Synthesis, characterization and anticorrosion behaviour of a novel hydrazide derivative on mild steel in hydrochloric acid medium

  • P Preethi Kumari
  • Prakash ShettyEmail author
  • Suma A Rao
  • Dhanya Sunil
  • T Vishwanath


A novel corrosion inhibitor, namely \(N'\)-[(4-methyl-1H-imidazole-5-yl)methylidene]-2-(naphthalen-2-yloxy) acetohydrazide (IMNH), has been synthesized and characterized by \(^{1}\)H NMR and FTIR spectroscopic techniques. The anticorrosion behaviour of IMNH on mild steel in 1 M hydrochloric acid (HCl) medium was studied by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques. The percentage inhibition efficiency of IMNH increased with increase in its concentration and temperature. The adsorption of IMNH followed chemisorption and obeyed Langmuir’s adsorption isotherm. PDP study revealed that IMNH functioned as a mixed type inhibitor. Theoretical study of the adsorption behaviour of this inhibitor was carried out by quantum chemical calculations using density functional theory (DFT). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy-dispersive X-ray spectroscopy (EDX) studies confirmed the formation of a protective film of IMNH on the mild steel surface.


Mild steel hydrazide derivative polarization impedance chemisorption SEM/AFM 



The authors are grateful to Manipal Institute of Technology and Manipal Academy of Higher Education, Manipal, for providing laboratory facilities.


  1. 1.
    Tao Z, Zhang S, Li W and Hou B 2009 Corros. Sci. 51 2588CrossRefGoogle Scholar
  2. 2.
    Singh A K and Quraishi M A 2012 Int. J. Electrochem. Sci.7 3222Google Scholar
  3. 3.
    Krishnegowda P M, Venkatesha V T, Krishnegowda P K M and Shivayogiraju S B 2013 Ind. Eng. Chem. Res.52 722CrossRefGoogle Scholar
  4. 4.
    Chetouani A, Hammoutia B, Aouniti B A, Benchat N and Benhadda T 2002 Prog. Org. Coat.45 373CrossRefGoogle Scholar
  5. 5.
    Dutta A, Saha S K, Banerjee P and Sukul D 2015 Corros. Sci.98 541CrossRefGoogle Scholar
  6. 6.
    Yilmaz N, Fitoz A, Ergun Y and Emregül K C 2016 Corros. Sci.111 110CrossRefGoogle Scholar
  7. 7.
    Sanyal B 1981 Prog. Org. Coat.9 165CrossRefGoogle Scholar
  8. 8.
    Bentiss F, Traisnel M, Hildebrand H F and Lagrenee M M 2004 Corros. Sci.46 2781CrossRefGoogle Scholar
  9. 9.
    Singh S, Athar F and Azam A 2005 Bioorg. Med. Chem.Lett. 15 5424CrossRefGoogle Scholar
  10. 10.
    Renata B O, Elaine M S F, Rodrigo P P S, Anderson A A and Carlos U K A 2008 Eur. J. Med. Chem.43 1983CrossRefGoogle Scholar
  11. 11.
    Gursoy A, Terzioglu N and Ouch G 1997 Eur. J. Med. Chem.32 753CrossRefGoogle Scholar
  12. 12.
    Rollas S and Kucukguzel S G 2007 Molecules12 1910CrossRefGoogle Scholar
  13. 13.
    Preethi Kumari P, Shetty P and Rao S A 2014 Int. J. Corros. Article ID 256424, 11Google Scholar
  14. 14.
    Preethi Kumari P, Shetty P and Rao S A 2015 Prot. Met. Phys. Chem. Surf.51 1034CrossRefGoogle Scholar
  15. 15.
    Preethi Kumari P, Shetty P and Rao S A 2017 Arabian J. Chem.10 653CrossRefGoogle Scholar
  16. 16.
    Giannozzi P 2009 J. Phys: Condens. Matter21 395502Google Scholar
  17. 17.
    Giannozzi P 2017 J. Phys: Condens. Matter29 465901Google Scholar
  18. 18.
  19. 19.
    Kokalj A 1999 J. Mol. Graph. Model.17 176CrossRefGoogle Scholar
  20. 20.
    Li W H, He Q, Pei C L and Hou B R 2007 Electrochim. Acta52 6386CrossRefGoogle Scholar
  21. 21.
    Rafiquee M Z A, Saxena N, Khan S and Quraishi M A 2007 Indian J. Chem. Technol.14 576Google Scholar
  22. 22.
    Wang L, Shinohara T and Zhang B 2010 J. Alloys Compd.496 500CrossRefGoogle Scholar
  23. 23.
    Noor E A 2007 Int. J. Electrochem. Res. 2 996Google Scholar
  24. 24.
    Schorr M and Yahalom J 1972 Corros. Sci.12 867CrossRefGoogle Scholar
  25. 25.
    Abdel Rehim S S, Magdy A M and Ibrahim K F 1999 J. Appl. Electrochem.29 593CrossRefGoogle Scholar
  26. 26.
    Ishwara Bhat J and Alva V D P 2011 Trans. Indian Inst. Met.64 377CrossRefGoogle Scholar
  27. 27.
    Fawcett W R, Kovacova Z, Motheo A J and Foss C A 1992 J. Electroanal. Chem.326 91CrossRefGoogle Scholar
  28. 28.
    Doner A and Kardas G 2011 Corros. Sci.53 4223CrossRefGoogle Scholar
  29. 29.
    Martinez S and Metikos-Hukovic M 2003 J. Appl. Electrochem.33 1137CrossRefGoogle Scholar
  30. 30.
    Machnikova E, Kenton W H and Hackerman N 2008 Electrochim. Acta53 6024CrossRefGoogle Scholar
  31. 31.
    McCafferty E and Hackerman N 1972 J. Electrochem. Soc.119 146CrossRefGoogle Scholar
  32. 32.
    Khaled K F 2008 Mater. Chem. Phys.112 104CrossRefGoogle Scholar
  33. 33.
    Ansari K R, Quraishi M A and Singh A 2014 Corros. Sci. 79 5CrossRefGoogle Scholar
  34. 34.
    Okafor P C, Liu X and Zheng Y G 2009 Corros. Sci.51 761CrossRefGoogle Scholar
  35. 35.
    Bentiss F, Lebrini M, Lagrene M, Traisnel M, Elfarouk A and Vezin H 2007 Electrochim. Acta52 6865CrossRefGoogle Scholar
  36. 36.
    Quraishi M A, Rawat J and Ajmal M 2000 J. Appl. Electrochem.30 745CrossRefGoogle Scholar
  37. 37.
    Fekry A M and Ameer M A 2010 Int. J. Hydrogen Energy35 7641CrossRefGoogle Scholar
  38. 38.
    Singh A K and Quraishi M A 2010 Corros. Sci.52 152CrossRefGoogle Scholar
  39. 39.
    Durnie W, Marco R D and Jefferson A 2001 J. Electrochem. Soc. 31 1221Google Scholar
  40. 40.
    Shivakumar S S and Mohana K N 2013 J. Mater. Environ. Sci.4 448Google Scholar
  41. 41.
    Trowsdale A J, Noble B, Harris S J, Gibbins I S R, Thompson G E and Woods G C 1996 Corros. Sci.38 177CrossRefGoogle Scholar
  42. 42.
    Khaled K F and Hackerman N 2003 Electrochem. Acta48 2715CrossRefGoogle Scholar
  43. 43.
    Popova A, Sokolova E, Raicheva S and Christov M 2003 Corros. Sci.45 33CrossRefGoogle Scholar
  44. 44.
    Quraishi M A, Sardar R and Jamal D 2001 Mater. Chem. Phys.71 309CrossRefGoogle Scholar
  45. 45.
    Quraishi M A, Saxena N and Jamal D 2005 Indian J. Chem. Technol.11 220Google Scholar
  46. 46.
    Gowrani T, Yamuna J, Parameshwari K, Chitra S, Selvaraj A and Subramania A 2004 Anti-corros. Meth. Mater.51 414CrossRefGoogle Scholar
  47. 47.
    Larabi L, Harek Y, Benali O and Ghalemb S 2005 Prog. Org. Coat.54 256CrossRefGoogle Scholar
  48. 48.
    Shanbhag A V, Venkatesha T V, Prabhu R A, Kalkhambkar R G and Kulkarni G M 2008 J. Appl. Electrochem.38 279CrossRefGoogle Scholar
  49. 49.
    Preethi Kumari P, Shetty P and Rao S A 2017 Trans. Indian Inst. Met.70 1139CrossRefGoogle Scholar
  50. 50.
    Ashassi-Sorkhabi H, Shaabani B and Seifzadeh D 2005 Electrochim. Acta50 3446CrossRefGoogle Scholar
  51. 51.
    Ozcan M, Dehri I and Erbil M 2004 Appl. Surf. Sci.236 155CrossRefGoogle Scholar
  52. 52.
    Fukui K 1975 Theory of orientation and stereoselection (New York: Springer-Verlag)CrossRefGoogle Scholar
  53. 53.
    Awad M K, Mustafa M R and Elnga M M A 2010 J. Mol. Struct.959 66CrossRefGoogle Scholar
  54. 54.
    Gece G 2008 Corros. Sci.50 2981CrossRefGoogle Scholar
  55. 55.
    Pearson R G 1986 Proc. Natl. Acad. Sci. USA83 8440CrossRefGoogle Scholar
  56. 56.
    Obi-Egbedi N O, Obot I B, El-Khaiary M I, Umoren S A and Ebenso E E 2011 Int. J. Electrochem. Sci.6 5649Google Scholar
  57. 57.
    Babic-Samardzija K, Khaled K F and Hackerman N 2005 Appl. Surf. Sci.240 327CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2020

Authors and Affiliations

  • P Preethi Kumari
    • 1
  • Prakash Shetty
    • 1
    Email author
  • Suma A Rao
    • 1
  • Dhanya Sunil
    • 1
  • T Vishwanath
    • 2
  1. 1.Department of Chemistry, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  2. 2.Department of Materials ScienceMangalore UniversityMangalagangotriIndia

Personalised recommendations