Advertisement

Synthesis, characterization and quantum chemical study of optoelectronic nature of ferrocene derivatives

  • Ahmad IrfanEmail author
  • Firas Khalil Al-Zeidaneen
  • Ishtiaq Ahmed
  • Abdullah G Al-Sehemi
  • Mohammed A Assiri
  • Sami Ullah
  • Ghulam Abbas
Article
  • 31 Downloads

Abstract

Two new ferrocene derivatives N-(2-hydroxy-5-methylphenyl) ferrocylideneamine (Fe1) and N-(2-hydroxy-5-chlorophenyl) ferrocylideneamine (Fe2) have been synthesized to study the effect on electronic, optical and charge transfer properties while changing the electron donating group with electron withdrawing group. The synthesized compounds were characterized by different spectroscopic (FTIR, UV–Vis, \(^{\mathrm {1}}\hbox {H NMR}\), \(^{\mathrm {13}}\hbox {C NMR}\)) and spectrometric (EI) techniques. The geometries for ground and excited states were optimized by density functional theory (DFT/B3lyp/6-31G**, LANL2DZ) and time-dependent DFT (TD-B3lyp/6-31G**, LANL2DZ) levels, respectively. The absorption, fluorescence and phosphorescence spectra were estimated using TD-B3LYP and TD-wB97XD functionals and 6-31G** basis set for C, H, N, O and LANL2DZ for Fe atoms in dichloromethane.

Keywords

Semiconductors ferrocenes optoelectronic properties charge transport reorganization energy frontier molecular orbitals 

Notes

Acknowledgements

We extend our appreciation to the Deanship of Scientific Research at King Khalid University (KKU) for funding this work through research groups program under grant number R.G.P.2/15/40.

References

  1. 1.
    Ovchenkova E N, Bichan N G and Lomova T N 2018 Russ. J. Inorg. Chem.63 391CrossRefGoogle Scholar
  2. 2.
    Nishihara H 1997 in Handbook of organic conductive molecules and polymers H S Nalwa (ed), Chapter 19, vol. 2 (Weinheim: Wiley) p 799 Google Scholar
  3. 3.
    Long X, Qiu W, Wang Z, Wang Y and Yang S 2019 Mater. Today Chem.11 16CrossRefGoogle Scholar
  4. 4.
    Khan M D, Malik M A and Revaprasadu N 2019 Coord. Chem. Rev.388 24CrossRefGoogle Scholar
  5. 5.
    Abbas G, Hassan A, Irfan A, Mir M and Wu G 2015 J. Struct. Chem.56 92CrossRefGoogle Scholar
  6. 6.
    Ghosh N N, Habib M, Pramanik A, Sarkar P and Pal S 2018 Bull. Mater. Sci.41 56CrossRefGoogle Scholar
  7. 7.
    Arunkumar A, Prakasam M and Anbarasan P M 2017 Bull. Mater. Sci.40 1389CrossRefGoogle Scholar
  8. 8.
    Wang S, Xu Z, Wang T, Xiao T, Hu X Y, Shen Y Z et al 2018 Nat. Commun.9 1737CrossRefGoogle Scholar
  9. 9.
    Bishop J J, Davison A, Katcher M L, Lichtenberg D W, Merrill R E and Smart J C 1971 J. Organomet. Chem.27 241CrossRefGoogle Scholar
  10. 10.
    Nerngchamnong N, Yuan L, Qi D C, Li J, Thompson D and Nijhuis C A 2013 Nat. Nanotechnol.8 113CrossRefGoogle Scholar
  11. 11.
    Inkpen M S, Scheerer S, Linseis M, White A J P, Winter R F, Albrecht T et al 2016 Nat. Chem.8 825CrossRefGoogle Scholar
  12. 12.
    Astruc D 2017 Europ. J. Inorg. Chem.2017 6 CrossRefGoogle Scholar
  13. 13.
    Larik F A, Saeed A, Fattah T A, Muqadar U and Channar P A 2017 Appl. Organomet. Chem.31 e3664CrossRefGoogle Scholar
  14. 14.
    Morari C, Rungger I, Rocha A R, Sanvito S, Melinte S and Rignanese G M 2009 ACS Nano3 4137CrossRefGoogle Scholar
  15. 15.
    Radhakrishnan S and Paul S 2007 Sens. Actuator B: Chem.125 60CrossRefGoogle Scholar
  16. 16.
    Zhu Y, Clot O, Wolf M O and Yap G P A 1998 J. Am. Chem. Soc.120 1812CrossRefGoogle Scholar
  17. 17.
    Templeton A C, Wuelfing W P and Murray R W 2000 Acc. Chem. Res.33 27CrossRefGoogle Scholar
  18. 18.
    Getautis V, Daskeviciene M, Malinauskas T and Jankauskas V 2007 Monatsh. Chem. 138 277CrossRefGoogle Scholar
  19. 19.
    Shago R F, Swarts J C, Kreft E and Van Rensburg C E J 2007 Anticancer Res.27 3431Google Scholar
  20. 20.
    Togni A and Hayashi T 1995 Ferrocenes: homogeneous catalysis, organic synthesis, materials science (Weinheim: Wiley-VCH) ISBN 3-527-29048-6Google Scholar
  21. 21.
    Imahori H, Norieda H, Yamada H, Nishimura Y, Yamazaki I, Sakata Y et al 2001 J. Am. Chem. Soc.123 100CrossRefGoogle Scholar
  22. 22.
    Zhang B, Fan F, Xue W, Liu G, Fu Y, Zhuang X et al 2019 Nat. Commun.10 736CrossRefGoogle Scholar
  23. 23.
    Tan H, Yao H, Song Y, Zhu S, Yu H and Guan S 2017 Dyes Pigm.146 210CrossRefGoogle Scholar
  24. 24.
    Kanthasamy K, Ring M, Nettelroth D, Tegenkamp C, Butenschön H, Pauly F et al 2016 Small12 4849CrossRefGoogle Scholar
  25. 25.
    Singla P, Van Steerteghem N, Kaur N, Ashar A Z, Kaur P, Clays K et al 2017 J. Mater. Chem. C5 697CrossRefGoogle Scholar
  26. 26.
    Orendt A M, Facelli J C, Jiang Y J and Grant D M 1998 J. Phys. Chem. A102 7692CrossRefGoogle Scholar
  27. 27.
    Mayor-López M J and Weber J 1997 Chem. Phys. Lett.281 226CrossRefGoogle Scholar
  28. 28.
    Hohenberg P and Kohn W 1964 Phys. Rev.136 B864CrossRefGoogle Scholar
  29. 29.
    Kohn W, Becke A D and Parr R G 1996 J. Phys. Chem.100 12974CrossRefGoogle Scholar
  30. 30.
    Lee C, Yang W and Parr R G 1988 Phys. Rev. B37 785CrossRefGoogle Scholar
  31. 31.
    Coriani S, Haaland A, Helgaker T and Jørgensen P 2006 Chem. Phys. Chem.7 245CrossRefGoogle Scholar
  32. 32.
    Hay P J and Wadt W R 1985 J. Chem. Phys.82 270CrossRefGoogle Scholar
  33. 33.
    Wadt W R and Hay P J 1985 J. Chem. Phys.82 284CrossRefGoogle Scholar
  34. 34.
    Hay P J and Wadt W R 1985 J. Chem. Phys.82 299CrossRefGoogle Scholar
  35. 35.
    Irfan A, Chaudhry A R, Jin R, Al-Sehemi A G, Muhammad S and Tang S 2017 J. Taiwan Inst. Chem. Eng.80 239CrossRefGoogle Scholar
  36. 36.
    Irfan A and Abbas G 2018 Z. Naturforsch. A73 337CrossRefGoogle Scholar
  37. 37.
    Aliabad H A R and Chahkandi M 2017 Z. Anorg. Allg. Chem.643 420CrossRefGoogle Scholar
  38. 38.
    Gryaznova T P, Katsyuba S A, Milyukov V A and Sinyashin O G 2010 J. Organomet. Chem.695 2586CrossRefGoogle Scholar
  39. 39.
    Francl M M, Pietro W J, Hehre W J, Binkley J S, Gordon M S, DeFrees D J et al 1982 J. Chem. Phys.77 3654 CrossRefGoogle Scholar
  40. 40.
    Becke A D 1993 J. Chem. Phys.98 5648CrossRefGoogle Scholar
  41. 41.
    Irfan A and Mahmood A 2018 J. Clust. Sci.29 359CrossRefGoogle Scholar
  42. 42.
    Irfan A, Assiri M and Al-Sehemi A G 2018 Org. Electron.57 211CrossRefGoogle Scholar
  43. 43.
    Irfan A, Chaudhry A R, Muhammad S and Al-Sehemi A G 2019 Optik179 526CrossRefGoogle Scholar
  44. 44.
    Irfan A, Al-Sehemi A G, Chaudhry A R, Muhammad S and Asiri A M 2016 Optik127 10148CrossRefGoogle Scholar
  45. 45.
    Irfan A 2014 Optik125 4825CrossRefGoogle Scholar
  46. 46.
    Reeta Felscia U, Rajkumar B J M and Briget Mary M 2018 J. Mater. Sci.53 15213CrossRefGoogle Scholar
  47. 47.
    Yang G, Su Z and Qin C 2006 J. Phys. Chem. A110 4817CrossRefGoogle Scholar
  48. 48.
    Wazzan N, El-Shishtawy R M and Irfan A 2017 Theor. Chem. Acc.137 9CrossRefGoogle Scholar
  49. 49.
    Wazzan N and Irfan A 2018 Org. Electron.63 328CrossRefGoogle Scholar
  50. 50.
    Irfan A 2019 Comput. Theor. Chem.1159 1CrossRefGoogle Scholar
  51. 51.
    Irfan A 2019 Results Phys.13 102304CrossRefGoogle Scholar
  52. 52.
    Irfan A, Al-Sehemi A G, Assiri M A and Mumtaz M W 2019 Bull. Mater. Sci.42 145CrossRefGoogle Scholar
  53. 53.
    Pratik S M and Datta A 2013 Phys. Chem. Chem. Phys.15 18471CrossRefGoogle Scholar
  54. 54.
    Akhtaruzzaman M, Seya Y, Asao N, Islam A, Kwon E, El-Shafei A et al 2012 J. Mater. Chem.22 10771CrossRefGoogle Scholar
  55. 55.
    Chen J, Bai F Q, Wang J, Hao L, Xie Z F, Pan Q J et al 2012 Dyes Pigm.94 459CrossRefGoogle Scholar
  56. 56.
    Fan W, Tan D and Deng W Q 2012 Chem. Phys. Chem.13 2051CrossRefGoogle Scholar
  57. 57.
    Zhang J, Li H B, Sun S L, Geng Y, Wu Y and Su Z M 2012 J. Mater. Chem.22 568CrossRefGoogle Scholar
  58. 58.
    Preat J, Michaux C, Jacquemin D and Perpète E A 2009 J. Phys. Chem. C113 16821CrossRefGoogle Scholar
  59. 59.
    Irfan A, Jin R, Al-Sehemi A G and Asiri A M 2013 Spectrochim. Acta A110 60CrossRefGoogle Scholar
  60. 60.
    Dev P, Agrawal S and English N J 2013 J. Phys. Chem. A117 2114CrossRefGoogle Scholar
  61. 61.
    Autschbach J 2009 Chem. Phys. Chem.10 1757CrossRefGoogle Scholar
  62. 62.
    Dreuw A and Head-Gordon M 2005 Chem. Rev.105 4009CrossRefGoogle Scholar
  63. 63.
    Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett.393 51CrossRefGoogle Scholar
  64. 64.
    Pastore M, Mosconi E, De Angelis F and Grätzel M 2010 J. Phys. Chem. C114 7205CrossRefGoogle Scholar
  65. 65.
    Takano Y and Houk K N 2005 J. Chem. Theory Comput.1 70CrossRefGoogle Scholar
  66. 66.
    Bhattacharyya K and Datta A 2017 J. Phys. Chem. C121 1412CrossRefGoogle Scholar
  67. 67.
    Brédas J L, Beljonne D, Coropceanu V and Cornil J 2004 Chem. Rev.104 4971CrossRefGoogle Scholar
  68. 68.
    Zhao C, Wang W and Ma Y 2013 Comput. Theor. Chem.1010 25CrossRefGoogle Scholar
  69. 69.
    Li P, Bu Y and Ai H 2004 J. Phys. Chem. A108 1200CrossRefGoogle Scholar
  70. 70.
    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2016 Gaussian16 software (Wallingford, CT: Gaussian, Inc.) Google Scholar
  71. 71.
    Chai W and Jin R 2016 J. Mol. Struct.1103 177CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2020

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Research Center for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
  3. 3.Institut für Anorganische Chemie, Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.Institute for Biological Interfaces (IBG-1)Karlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany

Personalised recommendations