am J Hum Genet 71:1189–1194PubMedCrossRefGoogle Scholar
  51. 51.
    Hafezparast M, Klocke R, Ruhrberg C, Marquardt A, Ahmad-Annuar A, Bowen S, Lalli G, Witherden AS, Hummerich H, Nicholson S, Morgan PJ, Oozageer R, Priestly JV, Averill S, King VR, Ball S, Peters J, Toda T, Yamamoto A, Hiraoka Y, Augustin M, Korthaus D, Wattler S, Wabnitz P, Dickneite C, Lampel S, Boehme F, Peraus G, Popp A, Rudelius M, Schlegel J, Fuchs H, Hrabe de Angelis M, Schiavo G, Shima DT, Russ AP, Stumm G, Martin JE, Fisher EM (2003) Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300:808–812PubMedCrossRefGoogle Scholar
  52. 52.
    Devon RS, Helm JR, Rouleau GA, Leitner Y, Lerman-Sagie T, Lev D, Hayden MR (2003) The first nonsense mutation in alsin results in a homogeneous phenotype of infantile-onset ascending spastic paralysis with bulbar involvement in two siblings. Clin Genet 64:210–215PubMedCrossRefGoogle Scholar
  53. 53.
    Gros-Louis F, Meijer IA, Hand CK, Dube MP, MacGregor DL, Seni MH, Devon RS, Hayden MR, Andermann F, Andermann E, Rouleau GA (2003) An ALS2 gene mutation causes hereditary spastic paraplegia in a Pakistani kindred. Ann Neurol 53:144–145PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Unit of Transgenesis, Laboratory of NeurogeneticsNational Institute on Aging, National Institutes of HealthBethesdaUSA
  2. 2.Department of BiologyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations