Advertisement

Molecular Neurobiology

, Volume 35, Issue 3, pp 298–307 | Cite as

Group I Metabotropic Glutamate Receptors: A Role in Neurodevelopmental Disorders?

  • Maria Vincenza CataniaEmail author
  • Simona D’Antoni
  • Carmela Maria Bonaccorso
  • Eleonora Aronica
  • Mark F. Bear
  • Ferdinando Nicoletti
Article

Abstract

Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are coupled to polyphosphoinositide hydrolysis and are involved in activity-dependent forms of synaptic plasticity, both during development and in the adult life. Group I mGlu receptors can also regulate proliferation, differentiation, and survival of neural stem/progenitor cells, which further support their role in brain development. An exaggerated response to activation of mGlu5 receptors may underlie synaptic dysfunction in Fragile X syndrome, the most common inherited form of mental retardation. In addition, group I mGlu receptors are overexpressed in dysplastic neurons of focal cortical dysplasia and hemimegaloencephaly, which are disorders of cortical development associated with chronic epilepsy. Drugs that block the activity of group I mGlu receptors (in particular, mGlu5 receptors) are potentially helpful for the treatment of Fragile X syndrome and perhaps other neurodevelopmental disorders.

Keywords

Neural development Plasticity Metabotropic glutamate receptors mGluRs Fragile X syndrome FRAX Epilepsy Malformation of cortical development 

References

  1. 1.
    Canudas AM, Di Giorgi-Gerevini V, Iacovelli L, Nano G, D’Onofrio M, Arcella A, Giangaspero F, Busceti C, Ricci-Vitiani L, Battaglia G, Nicoletti F, Melchiorri D (2004) PHCCC, a specific enhancer of type 4 metabotropic glutamate receptors, reduces proliferation and promotes differentiation of cerebellar granule cell neuroprecursors. J Neurosci 24(46):10343–10352PubMedGoogle Scholar
  2. 2.
    Brazel CY, Nunez JL, Yang Z, Levison SW (2005) Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131(1):55–65PubMedGoogle Scholar
  3. 3.
    Cappuccio I, Spinsanti P, Porcellini A, Desiderati F, De Vita T, Storto M, Capobianco L, Battaglia G, Nicoletti F, Melchiorri D (2005) Endogenous activation of mGlu5 metabotropic glutamate receptors supports self-renewal of cultured mouse embryonic stem cells. Neuropharmacology 49:196–205PubMedGoogle Scholar
  4. 4.
    Di Giorni Gerevini VD, Caruso A, Cappuccio I, Ricci-Vitiani L, Romeo S, Della Rocca C, Gradini R, Melchiorri D, Nicoletti F (2004) The mGlu5 metabotropic glutamate receptor is expressed in zones of active neurogenesis of the embryonic and postnatal brain. Dev Brain Res 150:17–22Google Scholar
  5. 5.
    López-Bendito G, Shigemoto R, Fairén A, Luján R (2002) Differential distribution of group I metabotropic glutamate receptors during rat cortical development. Cereb Cortex 12(6):625–638PubMedGoogle Scholar
  6. 6.
    Mienville J-M (1999) Cajal–Retzius cells physiology: just in time to bridge the 20th century. Cereb Cortex 9:776–782PubMedGoogle Scholar
  7. 7.
    Bardoni B, Davidovic L, Bensaid M, Khandjan EW (2006) The Fragile X syndrome: exploring its molecular basis and seeking a treatment. Expert Rev Mol Med 8(8):1–16PubMedCrossRefGoogle Scholar
  8. 8.
    Kniazeff J, Bessis AS, Maurel D, Ansnay H, Prézeau L, Pin J-P (2004) Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 11(8):706–713PubMedGoogle Scholar
  9. 9.
    Pin J-P, Kniazeff J, Liu J, Binet V, Goudet C, Rondard P, Prézeau L (2005) Allosteric functioning of dimeric class C G-protein-coupled receptors. FEBS J 272:2947–2955PubMedGoogle Scholar
  10. 10.
    Goudet C, Kniazeff J, Hlavackova V, Malhaire F, Maurel D, Acher F, Blahos J, Prézeau L, Pin J-P (2005) Asymmetric functioning of dimeric metabotropic glutamate receptors disclosed by positive allosteric modulators. J Biochem 280(26):24380–24385Google Scholar
  11. 11.
    Prézeau L, Gomeza J, Ahern S, Mary S, Galvez T, Bockaert J, Pin J-P (1996) Changes in the carboxyl-terminal domain of metabotropic glutamate receptor 1 by alternative splicing generate receptors with differing agonist-independent activity. Mol Pharmacol 49(3):422–429PubMedGoogle Scholar
  12. 12.
    Hardingham NR, Bannister NJ, Read JC, Fox KD, Hardingham GE, Jack JJ (2006) Extracellular calcium regulates postsynaptic efficacy through group 1 metabotropic glutamate receptors. J Neurosci 26:6337–6345PubMedGoogle Scholar
  13. 13.
    Litschig S, Gasparini F, Rueegg D, Stoehr N, Flor PJ, Vranesic I, Prézeau L, Pin JP, Thomsen C, Kuhn R (1999) CPCCOEt, a non competitive metabotropic glutamate receptor 1 antagonist, inhibit receptor signalling without affecting glutamate binding. Mol Pharmacol 55(3):453–461PubMedGoogle Scholar
  14. 14.
    Pagano A, Rüegg D, Litschig S, Stoehr N, Stierlin C, Heinrich M, Floersheim P, Prézeau L, Carrol F, Pin J-P, Cambria A, Vranesic I, Flor PJ, Gasparini F, Kuhn R (2000) The non competitive antagonist 2-methyl-6-(phenylethynyl)pyridine and 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester interact with overlapping binding pockets in the transmembrane region of group I metabotropic glutamate receptors. J Biol Chem 275(43):33750–33758PubMedGoogle Scholar
  15. 15.
    Carrol FY, Stolle A, Beart PM, Voerste A, Brabet I, Mauler F, Joly C, Antonicek H, Bockaert J, Müller T, Pin J-P, Prézeau L (2001) BAY36-7620: a potent non-competitive mGlu1 receptor antagonist with inverse agonist activity. Mol Pharmacol 59(5):965–973Google Scholar
  16. 16.
    Hermans E, Challiss RAJ (2001) Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 359:465–484PubMedGoogle Scholar
  17. 17.
    Gasparini F, Lingenhöhl K, Stoehr N, Flor PJ, Heinrich M, Vranesic I, Biollaz M, Allgeier H, Heckendorn R, Urwyler S, Varney MA, Johnson EC, Hess SD, Rao SP, Sacaan AI, Santori EM, Veliçelebi G, Kuhn R (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38(10):1493–1503PubMedGoogle Scholar
  18. 18.
    Maj M, Bruno V, Dragic Z, Yananoto R, Battaglia G, Inderbitzin W, Stoehr N, Stein T, Gasparini F, Vranesic I, Kuhn R, Nicoletti F, Flor PJ (2003) (–)–PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology 45:895–906PubMedGoogle Scholar
  19. 19.
    Luján R, Roberts JD, Shigemoto R, Ohishi H, Somogyi P (1997) Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J Chem Neuroanat 13:219–241PubMedGoogle Scholar
  20. 20.
    Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299(1):12–20PubMedGoogle Scholar
  21. 21.
    Kawabata S, Tsutsumi R, Kohara A, Yamaguchi T, Nakanishi S, Okada M (1996) Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature 383:89–92PubMedGoogle Scholar
  22. 22.
    Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26PubMedGoogle Scholar
  23. 23.
    Peavy RD, Conn PJ (1998) Phosphorylation of mitogen-activated protein kinase in cultured rat cortical glia by stimulation of metabotropic glutamate receptors. J Neurochem 71(2):603–612PubMedCrossRefGoogle Scholar
  24. 24.
    Ferraguti F, Baldani-Guerra B, Corsi M, Nakanishi S, Corti C (1999) Activation of the extracellular signal-regulated kinase 2 by metabotropic glutamate receptors. Eur J Neurosci 11(6):2073–2082PubMedGoogle Scholar
  25. 25.
    Rong R, Ahn J-Y, Huang H, Nagata E, Kalman D, Kapp JA, Tu J, Worley PF, Snyder SH, Ye K (2003) PI3Kinase enhancer-Homer complex couples mGluRI to PI3 kinase, preventing neuronal apoptosis. Nature Neurosci 6(11):1153–1161PubMedGoogle Scholar
  26. 26.
    Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, Breder CD, Ruggiero A, Lanahan AA, Wenthold RJ, Worley PF (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of Homer-related, synaptic proteins. Neuron 21:707–716PubMedGoogle Scholar
  27. 27.
    Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF (1998) Homer binds a novel prolin-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21:717–726PubMedGoogle Scholar
  28. 28.
    Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, Doan A, Aakalu VK, Lanahan AA, Sheng M, Worley PF (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density protein. Neuron 23:583–592PubMedGoogle Scholar
  29. 29.
    Ango F, Prézeau L, Muller T, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L (2001) Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature 411:962–965PubMedGoogle Scholar
  30. 30.
    Coutinho V, Kavanagh I, Sugiyama H, Tones MA, Henley JM (2001) Characterization of a metabotropic glutamate receptor type 5-green fluorescent protein chimera (mGluR5-GFP): pharmacology, surface expression, and differential effects of Homer-1a and Homer-1c. Mol Cell Neurosci 18:296–306PubMedGoogle Scholar
  31. 31.
    Ango F, Robbe D, Tu JC, Xiao B, Worley PF, Pin JP, Bockaert J, Fagni L (2002) Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol Cell Neurosci 20:323–329PubMedGoogle Scholar
  32. 32.
    Sergé A, Fourgeaud L, Hémar A, Choquet D (2002) Receptor activation and Homer differentially control the lateral mobility of metabotropic glutamate receptor 5 in the neuronal membrane. J Neurosci 22(10):3910–3920PubMedGoogle Scholar
  33. 33.
    Kammermeier PJ, Xiao B, Tu JC, Worley PF, Ikeda SR (2000) Homer proteins regulate coupling of group I metabotropic glutamate receptors to N-type calcium and M-type potassium channel. J Neurosci 20(19):7238–7245PubMedGoogle Scholar
  34. 34.
    Mao L, Yang L, Tang Q, Samdani S, Zhang G, Wang JW (2005) The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. J Neurosci 25(10):2741–2752PubMedGoogle Scholar
  35. 35.
    Alagarsamy S, Saugstad J, Warren L, Mansuy IM, Gereau RW 4th, Conn PJ (2005) NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology 49(Suppl 1):135–145PubMedGoogle Scholar
  36. 36.
    Catania MV, Landwehrmeywer GB, Testa CM, Standaert DG, Penney JB, Young AB (1994) Metabotropic glutamate receptors are differentially regulated during development. Neuroscience 61(3):481–495PubMedGoogle Scholar
  37. 37.
    Minakami R, Iida K, Hirakawa N, Sugiyama H (1995) The expression of two splice variants of metabotropic glutamate receptor subtype 5 in the rat brain and neuronal cells during development. J Neurochem 65(4):1536–1542PubMedCrossRefGoogle Scholar
  38. 38.
    Romano C, Van den Pol AN, O’Malley KL (1996) Enhance early developmental expression of the metabotropic glutamate receptor mGluR5 in rat brain: protein, mRNA splice variants, and regional distribution. J Comp Neurol 367:403–412PubMedGoogle Scholar
  39. 39.
    Van den Pol AN, Romano C, Ghosh P (1995) Metabotropic glutamate receptor mGluR5 subcellular distribution and developmental expression in hypothalamus. J Comp Neurol 362(1):134–150PubMedGoogle Scholar
  40. 40.
    Romano C, Smout S, Miller JK, O’Malley KL (2002) Developmental regulation of metabotropic glutamate receptor 5b protein in rodent brain. Neuroscience 111(3):693–698PubMedGoogle Scholar
  41. 41.
    Casabona G, Knöpfel T, Kuhn R, Gasparini F, Baumann P, Sortino MA, Copani A, Nicoletti F (1997) Expression and coupling to polyphosphoinositide hydrolysis of group-I metabotropic glutamate receptor in early postnatal and adult rat brain. Eur J Neurosci 9(1):12–17PubMedGoogle Scholar
  42. 42.
    Furuta A, Martin LJ (1999) Laminar segregation of the cortical plate during corticogenesis is accompanied by changes in glutamate receptor expression. J Neurobiol 39:67–80PubMedGoogle Scholar
  43. 43.
    Petralia RS, Sans N, Wang Y-X, Wenthold RJ (2005) Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol Cell Neurosci 29(3):436–452PubMedGoogle Scholar
  44. 44.
    Nicoletti F, Iadarola MJ, Wrobleski JT, Costa E (1986) Excitatory amino acid recognition sites coupled with inositolphospholipid metabolism: developmental changes and interaction with a1-adrenoceptor. Proc Natl Acad Sci USA 83:1931–1935PubMedGoogle Scholar
  45. 45.
    Nicoletti F, Meek JL, Iadarola MJ, Chuang DM, Roth BL, Costa E (1986) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J Neurochem 46(1):40–46PubMedGoogle Scholar
  46. 46.
    Dudek SM, Bowen WD, Bear MF (1989) Postnatal changes in glutamate stimulated phosphoinositide turnover in rat neocortical synaptoneurosomes. Brain Res Dev Brain Res 47:123–128PubMedGoogle Scholar
  47. 47.
    Schoepp DD, Johnson BG (1989) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus by 2-amino-3-phosphonopropionate. J Neurochem 53(6):1865–1870PubMedGoogle Scholar
  48. 48.
    Sortino MA, Nicoletti F, Canonico PL (1991) “Metabotropic” glutamate receptors in rat hypothalamus: characterization and developmental profile. Brain Res Dev Brain Res 61(2):169–172PubMedGoogle Scholar
  49. 49.
    Spinsanti P, De Vita T, Di Castro S, Storto M, Formisano P, Nicoletti F, Melchiorri D (2006) Endogenously activated mGlu5 metabotropic glutamate receptors sustain the increases in c-Myc expression induced by leukaemia inhibitory factor in cultured mouse embryonic stem cells. J Neurochem 99:299–307PubMedGoogle Scholar
  50. 50.
    Di Giorni Gerevini VD, Melchiorri D, Battaglia G, Ricci-Vitiani L, Busceti CL, Biagioni F, Iacovelli L, Canudas AM, Parati E, De Maria R, Nicoletti F (2005) Endogenous activation of metabotrophic glutamate receptors supports the proliferation and survival of neural progenitor cells. Cell Death Differ 12(8):1124–1133Google Scholar
  51. 51.
    Frotscher M (1998) Cajal–Retzius cells, reelin and the formation of layers. Curr Opin Neurobiol 8:570–575PubMedGoogle Scholar
  52. 52.
    Martínez-Galán JR, López-Bendito G, Luján R, Shigemoto R, Fairén, Valdeolmillos M (2001) Cajal–Retzius cells in early postnatal mouse cortex selectively express functional metabotropic glutamate receptors. Eur J Neurosci 13:1147–1154PubMedGoogle Scholar
  53. 53.
    Longone P, Impagnatiello F, Giudotti A, Costa E (1997) mGluR1,5 stimulation increases REELIN mRNA expression in cultured cerebellar granule neurons (CGN). Society of Neuroscience 23(2815):52Google Scholar
  54. 54.
    Copani A, Bruno VM, Barresi V, Battaglia G, Condorelli DF, Nicoletti F (1995) Activation of metabotropic glutamate receptors prevents neuronal apoptosis in culture. J Neurochem 64(1):101–108PubMedCrossRefGoogle Scholar
  55. 55.
    Copani A, Casabona G, Bruno V, Caruso A, Condorelli DF, Messina A, Di Giorgi–Gerevini V, Pin J-P, Kuhn R, Knöpfel T, Nicoletti F (1998) The metabotropic glutamate receptor mGlu5 controls the onset of developmental apoptosis in cultured cerebellar neurons. Eur J Neurosci 10:2173–2184PubMedGoogle Scholar
  56. 56.
    Catania MV, Bellomo M, Di Giorgi-Gerevini V, Seminara G, Giuffrida R, Romeo R, De Blasi A, Nicoletti F (2001) Endogenous activation of group-I metabotropic glutamate receptors is required for differentiation and survival of cerebellar Purkinje cells. J Neurosci 21(19):7664–7673PubMedGoogle Scholar
  57. 57.
    Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 3:1143–1195Google Scholar
  58. 58.
    Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136PubMedGoogle Scholar
  59. 59.
    Maren S (2005) Synaptic mechanisms of associative memory in the amygdala. Neuron 47(6):783–786PubMedGoogle Scholar
  60. 60.
    Pisani A, Centonze D, Bernardi G, Calabresi P (2005) Striatal synaptic plasticity: implications for motor learning and Parkinson’s disease. Mov Disord 20(4):395–402PubMedGoogle Scholar
  61. 61.
    Bortolotto ZA, Fitzjohn SM, Collingridge GL (1999) Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr Opin Neurobiol 3:299–304Google Scholar
  62. 62.
    Bortolotto ZA, Collett VJ, Conquet F, Jia Z, van der Putten H, Collingridge GL (2005) The regulation of hippocampal LTP by the molecular switch, a form of metaplasticity, requires mGlu5 receptors. Neuropharmacology 49(1):3–25Google Scholar
  63. 63.
    Riedel G, Reymann KG (1996) Metabotropic glutamate receptors in hippocampal long-term potentiation and learning and memory. Acta Physiol Scand 157(1):1–19PubMedGoogle Scholar
  64. 64.
    Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29(1):83–120PubMedGoogle Scholar
  65. 65.
    Lu YM, Jia Z, Janus C, Henderson JT, Gerlai R, Wojtowicz JM, Roder JC (1997) Mice lacking metabotropic glutamate receptor 5 show impaired learning and reduced CA1 long-term potentiation (LTP) but normal CA3 LTP. J Neurosci 17(13):5196–5205PubMedGoogle Scholar
  66. 66.
    Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21PubMedGoogle Scholar
  67. 67.
    Linden DJ, Dickinson MH, Smeyne M, Connor JA (1991) A long term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron 7:81–89PubMedGoogle Scholar
  68. 68.
    Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, Zwingman TA, Tonegawa S (1994) Deficient cerebellar long term depression and impaired motor learning in mGluR1 mutant mice. Cell 79:377–388PubMedGoogle Scholar
  69. 69.
    Shigemoto R, Abe T, Nomura S, Nakanishi S, Hirano T (1994) Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 12:1245–1255PubMedGoogle Scholar
  70. 70.
    Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y, Aiba A, Tonegawa S (1997) Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 18(1):71–79PubMedGoogle Scholar
  71. 71.
    Huber KM, Kayser MS, Bear MF (2000) Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent LTD. Science 288:1254–1257PubMedGoogle Scholar
  72. 72.
    Hou L, Klann E (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 24(28):6352–6361PubMedGoogle Scholar
  73. 73.
    Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF (2001) Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4(11):1079–1085PubMedGoogle Scholar
  74. 74.
    Karachot L, Shirai Y, Vigot R, Yamamori T, Ito M (2001) Induction of long-term depression in cerebellar Purkinje cells requires a rapidly turned over protein. Neurophysiology 86(1):280–289PubMedGoogle Scholar
  75. 75.
    Dudek SM, Bear MF (1989) A biochemical correlate of the critical period for synaptic modification in the visual cortex. Science 246(4930):673–675PubMedGoogle Scholar
  76. 76.
    Reid SNM, Romano C, Hughes T, Daw NW (1997) Developmental and sensory-dependent changes of phosphoinositide-linked metabotropic glutamate receptors. J Comp Neurol 389:577–583PubMedGoogle Scholar
  77. 77.
    Hensch TK, Stryker MP (1996) Ocular dominance plasticity under metabotropic glutamate receptor blockade. Science 272(5261):554–557PubMedGoogle Scholar
  78. 78.
    Huber KM, Sawtell NB, Bear MF (1998) Effects of the metabotropic glutamate receptor antagonist MCPG on phosphoinositide turnover and synaptic plasticity in visual cortex. J Neurosci 18(1):1–9PubMedGoogle Scholar
  79. 79.
    Sawtell NB, Huber KM, Roder JC, Bear MF (1999) Induction of NMDA receptor-dependent long term depression in visual cortex does not require metabotropic glutamate receptors. J Neurophysiol 82(6):3594–3597PubMedGoogle Scholar
  80. 80.
    Hannan AJ, Blakemore C, Katsnelson A, Vitalis T, Huber KM, Bear M, Roder J, Kim D, Shin H-S, Kind PC (2001) PLCβ1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nat Neurosci 4(3):282–288PubMedGoogle Scholar
  81. 81.
    Spires TL, Molnar Z, Kind PC, Cordery PM, Upton AL, Blakemore C, Hannan AJ (2005) Activity-dependent regulation of synapse and dendritic spine morphology in developing barrel cortex requires phospholipase C-beta1 signalling. Cereb Cortex 15(4):385–393PubMedGoogle Scholar
  82. 82.
    Vanderklish PW, Edelman GM (2002) Dendritic spines elongate after stimulation of group I metabotropic glutamate receptors in cultured hippocampal neurons. Proc Natl Acad Sci USA 99:1639–1644PubMedGoogle Scholar
  83. 83.
    Grossman AW, Aldridge GM, Weiler IJ, Greenough WT (2006) Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J Neurosci 26(27):7151–7155PubMedGoogle Scholar
  84. 84.
    Jin P, Warren SR (2003) New insights into Fragile X syndrome: from molecules to neurobehaviors. Trends Biochem Sci 28(3):152–157PubMedGoogle Scholar
  85. 85.
    Hagerman RJ, Hagerman P eds (2002) Fragile X syndrome: diagnosis, treatment and research, 3rd edn. The Johns Hopkins University Press, Baltimore, pp 3–109Google Scholar
  86. 86.
    Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ, Greenough WT (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94:5401–5404PubMedGoogle Scholar
  87. 87.
    Nimchinsky EA, Oberlander AM, Svoboda K (2001) Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci 21(14):5139–5146PubMedGoogle Scholar
  88. 88.
    Hinton VJ, Brown WT, Wisniewski K, Rudelli RD (1991) Analysis of neocortex in three males with the Fragile X syndrome. Am J Med Genet 41:289–294PubMedGoogle Scholar
  89. 89.
    Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP, Kooy F, Willems PJ, Cras P, Koslowski PB, Swain RA, Weiler IJ, Greenough WT (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile X syndrome: a quantitative examination. Am J Med Genet 98:161–167PubMedGoogle Scholar
  90. 90.
    Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, Miyashiro K, Comery TA, Patel B, Eberwine J, Greenough WT (1997) Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci USA 94:5395–5400PubMedGoogle Scholar
  91. 91.
    Feng Y, Gutekunst CA, Eberhart DE, Yi H, Warren ST, Hersch SM (1997) Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci 17(5):1539–1547PubMedGoogle Scholar
  92. 92.
    Antar LN, Afroz R, Dictenberg JB, Carrol RC, Bassel GJ (2004) Metabotropic glutamate receptor activation regulates Fragile X mental retardation protein and Fmr1 mRNA localization differentially in dendrites and at synapses. J Neurosci 24(11):2648–2655PubMedGoogle Scholar
  93. 93.
    Khandjian EW, Huot ME, Tremblay S, Davidovic L, Mazroui R, Bardoni B (2004) Biochemical evidence for the association of Fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proc Natl Acad Sci USA 101(36):13357–13362PubMedGoogle Scholar
  94. 94.
    Stefani G, Fraser CE, Darnell JC, Darnell RB (2004) Fragile X mental retardation protein is associated with translating polyribosomes in neuronal cells. J Neurosci 24(33):7272–7276PubMedGoogle Scholar
  95. 95.
    Aschrafi A, Cunningham BA, Edelman GM, Vanderklish PW (2005) The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Proc Natl Acad Sci USA 102(6):2180–2185PubMedGoogle Scholar
  96. 96.
    Miyashiro KY, Beckel-Mitchener A, Purk TP, Becker KG, Barret T, Liu L, Carbonetto S, Weiler IJ, Greenough WT, Eberwine J (2003) RNA cargoes associating with FMRP reveal deficits in cellular functioning in Fmr1 null mice. Neuron 37(3):417–431PubMedGoogle Scholar
  97. 97.
    Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, Reis S, Oostra B, Bagni C (2003) The Fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNA at synapses. Cell 112:317–327PubMedGoogle Scholar
  98. 98.
    Laggerbauer B, Ostarek D, Keidel EM, Ostarek-Lederer A, Fisher U (2001) Evidence that Fragile X mental retardation protein is a negative regulator of translation. Hum Mol Genet 10:329–338PubMedGoogle Scholar
  99. 99.
    Li Z, Zhang Y, Ku L, Wilkinson KD, Warren ST, Feng Y (2001) Evidence that fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res 29:2276–2283PubMedGoogle Scholar
  100. 100.
    Mazroui R, Huot ME, Tremblay S, Filion C, Labelle Y, Khandjian EW (2002) Trapping of messenger RNA by Fragile X mental retardation protein into cytoplasmic granules induces translation repression. Hum Mol Genet 11(24):3007–3017PubMedGoogle Scholar
  101. 101.
    Qin M, Kang J, Burlin TBM, Jiang C, Smith CB (2005) Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the Fmr1 null mouse. J Neurosci 25(20):5087–5095PubMedGoogle Scholar
  102. 102.
    Lu R, Wang H, Liang Z, Ku L, O’donnell WT, Li W, Warren ST, Feng Y (2004) The Fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc Natl Acad Sci USA 101(42):15201–15206PubMedGoogle Scholar
  103. 103.
    Todd PK, Mack KJ, Malter JS (2003) The Fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95. Proc Natl Acad Sci USA 100(24):14374–14378PubMedGoogle Scholar
  104. 104.
    Weiler IJ, Spangler CC, Klintsova AY, Grossman AW, Kim SH, Bertaina-Anglade V, Khaliq H, de Vries E, Lambers FA, Hatia F, Base CK, Greenough WT (2004) Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci USA 101(50):17504–17509PubMedGoogle Scholar
  105. 105.
    Ceman S, O’Donnell WT, Reed M, Patton S, Pohl J, Warren ST (2003) Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum Mol Genet 12(24):3295–3305PubMedGoogle Scholar
  106. 106.
    Castets M, Schaeffer C, Bechara E, Schenk A, Khandjian EW, Luche S, Moine H, Rabilloud T, Mandel J-L, Bardoni B (2005) FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Hum Mol Genet 14(6):835–844PubMedGoogle Scholar
  107. 107.
    Mao L, Yang L, Arora A, Choe ES, Zhang G, Liu Z, Fibuch EE, Wang JQ (2005) Role of protein phosphatase 2A in mGluR5-regulated MEK/ERK phosphorylation in neurons. J Biol Chem 280(13):12602–12610PubMedGoogle Scholar
  108. 108.
    Garber K, Smith KT, Reines D, Warren ST (2006) Transcription, translation and Fragile X syndrome. Curr Opin Genet Dev 16(3):270–275PubMedGoogle Scholar
  109. 109.
    Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of Fragile X mental retardation. Proc Natl Acad Sci USA 99:7746–7750PubMedGoogle Scholar
  110. 110.
    Chuang S-C, Zhao W, Bauchwitz R, Yan Q, Bianchi R, Wong RKS (2005) Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a Fragile X mouse model. J Neurosci 25(35):8048–8055PubMedGoogle Scholar
  111. 111.
    Bear MF, Huber KM, Warren ST (2004) The mGluR theory of Fragile X mental retardation. Trends Neurosci 27(7):370–377PubMedGoogle Scholar
  112. 112.
    Wilson BM, Cox CL (2007) Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of Fragile X mice. Proc Natl Acad Sci USA 104:2454–2459PubMedGoogle Scholar
  113. 113.
    Nosyreva ED, Huber KM (2006) Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of Fragile X syndrome. J Neurophysiol 95(5):3291–3295PubMedGoogle Scholar
  114. 114.
    Hou L, Antion MD, Spencer CM, Paylor R, Klann E (2005) Altered mGluR-LTD in the Fmr1 knock-out and FMR1 YAC mouse models of fragile X mental retardation. Abstract no. 382.10, Abstract viewer/Itinerary planner. Society for Neuroscience, Washington, DCGoogle Scholar
  115. 115.
    Giuffrida R, Musumeci S, D’Antoni S, Bonaccorso MC, Giuffrida-Stella AM, Oostra BA, Catania MV (2005) A reduced number of metabotropic glutamate subtype 5 receptors are associated with constitutive Homer proteins in a mouse model of Fragile X syndrome. J Neurosci 25(39):8908–8916PubMedGoogle Scholar
  116. 116.
    Bear MF (2005) Therapeutic implications of the mGluR theory of Fragile X mental retardation. Genes Brain Behav 4(6):393–398PubMedGoogle Scholar
  117. 117.
    McBride SM, Choi CH, Wang Y, Liebelt D, Braunstein E, Ferreiro D, Sehgal A, Siwicki KK, Dockendorff TC, Nguyen HT, McDonald TC, Jongens TA (2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of Fragile X syndrome. Neuron 45:753–764PubMedGoogle Scholar
  118. 118.
    Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP (2005) Suppression of two major Fragile X syndrome mouse model phenotypes by the mGlu5 antagonist MPEP. Neuropharmacology 49:1053–1066PubMedGoogle Scholar
  119. 119.
    Crino PB, Miyata H, Vinters HV (2002) Neurodevelopmental disorders as a cause of seizures: neuropathologic, genetic, and mechanistic considerations. Brain Pathol 12(2):212–233PubMedCrossRefGoogle Scholar
  120. 120.
    Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 65(12):1873–1887PubMedGoogle Scholar
  121. 121.
    Sisodiya SM (2004) Malformations of cortical development: burdens and insights from important causes of human epilepsy. Lancet Neurol 3(1):29–38PubMedGoogle Scholar
  122. 122.
    Palmini A, Andermann F, Olivier A, Tampieri D, Robitaille Y (1991) Focal neuronal migration disorders and intractable partial epilepsy: results of surgical treatment. Ann Neurol 30(6):750–757PubMedGoogle Scholar
  123. 123.
    Palmini A, Gambardella A, Andermann F, Dubeau F, da Costa JC, Olivier A, Tampieri D, Gloor P, Quesnay F, Andermann E et al (1995) Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 37(4):476–487PubMedGoogle Scholar
  124. 124.
    Aronica E, Leenstra S, van Veelen CW, van Rijen PC, Hulsebos TJ, Tersmette AC, Yankaya B, Troost D (2001) Glioneuronal tumors and medically intractable epilepsy: a clinical study with long-term follow-up of seizure outcome after surgery. Epilepsy Res 43(3):179–191PubMedGoogle Scholar
  125. 125.
    Thom M (2004) Recent advances in the neuropathology of focal lesions in epilepsy. Expert Rev Neurother 4(6):973–984PubMedGoogle Scholar
  126. 126.
    Tinkle BT, Schorry EK, Franz DN, Crone KR, Saal HM (2005) Epidemiology of hemimegalencephaly: a case series and review. Am J Med Genet A 139(3):204–211PubMedGoogle Scholar
  127. 127.
    Flores-Sarnat L (2002) Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects. J Child Neurol 17(5):373–384PubMedGoogle Scholar
  128. 128.
    Sarnat HB, Flores-Sarnat L (2004) Integrative classification of morphology and molecular genetics in central nervous system malformations. Am J Med Genet A 126(4):386–392PubMedGoogle Scholar
  129. 129.
    Jonas R, Nguyen S, Hu B, Asarnow RF, LoPresti C, Curtiss S, de Bode S, Yudovin S, Shield WD, Vinters HV, Mathern GW (2004) Cerebral hemispherectomy: hospital course, seizure, developmental, language, and motor outcomes. Neurology 62(10):1712–1721PubMedGoogle Scholar
  130. 130.
    Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N, Jackson G, Luders HO, Prayson R, Spreafico R, Vinters HV (2004) Terminology and classification of the cortical dysplasias. Neurology 62(6 Suppl 3):S2–S8PubMedGoogle Scholar
  131. 131.
    Ferrier CH, Aronica E, Leijten FSS, Spliet WGM, van Huffelen AC, van Rijen PC, Binnie CD (2006) Electrocorticographic discharge patterns in glioneuronal tumors and focal cortical dysplasia. Epilepsia 47(9):1477–1486PubMedGoogle Scholar
  132. 132.
    Najm I, Ying Z, Babb T, Crino PB, Macdonald R, Mathern GW, Spreafico R (2004) Mechanisms of epileptogenicity in cortical dysplasias. Neurology 62(6 Suppl 3):S9–S13PubMedGoogle Scholar
  133. 133.
    Wong RK, Chuang SC, Bianchi R (2004) Plasticity mechanisms underlying mGluR–induced epileptogenesis. Adv Exp Med Biol 548:69–75PubMedGoogle Scholar
  134. 134.
    Moldrich RX, Chapman AG, De Sarro G, Meldrum BS (2003) Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 476(1–2):3–16PubMedGoogle Scholar
  135. 135.
    Aronica E, Yankaya B, Jansen GH, Leenstra S, van Veelen CW, Gorter JA, Troost D (2001) Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol 27(3):223–237PubMedGoogle Scholar
  136. 136.
    Aronica E, Gorter JA, Jansen GH, van Veelen CW, van Rijen PC, Ramkema M, Troost D (2003) Expression and cell distribution of group I and group II metabotropic glutamate receptor subtypes in taylor-type focal cortical dysplasia. Epilepsia 44(6):785–795PubMedGoogle Scholar
  137. 137.
    Akbar MT, Rattray M, Powell JF, Meldrum BS (1996) Altered expression of group I metabotropic glutamate receptors in the hippocampus of amygdala-kindled rats. Brain Res Mol Brain Res 43(1–2):105–116PubMedGoogle Scholar
  138. 138.
    Aronica EM, Gorter JA, Paupard MC, Grooms SY, Bennett MV, Zukin RS (1997) Status epilepticus-induced alterations in metabotropic glutamate receptor expression in young and adult rats. J Neurosci 17(21):8588–8595PubMedGoogle Scholar
  139. 139.
    Blumcke I, Becker AJ, Klein C, Scheiwe C, Lie AA, Beck H, Waha A, Friedl MG, Kuhn R, Emson P, Elger C, Westler OD (2000) Temporal lobe epilepsy associated up-regulation of metabotropic glutamate receptors: correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients. J Neuropathol Exp Neurol 59(1):1–10PubMedGoogle Scholar
  140. 140.
    Winder DG, Ritch PS, Gereau RWT, Conn PJ (1996) Novel glial-neuronal signalling by coactivation of metabotropic glutamate and beta-adrenergic receptors in rat hippocampus. J Physiol (Lond) 494(Pt 3):743–755Google Scholar
  141. 141.
    Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G (2003) Neuron -to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neurosi 6(1):43–50Google Scholar
  142. 142.
    Ciccarelli R, Sureda FX, Casabona G, Di Iorio P, Caruso A, Spinella F, Condorelli DF, Nicoletti F, Caciagli F (1997) Opposite influence of the metabotropic glutamate receptor subtypes mGlu3 and -5 on astrocyte proliferation in culture. Glia 21(4):390–398PubMedGoogle Scholar
  143. 143.
    Bruno V, SUreda FX, Storto M, Casabona G, Caruso A, Knopfel T, Kuhn R, Nicoletti F (1997) The neuroprotective activity of group-II metabotropic glutamate receptors require new protein synthesis and involves a glial-neuronal signaling. J Neurosci 17(6):1891–1897PubMedGoogle Scholar
  144. 144.
    Bruno V, Battaglia G, Casabona G, Copani A, Caciagli F, Nicoletti F (1998) Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta. J Neurosci 18(23):9594–9600PubMedGoogle Scholar
  145. 145.
    Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D’Alimonte I, D’Onofrio M, Nicoletti F, Caciagli F (1999) Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 27(3):275–281PubMedGoogle Scholar
  146. 146.
    Aronica E, Gorter JA, Rozemuller AJ, Yankaya B, Troost D (2005) Activation of metabotropic glutamate receptor 3 enhances interleukin (IL)-1beta-stimulated release of IL-6 in cultured human astrocytes. Neuroscience 130(4):927–933PubMedGoogle Scholar
  147. 147.
    Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A (2000) The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int 37(2–3):163–170PubMedGoogle Scholar
  148. 148.
    Aronica E, Gorter JA, Ijlst-Keizers H, Rozemuller AJ, Yankaya B, Troost D (2003) Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 17(10):2106–2118PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Maria Vincenza Catania
    • 1
    • 2
    Email author
  • Simona D’Antoni
    • 1
  • Carmela Maria Bonaccorso
    • 2
  • Eleonora Aronica
    • 3
  • Mark F. Bear
    • 4
  • Ferdinando Nicoletti
    • 5
    • 6
  1. 1.Institute of Neurological SciencesNational Research Council (CNR)CataniaItaly
  2. 2.Laboratory of Molecular and Cellular NeurobiologyOasi Institute for Research on Mental Retardation and Brain Aging (IRCCS)TroinaItaly
  3. 3.Department of (Neuro)PathologyAcademisch Medisch CentrumAmsterdamThe Netherlands
  4. 4.The Picower Institute, HHMIMassachusetts Institute of TechnologyCambridgeUSA
  5. 5.Department of Physiology and Pharmacology “V. Erspamer”University of Rome “La Sapienza”RomeItaly
  6. 6.INM NeuromedPozzilliItaly

Personalised recommendations