Advertisement

Poly(amido amine) dendrimer and silver nanoparticle–multi-walled carbon nanotubes composite with poly(neutral red)-modified electrode for the determination of ascorbic acid

  • C Lakshmi Devi
  • S Sriman NarayananEmail author
Article
  • 27 Downloads

Abstract

A new film containing poly(amido amine) dendrimer, silver nanoparticles and multi-walled carbon nanotubes composite with poly(neutral red) was prepared on a paraffin wax impregnated graphite electrode. The PAMAM / AgNPs–MWCNT / PNR film exhibited promising electrocatalytic oxidation of ascorbic acid (AA) in acetate buffer solution of pH 4.0. The PAMAM / AgNPs–MWCNT / PNR film-modified electrode enhanced the sensitivity of detection of AA. The PAMAM / AgNPs–MWCNT / PNR film-modified electrode was characterized by cyclic voltammetry, chronoamperometry, hydrodynamic voltammetry (HDV) and difference pulse voltammetry. These experiments confirmed the electrocatalytic oxidation of AA by PAMAM / AgNPs–MWCNT / PNR film-modified electrode. The PAMAM / AgNPs–MWCNT / PNR-modified electrode has been found to possess good electrocatalytic activity towards AA oxidation which has been observed at a lower oxidation potential of around 0.26 V with a higher current response. The electrochemical oxidation of AA by PAMAM / AgNPs–MWCNT / PNR-modified electrode involved a two proton and two electron process. A linear relationship between the catalytic current and AA concentration was obtained in the range from 0.16 to 2500 \(\upmu \)M with a detection limit of 0.053 \(\upmu \)M.

Keywords

Dendrimer ascorbic acid nanoparticles electrocatalytic oxidation 

Notes

Acknowledgements

The authors gratefully acknowledge the DST-Inspire fellowship from the Department of Science and Technology, New Delhi, India for financial assistance.

References

  1. 1.
    Wang X, Wu P, Hou X and Lv Y 2013 Analyst 138 229CrossRefGoogle Scholar
  2. 2.
    Wu G H, Wu Y F, Liu X W, Rong M C, Chen X and Chen X 2012 Anal. Chim. Acta 745 33CrossRefGoogle Scholar
  3. 3.
    Luo X L, Xu J J, Zhao W and Chen H Y 2004 Anal. Chim. Acta 512 57CrossRefGoogle Scholar
  4. 4.
    Andreu Y, Marcos S, Castillo J R and Galban J 2005 Talanta 65 1045CrossRefGoogle Scholar
  5. 5.
    Anastos N, Barnett N W, Hindson B J, Lenehan C E and Lewis S W 2004 Talanta 64 130CrossRefGoogle Scholar
  6. 6.
    Nováková L, Solichová D and Solich P 2009 J. Chromatogr. A 1216 4574CrossRefGoogle Scholar
  7. 7.
    Suntornsuk L, Gritsanapun W, Nilkamhank S and Paochom A 2002 J. Pharm. Biomed. Anal. 28 849CrossRefGoogle Scholar
  8. 8.
    Saari N B, Osman A, Selamat J and Fujita S 1999 Food Chem. 66 57CrossRefGoogle Scholar
  9. 9.
    Qiu S, Gao S, Liu Q, Lin Z, Qiu B and Chen G 2011 Biosens. Bioelectron. 26 4326CrossRefGoogle Scholar
  10. 10.
    Chairam S, Sriraksa W, Amatatongchai M and Somsook E 2011 Sensors 11 10166CrossRefGoogle Scholar
  11. 11.
    Senel M and Çevik E 2012 Curr. Appl. Phys. 12 1158CrossRefGoogle Scholar
  12. 12.
    Durst R A, Baumner A J, Murray R W, Buck R P and Andrieux C P 1997 Pure Appl. Chem. 69 1317CrossRefGoogle Scholar
  13. 13.
    Ran X Q, Yuan R, Chai Y Q, Hong C L and Qian X Q 2010 Colloids Surf. B Biointerfaces 79 421CrossRefGoogle Scholar
  14. 14.
    Lopez J A, Manrıquez J, Mendoza S and Godınez L A 2007 Electrochem. Commun. 9 2133CrossRefGoogle Scholar
  15. 15.
    Jeykumari S, Ramaprabhu S and Sriman Narayanan S 2007 Carbon 45 1340CrossRefGoogle Scholar
  16. 16.
    Torigoe K, Suzuki A and Esumi K 2001 J. Colloid Interface Sci. 241 346CrossRefGoogle Scholar
  17. 17.
    Ramírez-Segovia A S, Banda-Alemán J A, Gutiérrez-Granados S, Rodríguez A, Rodríguez F J, Godínez A et al 2014 Anal. Chim. Acta 812 18CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Ying Xu M and Kun Jiang T 2014 Chin. Chem. Lett. 25 815CrossRefGoogle Scholar
  19. 19.
    Lee S H, Teng C C, Ma C C and Wang I 2011 J. Colloid Interface Sci. 364 1CrossRefGoogle Scholar
  20. 20.
    Cui H, Zou G Z and Lin X Q 2003 Anal. Chem. 75 324CrossRefGoogle Scholar
  21. 21.
    Scholz F and Lange B 1992 Tr. Anal. Chem. 11 359CrossRefGoogle Scholar
  22. 22.
    Yang C M, Yi J L, Tang X J, Zhou G Z and Zeng Y 2006 React. Funct. Polym. 66 1336CrossRefGoogle Scholar
  23. 23.
    Ghica M E and Brett C M A 2006 Electroanalysis 18 748CrossRefGoogle Scholar
  24. 24.
    Yogeswaran U and Chen S M 2007 Electrochim. Acta 52 5985CrossRefGoogle Scholar
  25. 25.
    Carvalho R C, Caridade C G and Brett C M A 2010 Anal. Bioanal. Chem. 398 1675CrossRefGoogle Scholar
  26. 26.
    Purushothama H T and Arthoba Nayaka Y 2017 Sens. Bio-Sens. Res. 16 12CrossRefGoogle Scholar
  27. 27.
    Manjunatha P, Nayaka Y A, Chethana B K, Vidyasagar C C and Yathisha R O 2018 Sens. Bio-Sens. Res. 17 7CrossRefGoogle Scholar
  28. 28.
    Huang J S, Liu Y, Hou H Q and You T Y 2008 Biosens. Bioelectron. 24 632CrossRefGoogle Scholar
  29. 29.
    Yang L, Liu D, Huang J and You T 2014 Sens. Actuators B 193 166CrossRefGoogle Scholar
  30. 30.
    Yan J, Liu S, Zhang Z, He G, Zhou P and Liang H 2013 Colloids Surf. B Biointerfaces 111 392CrossRefGoogle Scholar
  31. 31.
    Jiang J and Du X 2014 Nanoscale 6 11303CrossRefGoogle Scholar
  32. 32.
    Han D, Han T, Shan C, Ivaska A and Niu L 2010 Electroanalysis 22 2001CrossRefGoogle Scholar
  33. 33.
    Liu X, Ou X, Lu Q, Zhang J, Chen S and Wei S 2014 RSC Adv. 4 42632CrossRefGoogle Scholar
  34. 34.
    Zheng X, Zhou X, Ji X, Lin R and Lin W 2013 Sens. Actuators B Chem. 178 359CrossRefGoogle Scholar
  35. 35.
    Li S J, Qian C, Wang K, Hua B Y, Wang F B, Sheng Z H et al 2012 Sens. Actuators B 174 441CrossRefGoogle Scholar
  36. 36.
    Rafati A A, Afraz A, Hajian A and Assari P 2014 Microchim. Acta 181 1999CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, School of Chemical SciencesUniversity of MadrasChennaiIndia

Personalised recommendations