Compositional dependence of properties in calcium substituted sodium borophosphate glasses containing \({\hbox {VO}}^{2+}\) ions

  • Pinki Narwal
  • Manjeet Singh Dahiya
  • Pratima Kundu
  • Arti Yadav
  • Ashima Hooda
  • Satish KhasaEmail author


Synthesis of calcium-substituted sodium borophosphate glasses with compositions \(x\hbox {CaO} - (30 - x)\hbox {Na}_{2}\hbox {O} - 35\hbox {B}_{2}\hbox {O}_{3} - 35\hbox {P}_{2}\hbox {O}_{5}\) (\(x=0\), 2, 5, 7 and 10 mol%, abbreviated as CNVx) containing additional 1.0 mol% of \(\hbox {V}_{2}\hbox {O}_{5}\) following a melt-quench method has been carried out. Different analytical techniques viz. wide angle X-ray diffraction (to confirm non-crystalline nature), ultraviolet–visible spectroscopy (for optical band gap analysis), infrared absorption spectroscopy (for structural analysis) and differential thermal analysis (to evaluate characteristic temperatures) were employed to characterize the synthesized compositions. The optical band gap is calculated for both indirect allowed and indirect forbidden transitions. The values of the band gap decrease with increasing concentration of CaO (from 5 to 10 mol%) at the cost of \(\hbox {Na}_{2}\)O. The cut-off wavelength and Urbach’s energy are determined from the optical absorption spectra and were related to the structural changes occurring in these glasses with an increase in CaO content. The results obtained from Fourier-transform infrared studies confirm that V\(_{2}\hbox {O}_{5}\) and CaO play the role of network modifier oxides. Also, the significant shifting in IR bands with an increase in CaO content in the glass matrix suggests the formation of a new boron–oxygen ring. From differential scanning calorimetry measurements it is observed that substitution leads to the increase in natural bond orbitals, high degree cross-linking and thus strengthens the glass network. Glass transition temperature (\(T_{\mathrm{g}}\)) is found to increase from 483 to 522\(^{\circ }\)C. Electrical and dielectric properties are analysed using dc conductivity and impedance spectroscopy. Using impedance spectroscopy, different dielectric parameters i.e. dielectric loss (\(\varepsilon ^\prime \)), electrical modulus (\(M^*\)) and ac conductivity (\(\sigma _{\mathrm{ac}}\)) etc. are evaluated as a function of frequency, temperature and composition. The frequency dependence of impedance exhibits the non-Debye relaxation behaviour and the total conductivity obeys Jonscher’s power law.


Band gap differential thermal analysis impedance spectroscopy Jonscher’s power law 



The authors would also like to acknowledge the Central Instrumentation Laboratory (CIL) Deenbandhu Chhotu Ram University of Science & Technology, Murthal for providing thermal and optical absorption measurement facilities. Pinki Narwal and Arti Yadav would like to thank DCR University of Science & Technology, Murthal and CSIR, New Delhi for providing financial support under TEQIP Phase III and Senior Research Fellowship (09/1063(0006)/2013-EMR-I) scheme respectively.


  1. 1.
    Khafagy A H, El Adawy A A, Higazy A A, El Rabaie S and Eid A S 2008 J. Non-Cryst. Solids 354 3152CrossRefGoogle Scholar
  2. 2.
    Ahoussou A P, Rogez J and Kone A 2007 J. Non-Cryst. Solids 353 271CrossRefGoogle Scholar
  3. 3.
    Koudelka L, Mosner P, Zeyer M and Jager C 2003 J. Non-Cryst. Solids 326 72CrossRefGoogle Scholar
  4. 4.
    Carta D, Qiu D, Guerry P, Ahmed I, Neel E A A, Knowles J C et al 2008 J. Non-Cryst. Solids 354 3671CrossRefGoogle Scholar
  5. 5.
    Koudelka L and Mosner P 2000 Mater. Lett. 42 194CrossRefGoogle Scholar
  6. 6.
    Nazabal V, Fargin E, Labrugere C and Flem G 2000 J. Non-Cryst. Solids 270 223CrossRefGoogle Scholar
  7. 7.
    Reddy A A, Babu S S, Pradeesh K, Otton C J and Prakash G V 2011 J. Alloys Compd. 509 4047CrossRefGoogle Scholar
  8. 8.
    Brow R K 2000 J. Non-Cryst. Solids 263 1CrossRefGoogle Scholar
  9. 9.
    Srinivasulu K, Omkaram I, Obeid H, Kumar A S and Rao J L 2012 J. Phys. Chem. A 116 3547CrossRefGoogle Scholar
  10. 10.
    Chanshetti U B, Sudarsan V, Jogad M S and Chondhekar T K 2011 Physica B Condens. Matter. 406 2904CrossRefGoogle Scholar
  11. 11.
    Kiran N and Kumar A S 2013 J. Mol. Struct. 1054 6CrossRefGoogle Scholar
  12. 12.
    Takebe H, Harada T and Kuwabara M 2006 J. Non-Cryst. Solids 352 709CrossRefGoogle Scholar
  13. 13.
    Sedmale G, Vaivads J, Sedmalis U, Kabanov V O and Yanush O V 1991 J. Non-Cryst. Solids 129 284CrossRefGoogle Scholar
  14. 14.
    Marotta A, Buri A, Branda F, Pernice P and Aronne A 1987 J. Non-Cryst. Solids 95 593CrossRefGoogle Scholar
  15. 15.
    Elbers S, Strojek W, Koudelka L and Eckert H 2005 Solid State Nucl. Mag. Res. 27 65CrossRefGoogle Scholar
  16. 16.
    Anantha P S and Hariharan K 2005 Mater. Chem. Phys. 89 428CrossRefGoogle Scholar
  17. 17.
    Karan N K, Natesan B and Katiyar R S 2006 Solid State Ioincs 177 1429CrossRefGoogle Scholar
  18. 18.
    Tan C, Ahmed I, Parsons A J, Sharmin N, Zhu C, Liu J et al 2017 J. Mater. Sci. 52 7489CrossRefGoogle Scholar
  19. 19.
    Chiodelli G, Magistris A and Villa M 1986 Solid State Ionics 18 356CrossRefGoogle Scholar
  20. 20.
    Reddy K S R K, Swapna K, Mahamuda S K, Venkateswarlu M, Rao A S and Prakash G V 2018 Opt. Mater. 85 200CrossRefGoogle Scholar
  21. 21.
    Sheng L, Liu H, Wu F, Chang Z and Yue Y 2016 J. Non-Cryst. Solids 434 108CrossRefGoogle Scholar
  22. 22.
    Khasa S, Dahiya M S and Agarwal A 2014 AIP Conf. Proc. 1591 796CrossRefGoogle Scholar
  23. 23.
    Bajaj A, Khanna A, Chen B, Longstaffe J G, Zwanziger U W, Zwanziger J W et al 2009 J. Non-Cryst. Solids 355 45CrossRefGoogle Scholar
  24. 24.
    Yusub S, Narendrudu T, Suresh S and Krishna D R 2014 J. Mol. Struct. 1076 136CrossRefGoogle Scholar
  25. 25.
    Dalal S, Khasa S, Dahiya M S, Agarwal A, Yadav A, Seth V P et al 2015 Mater. Res. Bull. 70 559CrossRefGoogle Scholar
  26. 26.
    Byun J O, Kim B H, Hong K H, Jung H J, Lee S W and Izyneev A A 1995 J. Non-Cryst. Solids 190 288CrossRefGoogle Scholar
  27. 27.
    Alexander M N, Onorato P I K, Struck C W, Tasker G W and Uhlmann D R 1987 J. Non-Cryst. Solids 91 63CrossRefGoogle Scholar
  28. 28.
    Duffy J A and Ingram M D 1975 J. Inorg. Nucl. Chem. 37 1203CrossRefGoogle Scholar
  29. 29.
    Prakash D, Seth V P, Chand I and Chand P 1996 J. Non-Cryst. Solids 204 46CrossRefGoogle Scholar
  30. 30.
    Srinivasulu K, Omkaram I, Obeid H, Kumar A S and Rao J L 2012 J. Phys. Chem. A 116 3547CrossRefGoogle Scholar
  31. 31.
    Pascuta P, Pop L, Rada S, Bosca M and Culea E 2008 J. Mater. Sci. Mater. Electron. 19 424CrossRefGoogle Scholar
  32. 32.
    Naf S M A, Khalil E S M, Sayed M E, Zayed H A and Youness R A 2015 Spectrochim. Acta A 144 88CrossRefGoogle Scholar
  33. 33.
    Kamitsos E I, Patsis A P, Karakassides M A and Chryssikos G D 1990 J. Non-Cryst. Solids 126 52CrossRefGoogle Scholar
  34. 34.
    Abdelghany A M, Batal F H E, Azooz M A, Ouis M A and Batal H A E 2012 Spectrochim. Acta A 98 148CrossRefGoogle Scholar
  35. 35.
    Karabulut M, Aydın C, Ertap H and Yüksek M 2015 J. Non-Cryst. Solids 411 19CrossRefGoogle Scholar
  36. 36.
    Wang F, Liao O, Xiang and Pan S 2014 J. Mol. Struct. 1060 176Google Scholar
  37. 37.
    Chahine A and Tabirou M E 2002 Mater. Res. Bull. 37 1973CrossRefGoogle Scholar
  38. 38.
    Money B K and Hariharan K 2008 Solid State Ionics 179 1273CrossRefGoogle Scholar
  39. 39.
    Naf S M A, Amiry M S E and Khalek A A A 2008 Opt. Mater. 30 900CrossRefGoogle Scholar
  40. 40.
    Bamford C R 1977 Color generation and control in glass, glass science and technology (Amsterdam: Elsevier)Google Scholar
  41. 41.
    Batal F H E, Kheshen A A E, Azooz M A and Naf S M A 2008 Opt. Mater. 30 881CrossRefGoogle Scholar
  42. 42.
    Yusub S, Narendrudu T, Suresh S and Rao D K 2014 J. Mol. Struct. 1076 136CrossRefGoogle Scholar
  43. 43.
    Tauc J 1974 Amorphous and liquid semiconductor (New York: Plenum)CrossRefGoogle Scholar
  44. 44.
    Urbach F 1953 Phys. Rev. 92 1324CrossRefGoogle Scholar
  45. 45.
    Yogamalar N R and Bose A C 2011 Appl. Phys. A 103 33CrossRefGoogle Scholar
  46. 46.
    Manjula N, Balu A R, Usharani K, Raja N and Nagarethinam V S 2016 Optik 127 6400CrossRefGoogle Scholar
  47. 47.
    Feller S and Affatigato M (Eds) 2015 Modern glass characterization (Hoboken, New Jersey: Wiley)Google Scholar
  48. 48.
    Dahiya M S, Yadav A, Manyani N, Chahal S, Hooda A, Agarwal et al 2016 J. Therm. Anal. Calorim. 126 1191Google Scholar
  49. 49.
    Farouk M, Samir A, Metawe F and Elokr M 2013 J. Non-Cryst. Solids 371 14CrossRefGoogle Scholar
  50. 50.
    Narwal P, Dahiya M S, Yadav A, Hooda A, Agarwal A and Khasa S 2017 Ceram. Int. 43 11132CrossRefGoogle Scholar
  51. 51.
    Wilder J A and Shelby J E 1984 J. Am. Ceram. Soc. 67 438CrossRefGoogle Scholar
  52. 52.
    Koudelka L, Mos P, Pospís J, Montagne L and Palavit G 2005 J. Solid State Chem. 178 1837CrossRefGoogle Scholar
  53. 53.
    Koudelka L and Mošner P 2001 J. Non-Cryst. Solids 293 635CrossRefGoogle Scholar
  54. 54.
    Arstila H, Vedel E, Hupa L and Hupa M 2007 J. Eur. Ceram. Soc. 27 1543CrossRefGoogle Scholar
  55. 55.
    Lanfredi S, Saia P S, Lebullenger R and Hernandes A C 2002 Solid State Ionics 146 329CrossRefGoogle Scholar
  56. 56.
    Sheoran A, Sanghi A, Rani S, Agarwal A and Seth V P 2009 J. Alloys Compd. 475 804CrossRefGoogle Scholar
  57. 57.
    Devidas G B, Sankarappa T, Chougule B K and Prasad G 2007 J. Non-Cryst. Solids 353 426CrossRefGoogle Scholar
  58. 58.
    Roling B and Ingram M D 2000 J. Non-Cryst. Solids 265 113CrossRefGoogle Scholar
  59. 59.
    Wilder J A 1980 J. Non-Cryst. Solids 38 879CrossRefGoogle Scholar
  60. 60.
    Rao R B, Gopal N O and Veeraiah N 2004 J. Alloys Compd. 368 25CrossRefGoogle Scholar
  61. 61.
    Gedam R S and Ramteke D D 2013 J. Phys. Chem. Solids 74 1039CrossRefGoogle Scholar
  62. 62.
    Kumar B V, Sankarappa T, Kumar S, Kumar M P, Sadashivaiah P J and Reddy R 2009 Physica B Condens. Matter 404 3487CrossRefGoogle Scholar
  63. 63.
    Ramteke D D and Gedam R S 2014 Solid State Ionics 258 82CrossRefGoogle Scholar
  64. 64.
    Ashok J, Purnachand N, Kumar J S, Reddy M S, Suresh B, Graça M P F et al 2017 J. Alloys Compd. 696 1260CrossRefGoogle Scholar
  65. 65.
    Barde R V and Waghuley S A 2013 J. Non-Cryst. Solids 376 117CrossRefGoogle Scholar
  66. 66.
    Paramesh G and Varma K B R 2011 Int. J. Appl. Glass Sci. 2 235CrossRefGoogle Scholar
  67. 67.
    Rani S, Sanghi S, Ahlawat N and Agarwal A 2014 J. Alloys Compd. 597 110CrossRefGoogle Scholar
  68. 68.
    Suresh S, Prasad M and Mouli V C 2010 J. Non-Cryst. Solids 356 1599CrossRefGoogle Scholar
  69. 69.
    Yadav A, Dahiya M S, Narwal P, Hooda A, Agarwal A and Khasa S 2017 Solid State Ionics 312 21CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Pinki Narwal
    • 1
  • Manjeet Singh Dahiya
    • 1
  • Pratima Kundu
    • 1
  • Arti Yadav
    • 1
  • Ashima Hooda
    • 1
  • Satish Khasa
    • 1
    Email author
  1. 1.Materials Research Laboratory, Physics DepartmentDeenbandhu Chhotu Ram University of Science and TechnologyMurthalIndia

Personalised recommendations