Advertisement

Bulletin of Materials Science

, 42:258 | Cite as

Development of a silicon photodiode-based compact gamma spectrometer using a \(\hbox {Gd}_{{3}} \hbox {Ga}_{{3}} \hbox {Al}_{{2}} \hbox {O}_{{12}}\):Ce,B single crystal scintillator

  • Pratip Mitra
  • Saurabh Srivastava
  • Mohit TyagiEmail author
  • A Vinod Kumar
  • S C Gadkari
Article
  • 39 Downloads

Abstract

A compact gamma spectrometer was developed by employing an in-house grown single crystal of \(\hbox {Gd}_{{3}} \hbox {Ga}_{{3}} \hbox {Al}_{{2}} \hbox {O}_{{12}}\):Ce,B scintillator optically coupled with a silicon photodiode. The performance of the detector was characterized in detail. The detector setup works with a low bias voltage of 9 V, drawn from a single battery. Power to the electronic components of the entire system is derived from a single universal serial bus port by employing required DC–DC converters. In addition to the low voltage operation, this developed spectrometer is very compact in size compared to the one developed by employing photo-multiplier tubes. The system offers excellent linearity over the gamma energy range of 344–1408 keV and an optimum energy resolution of about 13% at 662 keV.

Keywords

Single crystal scintillator photodiode gamma spectrometer 

Notes

Acknowledgements

The authors would like to thank Sheetal Rawat, IIT Roorkee, for helping in crystal characterization and coupling, Anisha Gupta, EMAD, BARC, for helping in wiring of the system and K R Tudu, RSSD, BARC for fabricating the enclosure of the system.

References

  1. 1.
    Tyagi M, Singh S G, Singh A K, Desai D G, Tiwari B, Sen S et al 2003 BARC Newsl.343 33Google Scholar
  2. 2.
    Donnald S B, Tyagi M, Rothfuss H, Hayward J P, Meng F, Koschan M et al 2013 IEEE Trans. Nucl. Sci.60 4002CrossRefGoogle Scholar
  3. 3.
    Tyagi M, Singh A K, Singh S G, Desai D G, Patra G D, Sen S et al 2015 Phys. Status Solidi (RRL)-Rapid Res. Lett.9 550 CrossRefGoogle Scholar
  4. 4.
    Tyagi M, Meng F, Koschan M, Donnald S B, Rothfuss H and Melcher C L 2013 J. Phys. D: Appl. Phys.46 475302CrossRefGoogle Scholar
  5. 5.
    Iwanowska J, Swiderski L, Szczesniak T, Sibczynski P, Moszynski M, Grodzicka M et al 2013 Nucl. Instrum. Methods Phys. Res. A712 34CrossRefGoogle Scholar
  6. 6.
    Rawat S, Tyagi M, Netrakanti P K, Kashyap V K S, Mitra A, Singh A K et al 2016 Nucl. Instrum. Methods Phys. Res. A840 186CrossRefGoogle Scholar
  7. 7.
    R1306 Datasheet, Hamamatsu, https://www.hamamatsu.com/eu/en/product/type/R1306/index.html (accessed on July 27, 2019)
  8. 8.
    S3590-08 Datasheet, Hamamatsu, https://www.hamamatsu.com/resources/pdf/ssd/s3590-08_etc_kpin1052e.pdf (accessed on July 27, 2019)
  9. 9.
    CR-110 Datasheet, Cremat, http://www.cremat.com/CR-110.pdf (accessed on October 19, 2018)
  10. 10.
    CR-200 Datasheet, Cremat, http://www.cremat.com/CR-200.pdf (accessed on October 19, 2018)
  11. 11.
    Knoll G F 2010 Radiation detection and measurement 4th edn (USA: Wiley) p 344Google Scholar
  12. 12.
    Sakai E 1987 IEEE Trans. Nucl. Sci.NS34 418CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Environmental Monitoring and Assessment DivisionBhabha Atomic Research CenterMumbaiIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Technical Physics DivisionBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations