Advertisement

Titania-based porous nanocomposites for potential environmental applications

  • S WadhwaEmail author
  • A Mathur
  • R Pendurthi
  • U Singhal
  • M Khanuja
  • S S Roy
Article

Abstract

Titania–zeolite Y composites were synthesized by a facile solid-state dispersion method. The synergistic effects of porous zeolite structure and novel photocatalysis properties of titania nanoparticles were exploited. The physical properties of the composites were characterized by scanning electron microscopy, energy-dispersive X-ray, X-ray diffraction, diffuse reflectance spectroscopy, fourier transform infra-red spectroscopy and photoluminescence spectroscopy. Porosity and surface area of the composites were determined from Brunauer–Emmett–Teller studies. The antibacterial effect and the photocatalysis properties of these composites were studied. Composites exhibited higher growth reduction of Escherichia coli and Staphylococcus aureus as compared with the pure forms (P25 titania and zeolite Y). Maximum growth reduction of both types of bacterial cells (gram-positive as well as gram-negative) was observed with 20% titania–zeolite composite. The composite demonstrated 40 and 30% enhancement in the growth reduction of E. coli and S. aureus, respectively, as compared with the pure forms; 10% composite exhibited 50% enhancement in the photocatalysis efficiency of methylene blue dye degradation as compared with P25 titania nanoparticles and led to a complete removal of the dye in the first 60 min of photocatalysis process. Mechanisms for both applications have been proposed in light of the observed results.

Keywords

Titania zeolite porosity composites photocatalysis antibacterial 

Notes

Acknowledgements

Authors acknowledge Indian Institute of Technology (IIT), Delhi, for providing support in XRD characterization of the photocatalysts. Authors would also like to extend thanks to Chemistry Research Centre, Bangalore Institute of Technology, for conducting BET analysis.

Supplementary material

12034_2019_2009_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (docx 1091 KB)

References

  1. 1.
    Matsunaga T 1985 J. Antibact. Antifun. Agents 13 211Google Scholar
  2. 2.
    Matsunaga T, Tomoda R, Nakajima T and Wake H 1985 FEMS Microbiol. Lett. 29 211CrossRefGoogle Scholar
  3. 3.
    Marambio-Jones C and Hoek E M 2010 J. Nanopart. Res. 12 1531CrossRefGoogle Scholar
  4. 4.
    Bhuyan T, Mishra K, Khanuja M, Prasad R and Varma A 2015 Mater. Sci. Semicond. Process. 32 55CrossRefGoogle Scholar
  5. 5.
    Bhuyan T, Khanuja M, Sharma R, Patel S, Reddy M R, Anand S et al 2015 J. Nanopart. Res. 17 288CrossRefGoogle Scholar
  6. 6.
    Wiener J, Quinn J P, Bradford P A, Goering R V, Nathan C, Bush K et al 1999 J. Am. Med. Assoc. 281 517CrossRefGoogle Scholar
  7. 7.
    Osset S, Keller N, Lett M C, Ledoux M J and Keller V 2008 Chem. Soc. Rev. 37 744CrossRefGoogle Scholar
  8. 8.
    Kaviyarasu K, Mariappan A, Neyvasagam K, Ayeshamariam A, Pandi P, Palanichamy R R et al 2017 Surf. Interface 6 247CrossRefGoogle Scholar
  9. 9.
    Mo A, Liao J, Xu W, Xian S, Li Y and Bai S 2008 Appl. Surf. Sci. 255 435CrossRefGoogle Scholar
  10. 10.
    Rivera-Garza M, Olguın M T, Garcıa-Sosa I, Alcántara D and Rodrıguez-Fuentes G 2000 Microporous Mesoporous Mater. 39 431CrossRefGoogle Scholar
  11. 11.
    Matsumura Y, Yoshikata K, Kunisaki S I and Tsuchido T 2003 Appl. Environ. Microbiol. 69 4278CrossRefGoogle Scholar
  12. 12.
    Top A and Ülkü S 2004 Appl. Clay Sci. 27 13CrossRefGoogle Scholar
  13. 13.
    Matos J, Laine J and Herrmann J M 1998 Appl. Catal. B 18 281CrossRefGoogle Scholar
  14. 14.
    Takeda N, Torimoto T, Sampath S, Kuwabata S and Yoneyama H 1995 J. Phys. Chem. 99 9986CrossRefGoogle Scholar
  15. 15.
    Torimoto T, Okawa Y, Takeda N and Yoneyama H 1997 J. Photochem. Photobiol. A 103 153CrossRefGoogle Scholar
  16. 16.
    Takeda N, Iwata N, Torimoto T and Yoneyama H 1998 J. Catal. 177 240CrossRefGoogle Scholar
  17. 17.
    Xia H, He G, Min Y and Liu T 2015 J. Mater. Sci.: Mater. Electron. 26 3357Google Scholar
  18. 18.
    Shalan A, Rasly M and Rashad M O 2014 J. Mater. Sci.: Mater. Electron. 25 3141Google Scholar
  19. 19.
    Kun R, Mogyorósi K and Dékány I 2006 Appl. Clay Sci. 32 99CrossRefGoogle Scholar
  20. 20.
    Durgakumari V, Subrahmanyam M, Rao K S, Ratnamala A, Noorjahan M and Tanaka K 2002 Appl. Catal. A 234 155CrossRefGoogle Scholar
  21. 21.
    Zhang W, Wang K, Yu Y and He H 2010 Chem. Eng. J. 163 62CrossRefGoogle Scholar
  22. 22.
    Noorjahan M, Kumari V D, Subrahmanyam M and Boule P 2004 Appl. Catal. B 47 209CrossRefGoogle Scholar
  23. 23.
    Choudhary A, Das B and Ray S 2015 Dalton Trans. 44 3753CrossRefGoogle Scholar
  24. 24.
    Park O K and Kang Y S 2005 Colloid Surf. A: Physicochem. Eng. Asp. 257 261CrossRefGoogle Scholar
  25. 25.
    Liu Z, Liu Z, Cui T, Dong L, Zhang J, Han L et al 2014 Mater. Express 4 465CrossRefGoogle Scholar
  26. 26.
    Haghi M, Hekmatafshar M, Janipour M B, Gholizadeh S S, Faraz M K, Sayyadifar F et al 2012 Int. J. Adv. Biotechnol. Res. 3 621Google Scholar
  27. 27.
    Alwash A H, Abdullah A Z and Ismail N 2013 Int. J. Chem. Mol. Eng. 7 375Google Scholar
  28. 28.
    Easwaramoorthi S and Natarajan P 2005 Microporous Mesoporous Mater. 86 185CrossRefGoogle Scholar
  29. 29.
    Santo C E, Lam E W, Elowsky C G, Quaranta D, Domaille D W, Chang C J et al 2011 Appl. Environ. Microbiol. 77 794CrossRefGoogle Scholar
  30. 30.
    Macomber L and Imlay J A 2009 Proc. Natl. Acad. Sci. 106 8344CrossRefGoogle Scholar
  31. 31.
    Xu W P, Zhang L C, Li J P, Lu Y, Li H H, Ma Y N et al 2011 J. Mater. Chem. 21 4593CrossRefGoogle Scholar
  32. 32.
    Yu J C, Ho W, Lin J, Yip H and Wong P K 2003 Environ. Sci. Technol. 37 2296CrossRefGoogle Scholar
  33. 33.
    Jones N, Ray B, Ranjit K T and Manna A C 2008 FEMS Microbiol. Lett.279 71CrossRefGoogle Scholar
  34. 34.
    Bhattacharya G, Sas S, Wadhwa S, Mathur A, McLaughlin J and Roy S S 2017 RSC Adv.7 26680CrossRefGoogle Scholar
  35. 35.
    Poonia E, Dahiya M S, Tomer V K, Kumar K, Kumar S and Duhan S 2018 Physica E101 284CrossRefGoogle Scholar
  36. 36.
    Wu M H, Li L, Xue Y C, Xu G, Tang L, Liu N et al 2018 Appl. Catal. B: Environ.228 103CrossRefGoogle Scholar
  37. 37.
    Ashraf W, Fatima T, Srivastava K and Khanuja M 2019 Appl. Nanosci.  https://doi.org/10.1007/s13204-019-00951-4 CrossRefGoogle Scholar
  38. 38.
    Sharma R, Khanuja M, Islam S S and Varma A 2017 Res. Chem. Intermed. 43 5345CrossRefGoogle Scholar
  39. 39.
    Baral A, Khanuja M, Islam S S, Sharma R and Mehta B R 2017 J. Lumin. 183 383CrossRefGoogle Scholar
  40. 40.
    Li G, Dimitrijevic N M, Chen L, Nichols J M, Rajh T and Gray K A 2008 J. Am. Chem. Soc. 130 5402CrossRefGoogle Scholar
  41. 41.
    Wang C C, Lee C K, Lyu M D and Juang L C 2008 Dyes Pigm.76 817CrossRefGoogle Scholar
  42. 42.
    Dariani R S, Esmaeili A, Mortezaali A and Dehghanpour S 2016 Optik127 7143CrossRefGoogle Scholar
  43. 43.
    Shinde D R, Tambade P S, Chaskar M G and Gadave K M 2017 Drink. Water Eng. Sci. 10 109CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2020

Authors and Affiliations

  1. 1.Amity Institute of NanotechnologyAmity UniversityNoidaIndia
  2. 2.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia
  3. 3.Centre for Nanoscience and NanotechnologyJamia Millia IslamiaNew DelhiIndia
  4. 4.Department of Physics, School of Natural SciencesShiv Nadar UniversityGautam Buddha NagarIndia

Personalised recommendations