Molecular Neurobiology

, Volume 36, Issue 1, pp 82–91 | Cite as

Cannabinoids and Neuroprotection in Basal Ganglia Disorders

  • Onintza Sagredo
  • Moisés García-Arencibia
  • Eva de Lago
  • Simone Finetti
  • Alessandra Decio
  • Javier Fernández-Ruiz
Article

Abstract

Cannabinoids have been proposed as clinically promising neuroprotective molecules, as they are capable to reduce excitotoxicity, calcium influx, and oxidative injury. They are also able to decrease inflammation by acting on glial processes that regulate neuronal survival and to restore blood supply to injured area by reducing the vasoconstriction produced by several endothelium-derived factors. Through one or more of these processes, cannabinoids may provide neuroprotection in different neurodegenerative disorders including Parkinson’s disease and Huntington’s chorea, two chronic diseases that are originated as a consequence of the degeneration of specific nuclei of basal ganglia, resulting in a deterioration of the control of movement. Both diseases have been still scarcely explored at the clinical level for a possible application of cannabinoids to delay the progressive degeneration of the basal ganglia. However, the preclinical evidence seems to be solid and promising. There are two key mechanisms involved in the neuroprotection by cannabinoids in experimental models of these two disorders: first, a cannabinoid receptor-independent mechanism aimed at producing a decrease in the oxidative injury and second, an induction/upregulation of cannabinoid CB2 receptors, mainly in reactive microglia, that is capable to regulate the influence of these glial cells on neuronal homeostasis. Considering the relevance of these preclinical data and the lack of efficient neuroprotective strategies in both disorders, we urge the development of further studies that allow that the promising expectatives generated for these molecules progress from the present preclinical evidence till a real clinical application.

Keywords

Cannabinoids Cannabinoid signaling system CB1 receptors CB2 receptors Basal ganglia Neurodegeneration Neuroprotection Parkinson’s disease Huntington’s disease 

References

  1. 1.
    Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system J Endocrinol Invest 29:27–46PubMedGoogle Scholar
  2. 2.
    Fernández-Ruiz J, González S (2005) Cannabinoid control of motor function at the basal ganglia. Handb Exp Pharmacol 168:479–507PubMedCrossRefGoogle Scholar
  3. 3.
    van der Stelt M, Di Marzo V (2003) The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur J Pharmacol 480:133–150PubMedCrossRefGoogle Scholar
  4. 4.
    Romero J, Lastres-Becker I, de Miguel R, Berrendero F, Ramos JA, Fernández-Ruiz JJ (2002) The endogenous cannabinoid system and the basal ganglia: biochemical, pharmacological and therapeutic aspects. Pharmacol Ther 95:137–152PubMedCrossRefGoogle Scholar
  5. 5.
    Giuffrida A, Piomelli D (2000) The endocannabinoid system: a physiological perspective on its role in psychomotor control. Chem Phys Lipids 108:151–158PubMedCrossRefGoogle Scholar
  6. 6.
    Fernández-Ruiz J, González S, Romero J, Ramos JA (2005) Cannabinoids in neurodegeneration and neuroprotection. In: Mechoulam R (ed) Cannabinoids as therapeutics (MDT). Birkhaüser, Switzerland, pp79–109CrossRefGoogle Scholar
  7. 7.
    Lastres-Becker I, Hansen HH, Berrendero F, de Miguel R, Pérez-Rosado A, Manzanares J, Ramos JA, Fernández-Ruiz J (2002) Loss of cannabinoid CB1 receptors and alleviation of motor hyperactivity and neurochemical deficits by endocannabinoid uptake inhibition in a rat model of Huntington’s disease. Synapse 44:23–35PubMedCrossRefGoogle Scholar
  8. 8.
    Lastres-Becker I, de Miguel R, De Petrocellis L, Makriyannis A, Di Marzo V, Fernández-Ruiz J (2003) Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington’s disease. J Neurochem 84:1097–1109PubMedCrossRefGoogle Scholar
  9. 9.
    Fernández-Espejo E, Caraballo I, Rodríguez de Fonseca F, El Banoua F, Ferrer B, Flores JA, Galán-Rodríguez B (2005) Cannabinoid CB1 antagonists possess antiparkinsonian efficacy only in rats with very severe nigral lesion in experimental parkinsonism. Neurobiol Dis 18:591–601PubMedCrossRefGoogle Scholar
  10. 10.
    González S, Scorticati C, García-Arencibia M, de Miguel R, Ramos JA, Fernández-Ruiz J (2006) Effects of rimonabant, a selective cannabinoid CB1 receptor antagonist, in a rat model of Parkinson’s disease. Brain Res 1073–1074:209–219PubMedCrossRefGoogle Scholar
  11. 11.
    Mechoulam R, Panikashivili A, Shohami E (2002) Cannabinoids and brain injury: therapeutic implications. Trends Mol Med 8:58–61PubMedCrossRefGoogle Scholar
  12. 12.
    Grundy RI (2002) The therapeutic potential of the cannabinoids in neuroprotection. Expert Opin Investig Drugs 11:1–10CrossRefGoogle Scholar
  13. 13.
    Akwa Y, Allain H, Bentue-Ferrer D, Berr C, Bordet R, Geerts H, Nieoullon A, Onteniente B, Vercelletto M (2005) Neuroprotection and neurodegenerative diseases: from biology to clinical practice. Alzheimer Dis Assoc Disord 19:226–239PubMedCrossRefGoogle Scholar
  14. 14.
    Guzmán M, Sánchez C, Galve-Roperh I (2001) Control of the cell survival/death decision by cannabinoids. J Mol Med 78:613–625PubMedCrossRefGoogle Scholar
  15. 15.
    Fernández-Ruiz J, Romero J, Velasco G, Tolón RM, Ramos JA, Guzmán M (2007) Cannabinoid CB2 receptor: a new target for the control of neural cell survival? Trends Pharmacol Sci 28:39–45PubMedCrossRefGoogle Scholar
  16. 16.
    Hansen HS, Moesgaard B, Petersen G, Hansen HH (2002) Putative neuroprotective actions of N-acyl-ethanolamines. Pharmacol Ther 95:119–126PubMedCrossRefGoogle Scholar
  17. 17.
    van der Stelt M, Veldhuis WB, Maccarrone M, Bar PR, Nicolay K, Veldink GA, Di Marzo V, Vliegenthart JF (2002) Acute neuronal injury, excitotoxicity, and the endocannabinoid system. Mol Neurobiol 26:317–346PubMedCrossRefGoogle Scholar
  18. 18.
    Hansen HS, Moesgaard B, Hansen HH, Schousboe A, Petersen G (1999) Formation of N-acyl-phosphatidylethanolamine and N-acylethanolamine (including anandamide) during glutamate-induced neurotoxicity. Lipids 34:S327–S330PubMedCrossRefGoogle Scholar
  19. 19.
    Hansen HH, Schmid PC, Bittigau P, Lastres-Becker I, Berrendero F, Manzanares J, Ikonomidou C, Schmid HH, Fernandez-Ruiz JJ, Hansen HS (2001) Anandamide, but not 2-arachidonoylglycerol, accumulates during in vivo neurodegeneration. J Neurochem 78:1415–1427PubMedCrossRefGoogle Scholar
  20. 20.
    Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A, Azad SC, Cascio MG, Gutierrez SO, van der Stelt M, Lopez-Rodriguez ML, Casanova E, Schutz G, Zieglgansberger W, Di Marzo V, Behl C, Lutz B (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84–88PubMedCrossRefGoogle Scholar
  21. 21.
    Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agrò A, Maccarrone M (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22:6900–6907PubMedGoogle Scholar
  22. 22.
    Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R, Shohami E (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531PubMedCrossRefGoogle Scholar
  23. 23.
    Schabitz WR, Giuffrida A, Berger C, Aschoff A, Schwaninger M, Schwab S, Piomelli D (2002) Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study. Stroke 33:2112–2124PubMedCrossRefGoogle Scholar
  24. 24.
    van der Stelt M, Veldhuis WB, van Haaften GW, Fezza F, Bisogno T, Bär PR, Veldink GA, Vliegenthart JF, Di Marzo V, Nicolay K (2001) Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J Neurosci 21:8765–8771PubMedGoogle Scholar
  25. 25.
    Jin KL, Mao XO, Goldsmith PC, Greenberg DA (2000) CB1 cannabinoid receptor induction in experimental stroke. Ann Neurol 48:257–261PubMedCrossRefGoogle Scholar
  26. 26.
    Benito C, Nuñez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J. (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141PubMedGoogle Scholar
  27. 27.
    Veldhuis WB, van der Stelt M, Wadman MW, van Zadelhoff G, Maccarrone M, Fezza F, Veldink GA, Vliegenthart JF, Bar PR, Nicolay K, Di Marzo V (2003) Neuroprotection by the endogenous cannabinoid anandamide and arvanil against in vivo excitotoxicity in the rat: role of vanilloid receptors and lipoxygenases. J Neurosci 23:4127–4133PubMedGoogle Scholar
  28. 28.
    Shen M, Thayer SA (1998) Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol 54:459–462PubMedGoogle Scholar
  29. 29.
    Abood ME, Rizvi G, Sallapudi N, McAllister SD (2001) Activation of the CB1 cannabinoid receptor protects cultured mouse spinal neurons against excitotoxicity. Neurosci Lett 309:197–201PubMedCrossRefGoogle Scholar
  30. 30.
    Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin KL, Greenberg DA (1999) Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 19:2987–2995PubMedGoogle Scholar
  31. 31.
    Schlicker E, Kathmann M (2001) Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 22:565–572PubMedCrossRefGoogle Scholar
  32. 32.
    Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Brouillet E, Fernández-Ruiz J (2003) Effects of cannabinoids in the rat model of Huntington’s disease generated by an intrastriatal injection of malonate. Neuroreport 14:813–816PubMedCrossRefGoogle Scholar
  33. 33.
    Hansen HH, Azcoitia I, Pons S, Romero J, Garcia-Segura LM, Ramos JA, Hansen HS, Fernandez-Ruiz J (2002) Blockade of cannabinoid CB1 receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity. J Neurochem 82:154–158PubMedCrossRefGoogle Scholar
  34. 34.
    Shohami E, Mechoulam R (2000) A non-psychotropic cannabinoid with neuroprotective properties. Drug Dev Res 50:211–215CrossRefGoogle Scholar
  35. 35.
    Hampson AJ, Bornheim LM, Scanziani M, Yost CS, Gray AT, Hansen BM, Leonoudakis DJ, Bickler PE (1998) Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 70:671–676PubMedCrossRefGoogle Scholar
  36. 36.
    Demuth DG, Molleman A (2006) Cannabinoid signalling. Life Sci 78:549–563PubMedCrossRefGoogle Scholar
  37. 37.
    Fowler CJ (2003) Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, ‘entourage’ compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects. Brain Res Rev 41:26–43PubMedCrossRefGoogle Scholar
  38. 38.
    Wagner JA, Varga K, Kunos G (1998) Cardiovascular actions of cannabinoids and their generation during shock. J Mol Med 76:824–836PubMedCrossRefGoogle Scholar
  39. 39.
    Randall MD, Harris D, Kendall DA, Ralevic V (2002) Cardiovascular effects of cannabinoids. Pharmacol Ther 95:191–202PubMedCrossRefGoogle Scholar
  40. 40.
    Chen Y, McCarron RM, Ohara Y, Bembry J, Azzam N, Lenz FA, Shohami E, Mechoulam R, Spatz M (2000) Human brain capillary endothelium: 2-arachidonoglycerol (endocannabinoid) interacts with endothelin-1. Circ Res 87:323–327PubMedGoogle Scholar
  41. 41.
    Begg M, Pacher P, Batkai S, Osei-Hyiaman D, Offertaler L, Mo FM, Liu J, Kunos G (2005) Evidence for novel cannabinoid receptors. Pharmacol Ther 106:133–145PubMedCrossRefGoogle Scholar
  42. 42.
    Stella N (2004) Cannabinoid signaling in glial cells. Glia 48:267–277PubMedCrossRefGoogle Scholar
  43. 43.
    Walter L, Stella N (2004) Cannabinoids and neuroinflammation. Br J Pharmacol 141:775–785PubMedCrossRefGoogle Scholar
  44. 44.
    Smith SR, Terminelli C, Denhardt G (2000) Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J Pharmacol Exp Ther 293:136–150PubMedGoogle Scholar
  45. 45.
    Molina-Holgado F, Pinteaux E, Moore JD, Molina-Holgado E, Guaza C, Gibson RM, Rothwell NJ (2003) Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia. J Neurosci 23:6470–6474PubMedGoogle Scholar
  46. 46.
    Guzman M, Sanchez C (1999) Effects of cannabinoids on energy metabolism. Life Sci 65:657–664PubMedCrossRefGoogle Scholar
  47. 47.
    Marsicano G, Moosmann B, Hermann H, Lutz B, Behl C (2002) Neuroprotective properties of cannabinoids against oxidative stress: role of the cannabinoid receptor CB1. J Neurochem 80:448–456PubMedCrossRefGoogle Scholar
  48. 48.
    Eshhar N, Striem S, Kohen R, Tirosh O, Biegon A (1995) Neuroprotective and antioxidant activities of HU-211, a novel NMDA receptor antagonist. Eur J Pharmacol 283:19–29PubMedCrossRefGoogle Scholar
  49. 49.
    Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A 95:8268–8273CrossRefGoogle Scholar
  50. 50.
    Chen Y, Buck J (2000) Cannabinoids protect cells from oxidative cell death: a receptor-independent mechanism. J Pharmacol Exp Ther 293:807–812PubMedGoogle Scholar
  51. 51.
    García-Arencibia M, González S, de Lago E, Ramos JA, Mechoulam R, Fernández-Ruiz J (2007) Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain Res 1134:162–170PubMedCrossRefGoogle Scholar
  52. 52.
    Sagredo O, Ramos JA, Decio A, Mechoulam R, Fernández-Ruiz J (2007) Cannabidiol reduced the striatal atrophy caused 3-nitropropionic acid in vivo by mechanisms independent of the activation of cannabinoid receptors. Eur J Neurosci (in press)Google Scholar
  53. 53.
    Borrell-Pages M, Zala D, Humbert S, Saudou F (2006) Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategies. Cell Mol Life Sci 63:2642–2660PubMedCrossRefGoogle Scholar
  54. 54.
    Herkenham M, Lynn AB, Little MD, Melvin LS, Johnson MR, de Costa DR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583PubMedGoogle Scholar
  55. 55.
    Lastres-Becker I, De Miguel R, Fernández-Ruiz J (2003) The endocannabinoid system and Huntington’s disease. Curr Drug Target CNS Neurol Disord 2:335–347CrossRefGoogle Scholar
  56. 56.
    Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Fernández-Ruiz JJ, Brouillet E (2004) Potential involvement of cannabinoid receptors in 3-nitropropionic acid toxicity in vivo: implication for Huntington’s disease. Neuroreport 15:2375–2379Google Scholar
  57. 57.
    Pintor A, Tebano MT, Martire A, Grieco R, Galluzzo M, Scattoni ML, Pezzola A, Coccurello R, Felici F, Cuomo V, Piomelli D, Calamandrei G, Popoli P (2006) The cannabinoid receptor agonist WIN 55,212-2 attenuates the effects induced by quinolinic acid in the rat striatum. Neuropharmacology 51:1004–1012PubMedCrossRefGoogle Scholar
  58. 58.
    Glass M, Dragunow M, Faull RLM (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA-A receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519PubMedCrossRefGoogle Scholar
  59. 59.
    Lastres-Becker I, Berrendero F, Lucas JJ, Martin E, Yamamoto A, Ramos JA, Fernández-Ruiz J (2002) Loss of mRNA levels, binding and activation of GTP-binding proteins for cannabinoid CB1 receptors in the basal ganglia of a transgenic model of Huntington’s disease. Brain Res 929:236–242PubMedCrossRefGoogle Scholar
  60. 60.
    Denovan-Wright EM, Robertson HA (2000) Cannabinoid receptor messenger RNA levels decrease in subset neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience 98:705–713PubMedCrossRefGoogle Scholar
  61. 61.
    Aiken CT, Tobin AJ, Schweitzer ES (2004) A cell-based screen for drugs to treat Huntington’s disease. Neurobiol Dis 16:546–555PubMedCrossRefGoogle Scholar
  62. 62.
    Wang W, Duan W, Igarashi S, Morita H, Nakamura M, Ross CA (2005) Compounds blocking mutant huntingtin toxicity identified using a Huntington’s disease neuronal cell model. Neurobiol Dis 20:500–508PubMedCrossRefGoogle Scholar
  63. 63.
    Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH (1996) Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 39:385–389PubMedCrossRefGoogle Scholar
  64. 64.
    Bizat N, Hermel JM, Humbert S, Jacquard C, Creminon C, Escartin C, Saudou F, Krajewski S, Hantraye P, Brouillet E (2003) In vivo calpain/caspase cross-talk during 3-nitropropionic acid-induced striatal degeneration: implication of a calpain-mediated cleavage of active caspase-3. J Biol Chem 278:43245–43253PubMedCrossRefGoogle Scholar
  65. 65.
    Galas MC, Bizat N, Cuvelier L, Bantubungi K, Brouillet E, Schiffmann SN, Blum D (2004) Death of cortical and striatal neurons induced by mitochondrial defect involves differential molecular mechanisms. Neurobiol Dis 15:152–159PubMedCrossRefGoogle Scholar
  66. 66.
    Toulmond S, Tang K, Bureau Y, Ashdown H, Degen S, O’Donnell R, Tam J, Han Y, Colucci J, Giroux A, Zhu Y, Boucher M, Pikounis B, Xanthoudakis S, Roy S, Rigby M, Zamboni R, Robertson GS, Ng GY, Nicholson DW, Fluckiger JP (2004) Neuroprotective effects of M826, a reversible caspase-3 inhibitor, in the rat malonate model of Huntington’s disease. Br J Pharmacol 141:689–697PubMedCrossRefGoogle Scholar
  67. 67.
    Sapp E, Kegel KB, Aronin N, Hashikawa T, Uchiyama Y, Tohyama K, Bhide PG, Vonsattel JP, DiFiglia M (2001) Early and progressive accumulation of reactive microglia in the Huntington disease brain. J Neuropathol Exp Neurol 60:161–172PubMedGoogle Scholar
  68. 68.
    Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 55:215–224PubMedCrossRefGoogle Scholar
  69. 69.
    Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes in the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62:63–88PubMedCrossRefGoogle Scholar
  70. 70.
    McGeer PL, Yasojima K, McGeer EG (2001) Inflammation in Parkinson’s disease. Adv Neurol 86:83–89PubMedGoogle Scholar
  71. 71.
    Sherer TB, Betarbet R, Greenamyre JT (2001) Pathogenesis of Parkinson’s disease. Curr Opin Investig Drugs 2:657–662PubMedGoogle Scholar
  72. 72.
    Sethi KD (2002) Clinical aspects of Parkinson disease. Curr Opin Neurol 15:457–460PubMedCrossRefGoogle Scholar
  73. 73.
    Carlsson A (2002) Treatment of Parkinson’s with L-DOPA. The early discovery phase, and a comment on current problems. J Neural Transm 109:777–787PubMedCrossRefGoogle Scholar
  74. 74.
    Consroe P (1998) Brain cannabinoid systems as targets for the therapy of neurological disorders. Neurobiol Dis 5:534–551PubMedCrossRefGoogle Scholar
  75. 75.
    Müller-Vahl KR, Kolbe H, Schneider U, Emrich HM (1999). Cannabis in movement disorders. Forsch Komplementmed 6:23–27CrossRefGoogle Scholar
  76. 76.
    Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis 19:96–107PubMedCrossRefGoogle Scholar
  77. 77.
    Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297PubMedCrossRefGoogle Scholar
  78. 78.
    Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20:6309–6316PubMedGoogle Scholar
  79. 79.
    Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm 60:277–290Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Onintza Sagredo
    • 1
    • 2
  • Moisés García-Arencibia
    • 1
    • 2
  • Eva de Lago
    • 1
    • 2
  • Simone Finetti
    • 1
  • Alessandra Decio
    • 1
  • Javier Fernández-Ruiz
    • 1
    • 2
  1. 1.Departamento de Bioquímica y Biología Molecular, Facultad de Medicina IIIUniversidad ComplutenseMadridSpain
  2. 2.CIBER de Enfermedades Neurodegenerativas (CIBERNED)Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations