Advertisement

First principles calculation of electronic, phonon and thermal properties of hydrogenated germanene

  • Lei LiuEmail author
  • Yanju Ji
  • Liqiang Liu
Article
  • 7 Downloads

Abstract

Germanene is a basic building block of two-dimensional materials of germanium and it exhibits many unique electronic properties. It is necessary for germanene to tuning its electronic band structure for future applications. The electronic and vibrational properties of germanene, germanane, single-sided semi-hydrogenated germanene and single-sided full-hydrogenated germanene (FHgermanene) were analysed by density function theory. It was found that hydrogenation effectively leads to germanene transition from metallic to semiconductors. Meanwhile, phonon dispersion showed that germanane and FHgermanene are stable. For the same Ge/H ratio in the structure, the thermal properties of germanane and FHgermanene are consistent. The hydrogenation process provides a novel method to tune the properties of germanene with unprecedented potentials for future nanoelectronics.

Keywords

First principle germanene thermal properties phonon dispersion 

References

  1. 1.
    Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201CrossRefGoogle Scholar
  2. 2.
    Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385CrossRefGoogle Scholar
  3. 3.
    Le Lay G 2015 Nat. Nanotechnol. 10 202CrossRefGoogle Scholar
  4. 4.
    Jose D and Datta A 2014 Acc. Chem. Res. 47 593CrossRefGoogle Scholar
  5. 5.
    Jose D and Datta A 2012 J. Phys. Chem. C 116 24639CrossRefGoogle Scholar
  6. 6.
    Ghosh M and Datta A 2018 Bull. Mater. Sci. 41 117CrossRefGoogle Scholar
  7. 7.
    Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R et al 2011 Nano Lett. 12 113CrossRefGoogle Scholar
  8. 8.
    Dávila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002CrossRefGoogle Scholar
  9. 9.
    Balendhran S, Walia S, Nili H, Sriram S and Bhaskaran M 2015 Small 11 640CrossRefGoogle Scholar
  10. 10.
    Mandal T K, Jose D, Nijamudheen A and Datta A 2014 J. Phys. Chem. C 118 12115CrossRefGoogle Scholar
  11. 11.
    Nijamudheen A, Bhattacharjee R, Choudhury S and Datta A 2015 J. Phys. Chem. C 119 3802CrossRefGoogle Scholar
  12. 12.
    Wang Y, Zheng J, Ni Z, Fei R, Liu Q, Quhe R et al 2012 Nano 7 1250037CrossRefGoogle Scholar
  13. 13.
    Houssa M, Scalise E, Sankaran K, Pourtois G, Afanas’ Ev V V and Stesmans A 2011 Appl. Phys. Lett. 98 223107CrossRefGoogle Scholar
  14. 14.
    Dekura S, Kobayashi H, Ikeda R, Maesato M, Yoshino H, Ohba M et al 2018 Angew. Chem. Int. Ed.  57 9823CrossRefGoogle Scholar
  15. 15.
    Seixas L, Padilha J E and Fazzio A 2014 Phys. Rev. B 89 195403CrossRefGoogle Scholar
  16. 16.
    Jose D, Chowdhury C and Datta A 2018 in: P Vogt and G Le Lay (eds) A vision on organosilicon chemistry and silicene (Silicene. NanoScience and Technology, Springer, Cham), p 1Google Scholar
  17. 17.
    Musin R N and Wang X Q 2006 Phys. Rev. B 74 165308CrossRefGoogle Scholar
  18. 18.
    Bianco E, Butler S, Jiang S, Restrepo O D, Windl W and Goldberger J E 2013 ACS Nano 7 4414CrossRefGoogle Scholar
  19. 19.
    Segall M D, Lindan P J, Probert M A, Pickard C J, Hasnip P J, Clark S J et al 2002 J. Phys. Condens. Matter 14 2717CrossRefGoogle Scholar
  20. 20.
    Schwarz K, Blaha P and Madsen G K 2002 Comput. Phys. Commun. 147 71CrossRefGoogle Scholar
  21. 21.
    Fischer T H and Almlof J 1992 J. Phys. Chem. C 96 9768CrossRefGoogle Scholar
  22. 22.
    Chadi D J 1977 Phys. Rev. B 13 5188Google Scholar
  23. 23.
    Li Y F and Chen Z 2014 J. Phys. Chem. C 118 1148CrossRefGoogle Scholar
  24. 24.
    Wei W, Dai Y, Huang B and Jacob T 2013 Phys. Chem. Chem. Phys. 15 8789CrossRefGoogle Scholar
  25. 25.
    Rojas K I M, Al Rey C V, Moreno J L, David M and Arboleda Jr N B 2018 Int. J. Hydrogen Energy 43 4393CrossRefGoogle Scholar
  26. 26.
    Hattori A, Tanaya S, Yada K, Araidai M, Sato M, Hatsugai Y et al 2017 J. Phys. Condens. Matter 29 115302CrossRefGoogle Scholar
  27. 27.
    Monshi M M, Aghaei S M and Calizo I 2017 RSC Adv. 7 18900CrossRefGoogle Scholar
  28. 28.
    Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804CrossRefGoogle Scholar
  29. 29.
    Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of ScienceShandong Jianzhu UniversityJinanPeople’s Republic of China

Personalised recommendations