Advertisement

Dip-coating of 8YSZ nanocrystalline particles on NiO–YSZ substrate

  • Shahab MoghadasEmail author
  • Amir Maghsoudipour
  • Touradj Ebadzadeh
  • Masoud Alizadeh
Article
  • 32 Downloads

Abstract

In this study, 8 mol% yttria-stabilized zirconia (8YSZ)-agglomerated particles were dispersed in de-ionized water using different weights of Tiron. The results of viscosity and sedimentation measurements of each suspension were evaluated and the optimum amount of Tiron was selected. The most stable suspension was prepared for dip-coating. The substrate was prepared by mixing NiO and YSZ powders and then pressed and pre-sintered at \(1050^{\circ }\hbox {C}\). The effect of saturated and unsaturated substrates on morphology and thickness of films were investigated. The thickness of YSZ films with different withdrawn speeds and dip-times were calculated. Also, the morphologies of deposited films were characterized by scanning electron microscopy. The above experimental results showed that by adjusting pH about 10, the view point of rheological behaviour, the optimum dispersant was 0.8% and the suspension containing 0.8% Tiron had the lowest viscosity. Finally, the obtained layers from dip-coating method represented that the films deposited on saturated substrate were crack-free and homogeneous when compared to unsaturated substrates.

Keywords

Dip-coating saturated substrate NiO–YSZ Tiron viscosity 

References

  1. 1.
    Mukherjee A, Maiti B, Sharma A D, Basu R N and Maiti H S 2001 Ceram. Int.  27 731CrossRefGoogle Scholar
  2. 2.
    Briscoe B J, Khan A U and Luckham P F 1998 J. Eur. Ceram. Soc.  18 2169CrossRefGoogle Scholar
  3. 3.
    Fengqiu T, Xiaoxian H, Yufeng Z and Jingkun G 2000 Ceram. Int.  26 93CrossRefGoogle Scholar
  4. 4.
    Zhang J, Ye F, Sun J, Jiang D and Iwasa M 2005 Colloids Surf. A Physicochem. Eng. Asp.  254 199CrossRefGoogle Scholar
  5. 5.
    Jachimska B and Adamczyk Z 2007 J. Eur. Ceram. Soc.  27 2209CrossRefGoogle Scholar
  6. 6.
    Saravanan L and Subramanian S 2005 Colloids Surf. A  252 175CrossRefGoogle Scholar
  7. 7.
    Kim S D, Hyun S H, Moon J, Kim J-H and Song R H 2005 J. Power Sources  139 67CrossRefGoogle Scholar
  8. 8.
    Gaudon M, Liberty-Robert Ch, Ansart F and Stevens P 2006 J. Eur. Ceram. Soc.  26 3153CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Gao J, Peng D, Guangyao M and Liu X 2004 Ceram. Int.  30 1049CrossRefGoogle Scholar
  10. 10.
    Pan Y, Zhu J H, Hu M Z and Payzant E A 2005 Surf. Coat. Technol.  200 1242CrossRefGoogle Scholar
  11. 11.
    Mauvy F, Lenormand P, Lalanne C, Ansart F, Bassat J M and Grenier J C 2007 J. Power Sources  171 783CrossRefGoogle Scholar
  12. 12.
    Lenormand P, Caravaca D, Laberty-Robert C and Ansart F 2005 J. Eur. Ceram. Soc.  25 2643CrossRefGoogle Scholar
  13. 13.
    Minh N Q and Takahashi T 1995 Science and technology of ceramic fuel cells (Amsterdam: Elsevier)Google Scholar
  14. 14.
    Pratihar S K, Sharma A D, Basu R N and Maiti H S 2004 J. Power Sources  129 138CrossRefGoogle Scholar
  15. 15.
    Fukui T, Ohara S, Naito M and Nogi K 2003 Powder Technol.  132 52CrossRefGoogle Scholar
  16. 16.
    Nikumbh A K, Schmidt H, Martin K and Porz F 1991 J. Mater. Sci.  26 3649CrossRefGoogle Scholar
  17. 17.
    Prakash S, Tripathy S and Raichur M 2007 Colloids Surf. A  302 553CrossRefGoogle Scholar
  18. 18.
    Jeffrey Brinker C and Hurd A J 1994 Phys. Abstracts  4 1231Google Scholar
  19. 19.
    Wachtman J B and Haber R A 1993 Ceramic films and coatings (New Jersey, USA: Noyes Publications)Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Shahab Moghadas
    • 1
    Email author
  • Amir Maghsoudipour
    • 1
  • Touradj Ebadzadeh
    • 1
  • Masoud Alizadeh
    • 1
  1. 1.Ceramic DivisionMaterials and Energy Research CentreKarajIran

Personalised recommendations