Advertisement

Effect of off-stoichiometry on properties of tin selenide crystals

  • Mohit TannaranaEmail author
  • G K Solanki
  • K D Patel
  • V M Pathak
  • Pratik Pataniya
Article
  • 34 Downloads

Abstract

The tin selenide crystals with different proportions of Sn and Se were grown by a direct vapour-transport technique. The layer by layer growth of crystals from the vapour phase was promoted by screw dislocation mechanism. The powder X-ray diffraction (XRD) shows good crystallinity of grown compound. The XRD patterns of grown compounds are well-indexed to orthorhombic structure. In the off-stoichiometric compound, evidence of \(\hbox {SnSe}_{{2}}\) secondary phase is observed due to excess of selenium. The morphological investigations were carried out using a Carl Zeiss optical microscope. The electron diffraction was also recorded from tiny flakes using a transmission electron microscope. The electrical resistivity both parallel and perpendicular to the c-axis was measured in the temperature range of 303–490 K and activation energy was also calculated using Arrhenius relation. The electrical study depicts the extrinsic semiconducting nature of grown compositions.

Keywords

Crystal growth tin selenide secondary structure phase 

References

  1. 1.
    Sukhovatkin V, Hinds S, Brzozowski L and Sargent E H 2009 Science 324 1542CrossRefGoogle Scholar
  2. 2.
    Zankat C K, Pataniya P, Solanki G K, Patel K D and Pathak V M 2018 Mater. Lett. 221 35CrossRefGoogle Scholar
  3. 3.
    Sargent E H 2009 Nat. Photonics 3 332CrossRefGoogle Scholar
  4. 4.
    Hillhouse H W and Beard M C 2009 Curr. Opin. Colloid Interface Sci. 14 245CrossRefGoogle Scholar
  5. 5.
    Rogach A L, Eychmuller A, Hickey S G and Kershaw S V 2007 Small 3 536CrossRefGoogle Scholar
  6. 6.
    Ellingson R J, Beard M C, Johnson J C, Yu P R, Micic O I, Nozik A J et al 2005 Nano Lett. 5 865CrossRefGoogle Scholar
  7. 7.
    Xu Y, Al-Salim N, Bumby C W and Tilley R D 2009 J. Am. Chem. Soc. 131 15990CrossRefGoogle Scholar
  8. 8.
    Hickey S G, Waurisch C, Rellinghaus B and Eychmuller A 2008 J. Am. Chem. Soc. 130 14978CrossRefGoogle Scholar
  9. 9.
    Franzman M A, Schlenker C W, Thompson M E and Brutchey R L 2010 J. Am. Chem. Soc. 132 4060CrossRefGoogle Scholar
  10. 10.
    Baumgardner W J, Choi J J, Lim Y F and Hanrath T J 2010 J. Am. Chem. Soc. 132 9519CrossRefGoogle Scholar
  11. 11.
    Yoon S M, Song H M and Choi H C 2010 Adv. Mater. 22 2164CrossRefGoogle Scholar
  12. 12.
    Makinistian L and Albanesi E A 2007 J. Phys.: Condens. Matter 19 186211Google Scholar
  13. 13.
    Makinistian L and Albanesi E A 2006 Phys. Rev. B 74 045206CrossRefGoogle Scholar
  14. 14.
    Solanki G K, Pataniya P, Sumesh C K, Patel K D and Pathak V M 2016 J. Cryst. Growth 441 101CrossRefGoogle Scholar
  15. 15.
    Pataniya P, Solanki G K, Patel K D, Pathak V M and Sumesh C K 2017 Mater. Res. Express 4 106306CrossRefGoogle Scholar
  16. 16.
    Lee S T, Kim M J, Lee G G, Kim S G, Lee S, Seo W S and Lim Y S 2017 Curr. Appl. Phys. 17 732CrossRefGoogle Scholar
  17. 17.
    Tailor J P, Trivedi D S, Chaki S H, Chaudhary M D and Deshpande M P 2017 Mater. Sci. Semicond. Process. 61 11CrossRefGoogle Scholar
  18. 18.
    Gupta K, Jassal M and Agrawal A 2007 Res. J. Text. Apparel 11 1CrossRefGoogle Scholar
  19. 19.
    Dixit V, Vyas C, Pataniya P, Jani M, Pathak V, Patel A et al 2016 AIP Conf. Proc. 1728 020633CrossRefGoogle Scholar
  20. 20.
    Zankat C K, Pataniya P, Solanki G K, Patel K D, Pathak V M, Som N et al 2018 Mater. Sci. Semicond. Process. 80 137CrossRefGoogle Scholar
  21. 21.
    Goswami A 1996 Thin film fundamentals (New Delhi: New Age International Publishers) 1st edn p 556Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Mohit Tannarana
    • 1
    Email author
  • G K Solanki
    • 1
  • K D Patel
    • 1
  • V M Pathak
    • 1
  • Pratik Pataniya
    • 1
  1. 1.Department of PhysicsSardar Patel UniversityAnandIndia

Personalised recommendations